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ASSrRACT. By means of the :Knuth transform, arbitrary rooted trees may be represented compactly 
as binary trees. In this paper it is shown that the domain of this transform may be extended to a 
much wider class of graphs, while still maintaining its fundamental properties. Graphs, G, belonging 
to this extended domain are characterized first in terms of properties of an induced graph, G*, and 
then in terms of local properties of G itself. A classic kind of "forbidden" subgraph theorem charac- 
terizes nonrepresentable graphs. Finally, it is shown that any directed graph can be modified to 
make it representable under the transform. 
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Donald Knu th  in [2] presents a lovely transformation (which we will call the Knu th  
transform) by which an arbitrary rooted tree, T ~ ,  may be represented as a binary 
rooted tree, TR, as in Figure 1. I t  is important  because by  using such a transform, one 
can represent any rooted tree, ~i th  unbounded out-degree, by a linked data structure in 
which the cells that  represent points of the data structure may be of fixed size. In fact, 
only two l ink fields are necessary to completely represent the tree structured relationship 
between the points. Given such a useful * transformation it is natural  to ask, "Can we 
apply the Knu th  transformation to a larger class of data structures?" A little experi- 
mentat ion is sufficient to convince us, at least intuitively, that  in some cases it can be 
effectively applied (Figure 2), and in others it cannot (Figure 3). What distinguishes 
these two graphs? 

First  we must  backtrack and define certain concepts with more precision. A directed 
graph, denoted G = (P, E) ,  is a set P of points (or data items) together with a binary 
relation, E, (or set of ordered pairs) defined on P. Graphs (we will henceforth drop the 
adjective "directed") are valuable as mathematical models of both abstract data struc- 
tures and their computer representations. Thus we make a distinction between G ~ ,  the 
graph which models an abstract data structure, and GR, which models (or describes) 
its computer representation. In  many cases the representation is virtually a one-to-one 
isomorphic copy of the abstract model and the distinction is unimportant .  But  at other 
times the distinction may be crucial. A representation is faithful if from GR alone a com- 
puter procedure can reproduce all of the information that  existed in the abstract model. 

Let x E P be a point of a graph. By its set of right neighbors, R(x)  (often called the 
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set of sons or descendants), we mean R(x) = {yL (x, y) E E}. Sets, such as R(x), 
may be represented in a computer by many techniques. One of the simplest is as a linked 
list in which the explicit order that  individual cells are linked in the list may, or may 
not, have any significance. If a point of the graph may belong to several sets of interest, 
then a computer representation of set membership may require one link field for each set 
to which the cell may belong. But if a point can belong to at most one set, then readily 
at most a single link field will be necessary. 

The Knuth  transformation f : G~ --* GR may now be informally described by the 
following: to each point x in G~ ,  associate a corresponding cell cx in Gk. If  {x, y, • • • , z} = 
R(w) for some w, link c~, c~, • •.,  c~ as a set. Link each cell cw to the set (list) repre- 
senting R(w). (Knuth  calls these B R O T H E R  and SON links.) In Figure 1 we show 
this transformation using dashed edges to denote set links and solid edges to denote 
those links tha t  represent the functional relation w --~ R(w). While GR may be regarded 
as a binary tree, it seems more accurate to regard it as a collection of sets together 
with a functional relation between elements w and their associated sets R(w). Regard- 
less of the significance attached to them, no more than two link fields per cell are needed, 
since in a rooted tree any point x can belong to at most one set R(w). Now suppose G~ 
is neither rooted nor a tree, as in Figure 2. Representation under the Knuth transform 

st i l l  appears to "work,"  in that  each cell needs at most two link fields. But the trans- 
formation "fails" on the graph G~ of Figure 3, even though it is a tree. Either cj must 
contain an additional link field to distinguish its membership in the sets {e, fl and {f, g}, 
or else e ~ill "appear"  (as shown) to be an element of R(c). If  the former representation 
is employed, then graphs, and even trees, may be found that  require cells with an ar- 
bitrarily large number of "se t"  link fields, thereby vitiating the value of the transfor- 
mation. The latter representation is not faithful. 

