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In this paper we describe a practical method of 
partial-match retrieval in very large data files. A binary 
code word, called a descriptor, is associated with each 
record of the file. These record descriptors are then 
used to form a derived descriptor for a block of several 
records, which will serve as an index for the block as a 
whole; hence, the name "indexed descriptor files." 

First the structure of these files is described and a 
simple, efficient retrieval algorithm is presented. Then 
its expected behavior, in terms of  storage accesses,  is 
analyzed in detail. Two different file creation 
procedures are sketched, and a number of ways in 
which the file organization can be "tuned" to a 
particular application are suggested. 
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1. Introduction 

In this paper we are concerned with partial-match 
retrieval [10] over large, on-line data files. Partial-match 
retrieval (sometimes called "retrieval by secondary 
keys") assumes that a set of attributes has been associated 
with the records of a file. A specific record will have a 
distinct (but not necessarily unique) value associated 
with each attribute. A partial-match query specifies val- 
ues for one or more attributes, thus defining a subset of 
the file whose records have the specified values for 
designated attributes. 

In [13] several techniques for partial-match retrieval 
are reviewed and four particular file structures are de- 
scribed: record list (also known as "multilist"), cellular 
list, record inverted list (often called "inverted files"), 
and cellular inverted list. It is stated that "the inverted 
list structure is generally preferred" [13, p. 266]. This 
preference for the inverted file structure is reflected in its 
use in such systems as ADABAS [6], System 2000 [6], 
and SPIRES[12]. 

Because the technique of inverted files is so widely 
used and understood, it is useful as a benchmark by 
which to measure alternative techniques. One well- 
known aspect of inverted files is that "in large, highly 
inverted databases, the inverted directory, or index, be- 
comes a large database itself" [5, p. 262]. In fact, "ex- 
haustive indexes for all attributes will easily exceed the 
size of the original file" [15, p. 133]. Therefore, only 
those attributes which are deemed important enough are 
inverted. The resulting storage overhead has been ob- 
served to range from 10 percent to 70 percent of the 
original file size (interpreting results from [5]). Of course, 
with fewer attributes being inverted, the average retrieval 
efficiency decreases and "very few "at~thors have sug- 
gested practical and specific guide lines for selecting the 
inversion keys optimally" [5, p. 261]. 

Another important, but possibly not as well-known, 
characteristic of inverted files is that "the amount of 
work [for retrieval] grows with the number of keys given, 
while the expected number of records satisfying the 
query decreases!" [10, p. 25]. This observation is con- 
firmed by the results presented [5]. 

As database size and query complexity have in- 
creased, many researchers have sought alternatives to the 
inverted file technique. In [14], Vallarino develops a 
framework for describing and comparing alternative 
techniques that use bit-strings as compact representations 
of data records. One alternative which Lefkovitz explores 
is that of using superimposed coding [7, 8]. He concludes 
that "the superimposed code, employed in sequential, 
highly compacted search files bears further investigation 
even though, for interactive search of large files, it is not 
yet as efficient as the [inverted file technique]" [9, p. 10]. 
Roberts [11] has pursued the practical use of superim- 
posed code descriptors developing "bit slice," as opposed 
to "bit string," search algorithms (see also [14]) which 
may be either hardware or software implemented. 
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In this paper, we present yet another approach to the 
use of bit strings for partial-match retrieval. This ap- 
proach, which we call "indexed descriptor files," fits 
nicely within Vallarino's framework. However, this 
method was originally developed in 1969 by E. Cagley, 
and Cagley and his associates (D. Parrish, N. Ray, and 
R. Vaughan) have spent over seven years using, refining, 
and testing it. 

In the next section, the technique of "disjoint coding" 
is defined and its simplest use is described. Section 3 
extends the simple concepts of disjoint coding to derive 
the file structure and retrieval algorithm for indexed 
descriptor files. Having described the retrieval algorithm, 
its expected behavior is analyzed in Section 4. This 
analysis includes exact and approximate expressions for 
the number of expected storage accesses, together with 
observed results from a real application of the technique. 
In Section 5, the many possible algorithms for creating 
and maintaining indexed descriptor files are divided into 
"top-down" and "bottom-up" classes. Finally, Section 6 
summarizes the results and remaining open questions 
regarding indexed descriptor files. 

