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ABSTRACT. By means of the Knuth transform, arbitrary rooted trees may be represented compactly
as binary trees. In this paper it is shown that the domain of this transform may be extended to a
much wider class of graphs, while still maintaining its fundamental properties. Graphs, G, belonging
to this extended domain are characterized first in terms of properties of an induced graph, G*, and
then in terms of local properties of G itself. A classic kind of “forbidden’’ subgraph theorem charac-
terizes nonrepresentable graphs. Finally, it is shown that any directed graph can be modified to
make it representable under the transform.
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Donald Knuth in [2] presents a lovely transformation (which we will call the Knuth
transform) by which an arbitrary rooted tree, T» , may be represented as a binary
rooted tree, Tr, as in Figure 1. It is important because by using such a transform, one
can represent any rooted tree, with unbounded out-degree, by a linked data structure in
which the cells that represent points of the data structure may be of fixed size. In fact,
only two link fields are necessary to completely represent the tree structured relationship
between the points. Given such a useful® transformation it is natural to ask, “Can we
apply the Knuth transformation to a larger class of data structures?’’ A little experi-
mentation is sufficient to convince us, at least intuitively, that in some cases it can be
effectively applied (Figure 2), and in others it cannot (Figure 3). What distinguishes
these two graphs?

First we must backtrack and define certain concepts with more precision. A directed
graph, denoted G = (P, E), is a set P of points (or data items) together with a binary
relation, E, (or set of ordered pairs) defined on P. Graphs (we will henceforth drop the
adjective “directed’’) are valuable as mathematical models of both abstract data struc-
tures and their computer representations. Thus we make a distinction between Gy , the
graph which models an abstract data structure, and G, which models (or describes)
its computer representation. In many cases the representation is virtually a one-to-one
isomorphic copy of the abstract model and the distinction is unimportant. But at other
times the distinction may be crucial. A representation is faithful if from G alone a com-
puter procedure can reproduce all of the information that existed in the abstract model.

Let z € P be a point of a graph. By its set of right neighbors, R(z) (often called the
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IRepresentation by fixed size cells with few link fields is of especial value for in-core representations.

If external storage is employed just the reverse, large cells with many links, may be preferable.
B-trees are one example [3].
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set of sons or descendants), we mean R(x) = iyl (r, y) ¢ E}. Sets, such as R(x),
may be represented in a computer by many technigues. One of the simplest is as a linked
list in which the cxplicit order that individual cells are linked in the list may, or may
not, have any significance. If a point of the graph may belong to several sets of interest,
then a computer representation of set membership may require one link field for each set
to which the cell may belong. But if a point can belong to at most one set, then readily
at most a single link field will be necessary.

The Knuth transformation f:Gy — Gz may now be informally described by the
following: to each point z in G , associate a corresponding cell c; in Gr . If {z,, - -+ ,2} =
R(w) for some w, link ¢, ¢, - -, ¢. as a set. Link each cell ¢, to the set (list) repre-
senting R(w). (Knuth calls these BROTHER and SON links.) In Figure 1 we show
this transformation using dashed edges to denote set links and solid edges to denote
those links that represent the functional relation w — R(w). While G may be regarded
as a binary tree, it seems more accurate to regard it as a collection of sets together
with a functional relation between elements w and their associated sets R(w). Regard-
less of the significance attached to them, no more than two link fields per cell are needed,
since in a rooted tree any point z can belong to at most one set R(w). Now suppose G
is neither rooted nor a tree, as in Figure 2. Representation under the Knuth transform
_still appears to ‘“work,”” in that each cell needs at most two link fields. But the trans-
formation “fails’’ on the graph G of Figure 3, even though it is a tree. Either ¢; must
contain an additional link field to distinguish its membership in the sets {e, f} and {f, g},
or else ¢ will “appear”’ (as shown) to be an element of R(c). If the former representation
is employed, then graphs, and even trees, may be found that require cells with an ar-
bitrarily large number of “set’’ link fields, thereby vitiating the value of the transfor-
mation. The latter representation is not faithful.

While it is customary to say that the Knuth transformation, f, maps the set {T.}
of all rooted trees® onto the set { Tz} of binary rooted trees, this is not strictly true. T
is not really a tree since it has two distinct kinds of “edges.”’ It will pay to be more pre-
cise. A point set P with two, or more, binary relatlons E,, .-, E, defined on it we will

call a hypergraph, denoted by G = (P, E;,-- -, E.)Bya path, pe(z, y), we mean a
sequence of points (o, -+ , ¥a), 7 < 0, such that Z=10,2=1y.,and (y;_1,¥;) € E;
for 1 £ j < n. Intuitively it is a sequence of points that can be accessed by traversing
edges (possibly none) in E;. Readlly the exxstence of paths is a transitive relation.

Definition. A hypergraph ed (P, E'y, E'y) is said to be the Knuth tmnsform
of the graph G = (P, E) if there exists 1-1 onto function ¢ : P — P’ (we let 2’ denote
¢(z)) such that

i) (z, y) E E implies that for some unique yo € R(2), (z', yo) € E and
pE:(yo 7 Y ))

(i) (z', %) € Ey and ps; (30, ¥/) implies y = ¢7'(y") € R(2);

(iii) E, and E, are partial functions.