While it is customary to say that  the Knuth  transformation, f, maps the set {T~} 
of all rooted trees 2 onto the set I TR} of binary rooted trees, this is not  strictly true. TR 
is not  really a tree since it has two distinct kinds of "edges." I t  will pay to be more pre- 
cise. A point set P ~i th  two, or more, binary relations E1 , - " ,  E ,  defined on it we will 
call a hypergraph, denoted by G = (P, E1 , - - . ,  E,) .  3 By a path, pg,(x, y), we mean a 
sequence of points (y0, • • • , yn), n _< 0, such that  x = y0, z = y , ,  and (Yi-  ~, Y~) E E~ 
for 1 _~ j _< n. Intuitively it is a sequence of points that  can be accessed by traversing 
edges (possibly none) in E~. Readily the existence of paths is a transitive relation. 

Definition. A hypergraph G' = (P', E'~, E'~) is said to be the Knuth transform 
of the graph G = (P, E)  if there exists 1-1 onto function ~ : P --~ P '  (we let x' denote 
~(x))  such that  

(i) (x, y) E E implies that  for some unique y0 E R(x),  (x', yo') E E~' and 
pE~ (y0', y ')  ; 

(ii) (x', yo') E E~' and pB; (yo', y') implies y = ~-~(y') E R(x) ;  
(iii) E~' and E~' are partial functions. 
One can verify that  this definition includes the transform given by Knuth in [2]. 

Readily any representation of G~ by such a transform is faithful, since conditions (i) 
and (ii) imply that  a computer search process which traverses the E~'-link (if any) in 
the cell c~ to the cell c~0 and then "follows" E2'-links (if any) will retrieve all and only 
those cells corresponding to points in R(x). Thus all edges (x, y) of the original relation E 
are reconstructable. Finally, since E~' and E~' are partial functions, for any x' E P '  there 
exists at most a single y' E P' such that  (x', y') E E'~, and a single z' such that  (x', z') 
E E~' . Hence paths in E2' from any cell c~ must be unique (thereby making the 
search procedure trivial), and no more than two link fields per cell will be needed in the 
representation of the hypergraph G'. 
zAs K n u t h  notes ,  th is  domain  is actual ly the  set  of all " f o r e s t s "  of rooted trees.  
ZThe term hyperg raph  has  var ious  other  connota t ions ;  among them a point  set ,  P ,  together  wi th  an 
n-ary relation E on P. 
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F~G. 1. The Knuth transformation, ] :GM ~ G~ , applied to a rooted tree 
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FIG. 2. The Knuth transform, f :GM .-~ G~,  applied to an acyclic graph 
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FIG. 3. An invalid application of the Knuth  transform to a nonrooted tree 

Let GM = (P, E) be any abstract data structure. GM induces a second graph G* de- 
fined as follows. Let (R be the collection of sets {R(x) Ix  E P}. Augment ~ ~i th  all 
finite intersections of elements of ~ (in the same manner that  one forms a topological 
base from a subbase) to form ~*. The set ~* is partially ordered by set inclusion to 
form G* = ((R*, ___). Since the empty set ~ ___ R(x)  for all x, ~ is a least element (or 
root) of G*, implying G* is connected, whether or not G~, was. 

THEOREM. The K~uth transform, f : G~ ~ GR, of a finite graph G ,  = (P, E) exists 
if  and only if  G* = ((~*, C ) is a tree. 

PROOf. We first prove necessity. Assume G* is not a tree. Since G* has a least ele- 
ment, ;~, there exists Rz, R : ,  and R3 E R* such that  Rz c R3, R2 c R3, and R1 
Rz n R2 ~ R: (see [4]). Let a E R~ ~-~ R2, and let b E R2 ~-~ R~. By construction of (~*, 
there cxist x, y E G such that  a E R(x)  ,~ R(y)  and b E R(y)  ~ R(x) .  Now suppose 
G' were a Knuth  transform of G~,. By property (i) there exist ao' and bo' in G' such that  
(x', a0') E Ez' and p~(ao', a'); (y', bo') E E l  and p~(bo', b'). Further, a, b E R~ im- 
plies for some z ~ x, y that  a, b E R(z). Thus there exists c0' such that  