Fig. 1. Example  of  disjoint coding. 

vl (NAME )  = B E R M A N ,  W I L L I A M  J O S E P H  } 
Rk = v2 ( B I R T H D A T E )  48 /8 /17  

v3 ( E M P L O Y E E  # )  326 
v4 ( D E P A R T M E N T  # )  34 

T 1 

w~ = 5 bits 
wz = 3 '° 
wa = 9 " 
w4 = 7 " 

w = 24 bits 

1, if  first letter is A - C  
2, if  . . . . . .  D - J  
3, if . . . . . .  K - N  
4, if . . . . . .  O - T  
5, if  . . . . . .  U - Z  

1, if  before 1930 
T2 = 21 if between 1930 and 1950 

3, if  after 1950 

Ta = E M P L O Y E E  # (modulo  9) + 1 

T4 = D E P A R T M E N T  # (modulo  7) + 1 

Fj F2 F3 F4 

10000 010 001000000 0000001 

2. Descriptors Created by Disjoint Coding 

A descriptor D is simply a bit-string of w (for width) 
bits. Each record, R, in a data file has associated with it 
a descriptor, Dn. This descriptor is derived from the 
values (Vl, v2 . . . . .  Vf)R of the fat tr ibutes of R. While the 
particular method of creating a descriptor to reflect the 
attribute values of a record is not critical in the discussion 
of retrieval using indexed descriptor files, it may signifi- 
cantly affect the efficiency of an implementation. A 
traditional approach for creating descriptors is that of 
superimposed coding [7, 8, 11]. We consider another 
possibility, disjoint coding. 

Disjoint coding begins by dividing each descriptor 
into f disjoint fields (note that each record has . f  attri- 
butes). Each field ~ consists of wj bits and, therefore, 

Z~=I w i = w (2.1) 

Each of the fat t r ibutes  has associated with it a transfor- 
mation, Tj: {legal values of attribute-j} ~ [ 1, wj]. Then, 
to encode or describe a record R, these transformations 
are applied to each of the attribute values of R and the 
Tj(vj)th bit in Fj is set to 1 (the remaining wj - 1 bits are 
cleared to 0) for j = 1, 2 . . . . .  f For an example of 
disjoint coding, see Figure 1. 

As just described, each transformation Tj is single- 
valued and, therefore, each descriptor will have exactly 
f bits set to 1 (one in each of its fields). Equally possible 
are transformations which set 2, or more, bits per field. 
One may also use order-preserving transformations that, 
with a modification to the retrieval algorithm presented 
in this paper, allow for "range searching." 

Before developing a partial-match retrieval algorithm, 
it is useful to consider separately the creation of the 

query descriptor, Q, and its basic properties. In a partial- 
match query, attribute values are specified for only a 
subset of the attributes. Let q _< f attribute values be 
specified. The query descriptor Q is created in a manner 
analogous to that of creating Dn from R. That is, the 
transformation Tj is applied to the attribute value v} to 
determine which bit in ~(Q)  to set to 1. If for some 
attribute j, vj is not specified in the query then no bit is 
set in Fj(Q). Consequently, precisely q bits will be set in 
the descriptor Q. 

Since the descriptors Dn and Q have been constructed 
using the same transformations, it is apparent that the 
following proposition and obvious corollaries are true. 

PROPOSITION 2.0. l f  R satisfies the partial-match query, 
then Q c..C_ DR. 

COROLLARY 2.2. I f  Q (Z DR, then R does not satisfy 
the partial-match query. 

COROLLARY 2.3. I f  Q c_ DR, then R may, or may not, 
satisfy the partial-match query. 

Here the notation Q c_ DR means that every bit 
position which is 1 in Q is also a 1 in DR, and the 
notation Q ~ DR means that there is at least one bit 
position which is 1 in Q and 0 in DR. These propositions 
form the basis for all our retrieval algorithms. 

Knowing how to create query descriptors, we may 
illustrate these basic properties by first constructing a 
trivial file structure that supports straightforward partial- 
match retrieval. The data records are stored in a data 
structure allowing random access to any record R. The 
descriptors are stored sequentially. The partial-match 
retrieval begins by forming the query descriptor Q. The 
descriptor file is then sequentially scanned and each 
descriptor DR is bit-wise compared with Q. If  Q cc_ DR, 
then the record R is accessed and its actual attribute 
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values are compared with those specified in the query. 
If  Q ~= Dn, then by Corollary 2.2, R cannot possibly 
satisfy the query and, therefore, need not be accessed. 