One can verify that this definition includes the transform given by Knuth in [2].
Readily any representation of G, by such a transform is faithful, since conditions (i)
and (ii) imply that a computer search process W hich traverses the E;-link (if any) in
the cell ¢, to the cell ¢,, and then “follows” E.'-links (if any) will retrieve all and only
those cells corresponding to pomts in R(x) Thus all edges (z, y) of the orlglnal relatlon E
are reconstructable. Fmally, s1nce Ey and E, are partlal functions, for any £ € P’ there
ex1sts at most a single ¥’ € P’ such that (z',y’) € E'y, and a single 2" such that («,2)
€ E, . Hence paths in E, from any cell ¢, must be unique (thereby making the
search procedure trivial), and no more than two link fields per cell will be needed in the
representation of the hypergraph q.

:As Knuth notes, this domain is actually the set of all ‘‘forests’” of rooted trees.
3The term hypergraph has various other connotations; among them a point set, P, together with an
n-ary relation E on P.
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Fig. 1. The Knuth transformation, f :Gy — Gg , applied to a rooted tree
N IS
Co ; ‘I:c, ; g\
pa ! | Y
| b
} 1~ [
\ Sy ¢}
3 A AN
[
. O\d / GR { (l: !
Gy ——h | Cei
~ it
|

[
|
\f p \clI

Fie. 2. The Knuth transform, f:Gy — G, applied to an acyclic graph
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Fig. 3. An invalid application of the Knuth transform to a nonrooted tree

Let Gy = (P, E) be any abstract data structure. G induces a second graph G* de-
fined as follows. Let ® be the collection of sets {R(x) | x € P}. Augment & with all
finite intersections of elements of & (in the same manner that one forms a topological
base from a subbase) to form ®*. The set ®* is partially ordered by set inclusion to
form G* = (®*, C). Since the empty set & C ER(z) for all r, & is a least element (or
root) of G*, implying G* is connected, whether or not G was.

TueoreM, The Knuth transform, f : Gy — Gr, of a finite graph Gy = (P, E) exists
if and only if G* = (®*, C) is a tree.

Proor. We first prove necessity. Assume G* is not a tree. Since G* has a least ele-
ment, 5, there exists Ry, R;, and R; € R* such that Ry € R;, R, C R;, and R, #
Ry N Ry # R, (see [4]). Let a € Ry ~ R, , and let b € Ry ~ R, . By construction of &%,
there exist r, y € G such that a € R(x) ~ R(y) and b € R(y) ~ R(x). Now suppose
G’ were a Knuth transform of G . By property (i) there exist a,’ and by’ in G’ such that
(«, a') € E\ and pg;(ac’, @'); (4, b') € EY and pgy(bs, b'). Further, a, b € R; im-
plies for some z = x, y that a, b € R(z). Thus there exists ¢, such that

(Z,’ CO,) € Ell: pE§(60,7 a,): and pEé(coli b,)
Since by property (iii) E is a function (it can be regarded as a successor function with
initial clement ¢,’), we must have either pei(a’, b') or pgy(d, @). If the former case
holds, then by transitivity of the path relation pgas, a’) and pgy(a’, b') implies
pey(ar’, b'). This together with (', a’) € Ey and b ¢ R(r) yields a contradiction
to property (ii). If the latter case holds, we get a similar contradiction. Hence there
exists no such Knuth transform, and the condition of the theorem is necessary.
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Conversely, assume ®* is a tree. We demonstrate existence of a Knuth transform by
construction. For y € P, let y denote its image under ¢ : P — P’. Define the relations
E, and E, as follows.

Case 1. If y ¢ R(x) for any z € P, then (', y) ¢ E and (v, 7) ¢ E; forall
£,2,¢eP.

Case 2. y € R(z:) for some, possibly several, z; € P. Consider Z =
MNR(z:) |y € R(2:)}. Z € ®*. Since ®* is a tree, there exists a unique W € ®* such
that @ C W < Z. Let Y = Z ~ W. By construction, y € Y. Arbitrarily order the
elements of Y, say {%o, -, %}. We may assume that the elements of W have been
ordered {wo, «-+ ,w). Let (y5, yi) € B for 0 < j <r — 15 (v, w') € Ey iff
W = &;and (2, Yo') € E{iff Z = R(x:).

It is apparent that E. and E; so defined are partial functions. Let (z, y) € E, so
y€ Y. IfY = R(z), then (', yo') € EY and pg(y, v'), thereby satisfying property
(i). f ¥ = R(z), then there exists a unique sequence (since ®* is a tree)
YcY,C---C Y, = R(z). The sequence (z, o, ) € E's p5(Wo. n s Yo, 1) "o
pEi(vo. 1, ¥ ), and pEi(yo, ¥') then satisfies property (i) by transitivity of p. Property
(ii) is similarly verified. O

Figures 4 and 5 illustrate this theorem by presenting the induced graphs G* of the
graphs of Figures 2 and 3, respectively. In the first case G." is a tree and G, is repre-
sentable under a Knuth transform; in the latter case it is not.