(z', Co') E E l ,  pE~(Co', a'), and p~'~(Co', b'). 
Since by property (iii) E~' is a function (it can be regarded as a successor function with 
initial element Co'), we must have either p~l(a', b') or pzl(b', a'). If the former case 
holds, then by transitivity of the path relation pz~(ao', a') and p~;(a', b') implies 
p~(ao ~, b') .  This together with (x', a0') E E /  and b E R(x)  yields a contradiction 
to property (ii). If  the latter case holds, we get a similar contradiction. Hence there 
exists no such Knuth  transform, and the condition of the theorem is necessary. 
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Conversely, assume 5~* is a tree. We demonstrate  existence of a Knu th  transform by  
construction. For y E P,  let y' denote its image under ~ : P --* P ' .  Define the relations 
El '  and E~' as follows. 

Case 1. If  y E R(x)  for a n y x E P ,  then (x ~ ,y ' )  E E1 t and (yt, z ~) E E~' for all 
, ,, pl .  

x , z ,  E 
Case 2. y E R(x~) for some, possibly several, x~ E P. Consider Z -- 

n{R(xi)  l Y E R(x~)l. Z E (R*. Since ~* is a tree, there exists a unique W E ~* such 
tha t  ~ ___ W c Z. Let  Y = Z ~-~ W. By construction, y E Y. Arbitrarily order the 
elements of Y, say {yo, " "  , yr}. We may  assume tha t  the elements of W have been 
ordered {Wo, . . .  ,w,I.  Let  (Yi', yi+l') E E~' for 0 _< j < r -- 1; (y, ' ,  ZOo') E E2' iff 
W ~ ~ ; a n d  (x~', ]To') E EI ' i f fZ  = R(xi).  

I t  is apparent  tha t  Ez' and E~' so defined are partial functions. Let  (x, y) E E, so 
y E Y. I f  Y = R(x) ,  then (x', yo') E El' and pB;(yo', y'), thereby satisfying property 
(i). If  Y ~ R(x),  then there exists a unique sequence (since ~* is a tree) 
Y c Y~ c . . . c  Y ,  = R(x) .  The sequence (x', yo.,') E E'~, pe'2(yo. ~', yo. ,-1') "'" 
pBj(y0, z', y0'), and pB;(yo', y') then satisfies property (i) by  transit ivity of p. Property 
(ii) is similarly verified. [] 

Figures 4 and 5 illustrate this theorem by  presenting the induced graphs G* of the 
graphs of Figures 2 and 3, respectively. In  the first case G~* is a tree and G2 is repre- 
sentable under a Knuth  transform; in the lat ter  case it is not. 

The following corollaries give a " local"  criterion for Knuth  representability in terms 
of G ~ ,  not  G*. 

COROLLARY 1. A Knuth transform of G = (P,  E) exists if and only if for all x, y, z E 
P, R( x) N R(y)  and R(x) n R(z)  nonempty implies either R(x)  [~ R(y) ~ R( x) n R(z),  
or R(x)  n R(z) c R(x)  n R(y).  

PROOF. I t  is easily verified that ,  since G* has a least element, G* is a tree if and 
only if this condition holds. [] 

COROLLARY 2. I f  GM is a rooted tree (or forest of rooted trees), then the Knuth trans- 
formation of G M exists. 

PROOF. The proof follows immediately from the observation tha t  in GM, R(x) ~ R(y)  
implies R(x)  n R(y)  = $2~. [] 

, ~R(o) = { c , d l ,  R ( b ) { d , e , f ~ ,  R (c )=~g ,  hl ,  R ( d ) = l h ~ ,  
R2= IR(e  ) R ( f ) = R ( g ) = R ( h ) = ~ ,  X = R ( o )  N R ( b } = { d l  I 

G;; 

R=3 = 

R(b) 
R ( d ) .............~ R(c) 

Fro. 4. G2* induced by the graph GM of Figure 2 
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(.Y= R(b )  rl R(c )=  f 

I 
G3: 

~ j -  R (a) 
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----.._ y . 1 /  
" ~ -  R (c) 

Fro. 5. G3* induced by the graph e~  of Figure 3 
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As noted earlier, in a linked representation of a set, such as R(z),  the actual order of 
linking may be arbitrary. The construction employed in the theorem obviously takes 
advantage of this freedom to order the links in such a way that subsets become "terminal 
segments" of the ordering on the entire set. The condition that ~* be a tree insures 
that one can establish such an ordering consistent ~ith the inclusion properties of the 
sets R(x) in GM. It  is precisely this device which permits us to extend the domain of 
the transformation. 