Although we shall find that the use of "indexed" 
descriptor files is far superior (in terms of disk accesses) 
to this simple version of the partial-match algorithm, it 
can be seen that if the descriptors are very much shorter 
than their corresponding records, then a sequential 
search of a descriptor file coupled with random access 
into the data file might be superior to a simple sequential 
search of the data file itself [9]. This comparison can be 
especially favorable if the descriptor file and the data file 
are stored on separate devices, thereby significantly re- 
ducing seek time. Another consideration in favor of using 
descriptors is that the bit-wise comparison can typically 
be implemented in a few machine instructions, in con- 
trast to the q attribute value comparisons that are other- 
wise required. 

3. Indexed Descriptor Files 

A serious problem with the preceding algorithm is 
that there are as many descriptors as there are records. 
Thus, in very large data files, the number of disk accesses 
required to scan the descriptor file can be unacceptable 
[9]. A first improvement upon the algorithm is to asso- 
ciate each descriptor with several records rather than 
with a single record. Indeed, if the data records are 
stored as a file of blocks containing several records, it is 
quite natural to have a descriptor associated with all the 
records in the block. 

Let fl denote a block ofp~ data records, (Rk }. (We let 
p~, for packing factor, denote the number of records 
packed into block ft.) We may create a descriptor, Da, 
for the entire block of records by letting 

D/~ -- V p ~ l  Dk (3.1) 

where vkD~ denotes the bit-wise (or logical) OR of the 
record descriptors of the block. Note that the ORing 
operation preserves Proposition 2.1 and its corollaries; if 
the query descriptor is not contained in the block descrip- 
tor, Q ¢Z D~, then no record of the block can possibly 
satisfy the query, so it need not be accessed. Now we can 
modify our earlier retrieval procedure. Given a query 
descriptor Q, the procedure sequentially searches a file 
of block descriptors, called the first indexfile. If  Q __c D~ 
then the block fl is accessed and the actual attribute 
values (v~ . . . . .  vr)R of each of its pa records are compared 
with the query values (v] . . . . .  Vq). If  the partial-match 
criteria is satisfied, this record R is added to the response 
set. 

If  we let r denote the size of the data file (total number 
of records R), and let p denote the average packing 
factor, then the index file of block descriptors contains 
[r/p] descriptors. Each block descriptor must be ac- 
cessed since the file of descriptors is being searched 
sequentially. To reduce the number of storage accesses 
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required in this sequential search, it is natural to pack 
several of the block descriptors D B into a single block of 
storage, especially since descriptors are short and of 
equal, fixed length. A descriptor for such a block a can 
be created by ORing each of the individual block de- 
scriptors D B in a; that is, 

D, = ~ / ~  Da. (3.2) 

Readily, these derived descriptors may be accumu- 
lated in a second descriptor file. And we may modify the 
retrieval procedure to begin by sequentially searching 
this second, and very much smaller descriptor file. If  Q 
c__ D,, then the block a in the first index file is accessed 
from storage and Q is compared with each D B in a. If Q 
cc_ D~, then the block fi of data records is accessed and 
the actual record attribute values are compared with the 
query attribute values. 

Of course, the descriptors D~ in the second descriptor 
file can themselves be blocked and ORed to form a third 
index file, and so on. Since each file of descriptors in this 
hierarchical structure serves as an index to the blocks of 
the lower level file, we call them indexed descriptor files. 
By convention, we let file(0) denote the file of data 
records; file(l) denote the index file of its block descrip- 
tors; file(2) denote the index file of its (file(l)) block 
descriptors, and so on. If  d denotes the depth of the 
hierarchical structure, then index file(d) is the "highest" 
level of the structure and the only one that needs to be 
searched sequentially. We will parameterize our notation 
for descriptors, blocks, the number of records, and pack- 
ing factors by file level, i. Thus we have D(i), fi(i), r(i), 
and p(i). 

Figure 2 illustrates a portion of an indexed descriptor 
file of depth 2. In this example, the data records are 
identified by four attributes which are represented by 
fields of width 5, 3, 9, and 7 in a 24-bit descriptor. The 
records in the data file(0) have been packed four records 
per block. The descriptors in index file(l) have been 
packed two descriptors per block. A more formal descrip- 
tion of the retrieval procedure is given below. 

procedure query (v'l . . . . .  Vq); 
Given a set (v'~ . . . . .  v~} of  q specified attribute values, I 
apply the transformations to form a query descriptor 
with q nonzero fields. 