The following corollaries give a “local’’ criterion for Knuth representability in terms
of Gy, not G*.

CoroLLARrY 1. A Knuth transform of G = (P, E) exists if and only if for all 2, y, z €
P, R(z) N R(y) and R(z) N R(z) nonempty implies either R(z) N B(y) S R(z) NR(z),
or R(z) N R(z) € R(z) N R(y).

Proor. It is easily verified that, since G* has a least element, G* is a tree if and
only if this condition holds. O

CoROLLARY 2. If Gu is a rooted tree (or forest of rooted trees), then the Knuth trans-
formation of G u exists.

Proor. The proof follows immediately from the observation thatin G , R(z) #= R(y)
implies R(z) N R(y) = &. O

¥ =$R(o)={c,d!. R{b) {d,e, f}, R{c)=1g,h}, R{d)={h{, )
27 |R(e)=R(f)=R{g)=R{h)=¢, X=R(a) N R(b}={d}f

. R{a)

Gy X

2 $< T=Rb)
R(d)\R(c)

F16. 4. G.* induced by the graph Gu of Figure 2

) R{a) = {d,e}, R(b)={e, f}, Rlc)={f, g,
Ry= JR{d)=R(e)=RI(f)=R{g)=¢, X=R(a) N R(b}= {e},
lY=R(b)ﬂR(c)=f $

X/R(c)
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3 T~y
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Fia. 5. G;* induced by the graph Gx of Figure 3
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As noted earlier, in a linked representation of a set, such as R(z), the actual order of
linking may be arbitrary. The construction employed in the theorem obviously takes
advantage of this freedom to order the links in such a way that subsets become “terminal
segments’’ of the ordering on the entire set. The condition that ®&* be a tree insures
that one can establish such an ordering consistent with the inclusion properties of the
sets B(z) in Gy . It is precisely this device which permits us to extend the domain of
the transformation.

But in the context of some applications, one may wish to impose some other ordering
on the elements of R(z). For example, if G denotes the parse tree of some string, then
it is natural to impose a “left-to-right’”” ordering on R(z) corresponding to the position
of the terminal, or nonterminal, symbol within the string. In such a context the ordering
within the representation must reflect the ordering of the abstract model, and in con-
sequence the domain of the Knuth transform is greatly reduced. The proof of Corollary 2
can be used to show that all rooted trees still belong to this restricted domain. But the
reader may verify that the condition, R{x) = E(y) implies B(z) N R(y) = &, also
holds in the case of two-terminal parallel series networks, as well as a number of un-
classifiable graphs such as those shown in Figure 6. Thus, these, too, are Knuth repre-
sentable, even under these more restricted ordering conditions. Notice also that G
neced not be acyelie, although most of our examples have been.

Corollary 1 may be restated in the form of a “forbidden subgraph’’ theorem of similar
vein to the Kuratowski theorem {1] which characterizes those graphs admitting a planar
representation. A graph G ts Knuih represeniable if and only #f it does not contain the
graph of Figure 7 as a subgraph. But there is an important difference. In most such char-
acterizations the forbidden subgraph may not exist as a homeomorph. In this case, be-

e
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Fig. 6. Two Knuth representable graphs, Gar even, assuming an externally imposed order on the
sets {R(z)}
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cause of the “local’’ nature of Corollary 1, the literal subgraph itself must not exist.
The graph of Figure 3 contains this forbidden subgraph, but by adding the single point
“z’’ to the graph, one gets the graph of Figure 8. These two distinct graphs are homeo-
morphs, but the latter is Knuth representable! This observation provides an effective
method of extending the technique of Knuth representation to include all directed
graphs. Forbidden subgraphs in G may be “broken’’ by simply adding dummy points.
The corresponding cells in the representation Gy are then tagged and the routines that
operate on Gz may be modified in a straightforward way to treat these extra points as
if they were “invisible.”” Thus at the cost of a few extra cells and slight additional com-
plexity to the accessing routines, the ability to represent any graph with a fixed number of
link fields per cell is obtained.

Finally, we note that in this discussion it has been assumed that, gi ven z € P, one
wants to access the set of all right neighbors, {y., such that (2, y;) € E. But there exist
situations in which one wants to be able to “work backwards’’ through the data struc-
ture, that is, given y € P, to find all left neighbors, L(y) = {z,}, such that (z;,y) € E.
A lovely result, also due to Knuth [2], shows that if G is a rooted tree, then by appro-
priate tagging this can be accomplished with no additional link fields. If G is not a
* rooted tree, some other approach must be used, possibly threading the cells with respect
to a reverse topological sort. Another alternative is to employ a symmetric representa-
tion of the sets L(y) and the functional relation y — L(y) as has been already developed.
A complete symmetric representation of the data structure Gy can then be implemented
using cells with no more than four link fields to fully represent the relation E.
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