But in the context of some applications, one may wish to impose some other ordering 
on the elements of R(x). For example, if GM denotes the parse tree of some string, then 
it is natural to impose a "left-to-right" ordering on R(x) corresponding to the position 
of the terminal, or nonterminal, symbol within the string. In such a context the ordering 
~ithin the representation must reflect the ordering of the abstract model, and in con- 
sequence the domain of the Knuth transform is greatly reduced. The proof of Corollary 2 
can be used to show that all rooted trees still belong to this restricted domain. But the 
reader may verify that the condition, R(x) ~ R(y) implies R(x) N R(y) = ~ ,  also 
holds in the case of two-terminal parallel series networks, as well as a number of un- 
classifiable graphs such as those shown in Figure 6. Thus, these, too, are Knuth repre- 
sentable, even under these more restricted ordering conditions. Notice also that G~ 
need not be acyclic, although most of our examples have been. 

Corollary 1 may be restated in the form of a "forbidden subgraph" theorem of similar 
vein to the Kuratowski theorem [1] which characterizes those graphs admitting a planar 
representation. A graph G M i8 Knuth representable if and only if it does not contain the 
graph of Figure 7 as a s~bgraph. But there is an important difference. In most such char- 
acterizations the forbidden subgraph may not exist as a homeomorph. In this case, be- 

Fro. 6. 

. / "  

Two K n u t h  representable  graphs ,  GM even,  a s suming  an external ly  imposed order on the  
se ts  {R(x)} 
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The forbidden subg raph  of Figure  3 " b r o k e n "  by  the  addit ion of one addi t ional  point ,  x 
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cause of the "local" nature of Corollary I, the literal subgraph itself must not exist. 
The graph of Figure 3 contains this forbidden subgraph, but by adding the single point 
" z "  to the graph, one gets the graph of Figure 8. These two distinct graphs are homeo- 
morphs, but the latter is Knuth representable! This observation provides an effective 
method of extending the technique of Knuth representation to include all directed 
graphs. Forbidden subgraphs in GM may be "broken" by simply adding dummy points. 
The corresponding cells in the representation GR are then tagged and the routines that 
operate on G~ may be modified in a straightforward way to treat these extra points as 
if they were "invisible." Thus at the cost of a few extra cells and slight additional com- 
plexity to the accessing routines, the ability to represent any graph with a fixed number of 
link fields per cell is obtained. 

Finally, we note that in this discussion it has been assumed that, gi yen x E P, one 
wants to access the set of all right neighbors, {y~}, such that  (x, y~) E E. But there exist 
situations in which one wants to be able to "work backwards" through the data struc- 
ture, that is, given y E P, to find all left neighbors, L(y)  = {xi}, such that  (xs, y) E E. 
A lovely result, also due to Knuth [2], shows that  if GM is a rooted tree, then by appro- 
priate tagging this can be accomplished with no additional link fields. If GM is not a 

' rooted tree, some other approach must be used, possibly threading the cells with respect 
to a reverse topological sort. Another alternative is to employ a symmetric representa- 
tion of the sets L(y )  and the functional relation y ---* L(y) as has been already developed. 
A complete symmetric representation of the data structure GM can then be implemented 
using cells with no more than four link fields to fully represent the relation E. 

REFERENCES 

(Note. References [3] and [4] are not cited in the text.) 

I. HARARY, F. Graph Theory. Addison-Wesley, Reading, Mass., 1969. 
2. KNUTI-I, D. The Art of Computer Programming, Vol. I: Fundamental Algorithms. Addison- 

Wesley, Reading, Mass., 1968. 
3. I~NUTH, D. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-Wesley, 

Reading, Mass., 1973. 
4. PFALTZ, J., FINDLER, N., AND BERNSTEIN, H. Four High Level Extensions of Fortran IV.  Spar- 

tan Books, Washington, D.C., 1972. 

RECEIVED JULY 1974 

Journal of the Assoclation for Computing Machinery, Vol. 22, No. 3, July 1976 