Q ~ (Ts(v~):for specified query attributes, j};  
index Exhaustively file(d), search all descriptors in the highest level 

for each D/~(d) in file(d) do 
if Q cc_ D,(d) then search (fi, d - 1); 

end 

recursive procedure search (beta, level); 
fetch block beta from storage; 
I Examine all records or descriptors in this block. I 
if level > 0 

then I This is a block of descriptors in an index file. I 
for each D,(level) in block beta do 

if Q _ Dt~(level ) then search (fl, level - 1) 
else I This is a block of data records. [ 

for each R in block beta do 
if (v . . . . . .  vf) satisfy (v'l . . . . .  Vq) 

then add R to response set; 
end 
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Fig. 2. Portion of a Two-level Indexed Descriptor File Using Descriptors of Width, w = 24 bits. 

Index File (1) 

Index File(2) _._~.-----.--------~101100 llO OOlOlOlO0 O 0 0 0 1 0 1 ~ _ ~  
]lllO0 llO OOlOlOlOl O000lll[ ~ 1 1 1 1 0 0  llO O00000101 O000011l ~ 

]Ill01 101 000110100 10011001 [ ,x]01101 101 000100100 0 0 0 1 1 0 0 ~  [ [11001 101 000010100 1 0 0 0 1 0 0 |  

Data File (0) 

31000 100 000010000 0000001 
30100 100 O0, cO0100 0000100 
30100 OlO (," 000000 O000001 
31000 l O 0 0 t  000000 O000100 
10000 ~00 0o0000001 0000010 
)0100 010 0u0000100 0000010 

!01000 100 000000001 0000001 
10000 010 000000100 0000010 
00001 100 000100000 0001000 
00100 001 000000100 0000100 
00100 100 000100000 'r'~lO00 
01000 100 000000100 0001000 
10000 001 000010000 1000000 
00001 100 000010000 1000000 
01000 001 000010000 0000100 
10000 001 000000100 0000100 

To demonstrate the retrieval process, consider two 
queries in which only two query attribute values have 
been specified. Assume that the resulting query descrip- 
tors are: 

Q1 = 00001 000 000100000 0000000 
Q2 = 00000 010 000000000 0000010 

Query I will access only the 2nd block of index file(l) 
and the 3rd block of the data file. Only the first record 
of this block (9th data record in the file) could possibly 
satisfy the query, although whether it does or not de- 
pends on the actual attribute values associated with the 
record and those specified in the query. Query 2 will 
access the first block of file(l) and the 2nd block of the 
data file(0). Either records 6 or 8 in the data file could 
satisfy the query. 

Before continuing with a quantitative analysis of the 
retrieval procedure in the next section, we would like to 
make three comments regarding Figure 2 which is illus- 
trative of the general procedure, but misleading concern- 
ing actual practice. First, a 24-bit descriptor is too small. 
In a very large database one expects to use descriptors 
with widths of 100 to 200 bits. Second, since descriptors 
are normally much shorter than the records of the data 
file, a packing factor, p(1) --- (2), for index file(l) is utterly 
unrealistic. Packing factors on the order of 100 are more 
normal. Third, the figure suggests that individual record 
descriptors are stored in the data file. This is unnecessary, 
and indeed, the search procedure never refers to a zero- 
level descriptor. The data file consists of just the data 
records themselves, with no additional stored informa- 
tion. The concept of a zero-level record descriptor is only 
useful in understanding the way data files are indexed, 
and index files created. 

4. Analysis of Expected Accesses per Query 

Let ~(i) denote the expected (or average) number of 
l-bits in the j t h  field, Fj, of a descriptor in file(i). 
Readily, ij(i) _> 1. We begin by considering the proba- 
bility that a given query descriptor Q is contained in 
(satisfied by) a descriptor D(d) in the highest level index 
file(d). Assuming a uniform distribution of the trans- 
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formed attribute values Tj(v i) (not of the attribute values 
v1 themselves), the probability that Fj(Q) is contained in 
the j t h  field of D(d) is simply expressed by ~(d)/wi,  
which is the expected bit density in 6(d) .  Then the 
probability of a match in file(d) is simply 

pr(Q cc_ D(d)) = [I ~(d)/wj.  (4.1) 
j~Q 

Consequently, the expected number of blocks ac- 
cessed in file(d - 1) is the number of descriptors exam- 
ined in file(d) times the probability that any examined 
descriptor satisfes the query descriptor Q, or 

E(Blocks accessed in file(d - 1)[ Q) = b(d - 1) 
= r(d).pr(_Q c D(d)) (4.2) 
= r(d).  I-I tj(d)/wj 

jcQ 

where we are using b(d - 1) to compactly denote the 
expected number of blocks accessed in f i l e (d -  1). 

Now consider a descripte, c D(d -1)  in a block fl of 
file(d - 1) that has been accessed in the query procedure. 
We need the conditional probability that Q c D(d -1 )  
given that Q c De(d ). Since Q c_ Da(d ), all of the 1-bits 
of Q are known to match 1-bits in DB(d); hence, the 
"effective" width of any ~ in D(d - 1) is b.(d). Conse- 
quently, 

pr(Q c__ D(d - 1)[Q __c OB(d)) 
= H ~ ( d - 1 ) / ~ ( d ) .  (4.3) 

J~Q 

Now the expected number of blocks accessed in file 
(d - 2) is the number of descriptors examined in file(d 
- 1) (that is, the number of blocks accessed times the 
average packing factor p(d - 1) for that file) times the 
probability of a match for each such record examined. 
Thus, 

E(blocks accessed in file(d - 2)[Q) = b(d - 2) 
= 6 ( d -  1 ) . p (d -  1). n ~ ( d -  l)/~(d) 

J~o (4.4) 

= [r(d).  YI ~(d)/wj] .p(d- 1). II t - (d-  1)/~(d) 
J~Q j~Q 

=r(d) .p (d-  1). rI ~ (d-  1)/wj. 
jCQ 
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But since each descriptor in file(d) corresponds to a 
block in file(d - 1), we have 

r(d) . p ( d -  1 )=  r ( d -  1) (4.5) 

SO, 

E(blocks accessed in file(d - 2)1 Q) = b(d - 2) (4.6) 
= r ( d -  l) n t } ( d -  1)/wj. 

J~Q 

In a similar manner it is easy to show that, in general, 

E(blocks accessed in file(/) [ Q) = 6(0 (4.7) 
= r ( i  + 1) II 7j(i + 1)/wj 

jeQ 

so that the total number of blocks accessed in the course 
of retrieving records satisfying a query Q is given by 

E(blocks accessed I Q) 

= ~]d-ai=o /~(i) (4.8)  
= 1~=~ r(i + 1). 1-I ~(i + 1)/wj. 

jEQ 

In this expression we have assumed that the highest 
level index file(d) is core resident so that no blocks need 
be accessed to sequentially examine it. If  this is not the 
case, then a constant term, b(d) = r(d)/p(d), must be 
added to the expression above, since every block of  
file(d) must be accessed. 

We can get a feeling for the implications of expression 
(4.8) by evaluating it for some representative numbers. 
Let the data file consist of  r(0) = 1,440,000 records. 
Associated with these records will be 7 identifying attri- 
butes, so that each descriptor will consist of  7 fields. Each 
of  these we make of  width wj = 10 bits, so that w = 70 
bits. If  the 1.44 million records of  the data file are 
blocked with 24 records per block, there will be r(1) = 
60,000 descriptors in index file(l). If  these are in turn 
blocked with 128 descriptors per block, then there will 
be r(2) = 470 descriptors in index file(2). Five hundred 
descriptors can reasonably reside in primary storage, so 
file(2) can be exhaustively searched with no disk accesses. 

Table I presents the average number of  l-bits in each 
of  the descriptor fields of the two index files. If all 7 
attributes (or descriptor fields) are specified in the query, 
then FI7=, ~(2)/wj = .00249, and II7=~ ~(1)/wj = .0000544. 
Substituting these into expressions (4.7) and (4.8) we 
have 

E(blocks accessed in file(l) [ Q) = 1.172, 
E(blocks accessed in file(0)[ Q) = 3.264 

and, therefore 

E(blocks accessed, or disk accesses[ Q) = 3.548. 

This example was not created for this paper! E. Cagley 
(who first proposed this kind of  retrieval algorithm in 
[3]) and his associates in the Mathematics and Compu- 
tation Laboratory of  the Federal Preparedness Agency 
have created an indexed descriptor file to retrieve infor- 
mation from a file of  census data of this magnitude [4]. 
The descriptor widths (2 machine words), packing fac- 
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tors, and bit densities are those observed in their system. 
In the two years that the implementation of  this dynamic 
file has been operational, it has been observed that an 
average of  between 3 and 4 disk accesses is sufficient to 
respond to a query for a singly fully specifed record. 

The preceding example assumes that all seven fields 
are specified in a query. It will be illustrative to examine 
the behavior of  the system if just three of  the fields are 
specified. In this case there will be approximately 1,440 
records (technically buckets) that may satisfy the query 
specifications. Given the uneven distribution of  l-bits in 
the fields of  the index descriptors, a query specifying 
fields 1, 2, and 3 represents a "best case" situation, while 
the specification of  fields 5, 6, 7 represents a "worst case" 
situation. We will examine both, even though the way 
these index files were created [4] optimizes retrieval on 
the first three fields at the expense of  retrieval using the 
last three fields (which, in fact, have never been used as 

= n ; = ,  7 A 1 ) / w ,  = a query). II}=~ ~(2)/wj .00396, and a 
.001. Thus, in the best case, it is expected that 1.861 + 60 
= 61.861 disk accessed must be made to retrieve approx- 
imately 1,440 records. In the worst case query. I-[7:5 ~(2)/ 

II)=5 ~(1) /wj  = .259. Now the expected w / =  .874 and 7 
number of  disk accesses to respond to the query is 411.09 
+ 1555.2 = 1966.29 to retrieve the same number of  
records. 

While expression (4.8) gives the exact expected num- 
ber of  disk accesses, it is not always an easy one to use 
in practice since it presumes a knowledge of  which 
attribute fields have been specified in the query in order 
to evaluate the right-hand product. Frequently, only the 
total number, q, of  attributes specifed in Q is known. We 
may simplify expressions (4.7) and (4.8) by assuming that 
the bit density in any single field is nearly the same as 
the overall average bit density bd(i) of  the entire descrip- 
tor D. That is, we assume that 

~(i)/wj -~ b'--d(i) expected bits in D(i) = < 1.0 
width of D 

for all fields Fj in any index file(i). While this assumption 
of  the relative invariance of  bit densities per field is 
dependent on the particular method of  creating the file 
structure, and may thus be invalid (as in the preceding 
example), we have found that the approximation often 
yields surprisingly accurate predicted access costs. Fur- 

Table I. Average number  of  l-bits in descriptor fields, ~ of  two index 
files. (Note: The uneven distribution of  bits in these fields is a charac- 
teristic of  the particular way this file was created.) 

6 ~ (2) 7:. (l) 
1 1.0 1.0 
2 1.1 1.0 
3 3.6 1.0 
4 7.2 2.1 
5 9.3 3.7 
6 9.5 7.3 
7 9.9 9.6 
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thermore, the simplified form highlights important fea- 
tures of retrieval using indexed descriptor structures. 
And this form is more amenable to standard optimization 
techniques. Using this approximation, expression (4.7) 
becomes 

E(blocks accessed in file(i) I q) 
r(i + l).b--d(i + 1) q (4.9) 

and expression (4.8) becomes 

E(blocks accessed I q) 
,~ Y.d~o~ [r(i + 1).b"-d(i + 1)q]. (4.10) 

Since the density of i-bits in the descriptors of index 
file(i + 1), b d ( i + l )  < 1.0, the factor on the right 
decreases, often dramatically, as q increases. Conse- 
quently, as the number of attribute values specified in a 
query increases, the cost of retrieval decreases - - in  con- 
trast to standard inverted list retrieval in which the cost 
actually increases. 

From expression (4.10), it is seen that the expected 
number of blocks accessed when responding to a query 
is not only a function of the number q of query attributes 
specified; but it is als__o a function of the size, r(i), and 
average bit density, bd(i),  of each index file(i). Readily, 
one seeks to minimize retrieval cost by minimizing r(i) 
(that is, increasing p( i  - 1)) and by minimizing the bit 
densities bd(i) .  Unfortunately, we should emphasize that 
the twin goals of both increasing the average packing 
factor while decreasing the average bit density are nor- 
mally incompatible. As more descriptors are ORed to 
form a block descriptor, the number of bits in that block 
descriptor tends to increase. Controlling and optimizing 
these two parameters is just one of the interesting design 
problems associated with indexed descriptor files. 

5. File Creation, Record Entry 

The nature of the retrieval process using indexed 
descriptor files is independent of the particular way the 
file may have been created, even though its actual per- 
formance may be significantly affected by parameters 
established by the creation algorithm, that is, average 
bits in field-j of file(i), ~(i), and the number of records 
per index file, r(i). There is no "single" way to create 
indexed descriptor files. Indeed, this file structure admits 
several creation and/or  entry procedures which may be 
selected, and then tuned for a particular application. 
These procedures fall into two broad classes which we 
call "bottom-up" and "top-down" file creation processes. 

In "bottom-up" file creation, the data file is first 
organized by any desired method (it is not a function of 
the indexed descriptor file structure). For example, the 
records of the file described in Section 4, and in Table I, 
were first sorted lexicographically on the subfields of 
their descriptors. Then the first p(0) data records are 
packed into a single block and its block descriptor 
formed to b e c o m e  the first record in index file(l). The 
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next p(0) data records are packed into a block, its block 
descriptor formed, and added to index file(l), and so on. 
The first p(1) records (block descriptors) in index file(l) 
are packed into a single block and its block descriptor 
formed to become the first record of index file(2), and so 
on .  

Readily, this method of file creation is optimal with 
respect to storage overhead, since every storage block is 
fully packed, except possibly the last block in any file. 
And given that the file has already been organized in 
some fashion, it is fast, requiring only a single sequential 
pass through the data file ORing and creating block 
descriptors as it goes. Readily, this method of file creation 
is best for static files, but it can be appropriate in the 
case of moderately dynamic files using a record insertion 
algorithm which simply enters the new record into the 
last partially filled block, and ORs its descriptor to each 
"covering" block descriptor. Since this latter portion of 
the file is randomly organized (by order of record inser- 
tion), the entire data file may be periodically reorganized 
and a new indexed descriptor file structure created over 
it. 

Highly dynamic files are more easily maintained using 
"top-down" record entry. Here we assume an existing 
file structure with only partially filled blocks. Using the 
descriptor of a new record, the entry procedure searches 
the tree-structured index file to find the "best" data block 
in which to insert this new record--if  a "best" block 
exists. The concept of "best" is normally a heuristic one 
which may be based on a large number of criteria, such 
as the number of new bits added to a block descriptor, 
or the Hamming distance between the old and new block 
descriptors. Similarly, several search algorithms may be 
used, such as depth-first, breadth-first, or ordered search. 
In all "top-down" entry procedures, the new record 
descriptor D is compared with the block descriptors in 
the highest level file(d). Each time a decision is made 
whether or not the associated block in file(d - 1) should 
be accessed and D compared with its descriptors, and so 
on. Both the adequacy of the resulting data organization 
and the efficiency of  the entry procedure (in terms of 
storage accesses) are highly dependent on the particular 
parameters employed in the search process and its deci- 
sions. Some of the subtle interactions are too involved to 
discuss adequately in this paper. 

It is apparent that each block descriptor in an index 
file "describes" a subcluster, cluster, or supercluster of 
records in the data file, depending on its level in the 
index. With "bottom-up" creation these descriptors 
merely reflect the clustered organization imposed upon 
the data file a priori. In "top-down" creation, the records 
of the data file are clustered "on the fly." Again, the 
actual clustering is determined by the particular search 
strategies and decision heurisms employed. Still the de- 
scriptor files form a useful vehicle for recording the 
existing structure on which decisions are based, and for 
concepturally studying (in retrospect) various clustering 
phenomena, such as cluster overlap. 
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Record deletion is nearly trivial in indexed descriptor 
files. The record is simply deleted from its data block; a 
new block descriptor is recalculated, with covering block 
descriptors rewritten and recalculated as necessary. At 
most two or three storage accesses are involved. 

6. Conclusions 

As shown in the preceding sections, partial-match 
retrieval using indexed descriptor files is certainly com- 
petitive, in terms of storage accesses, with the traditional 
inverted file technique; and when several attributes are 
specified in the partial-match query, it is superior. 

We may also be concerned with the issue of  storage 
overhead and its associated cost. This is a difficult prob- 
lem to analyze precisely since it is dependent on the 
length of  the data records, the width of their descriptors, 
the packing factors used in the various files, etc. How- 
ever, we may observe that no additional information 
need be added to the data file (one need not store the 
block descriptor in its block); the only storage overhead 
is associated with the index files themselves. Given a 
reasonable packing of the data file, say p(0) > 10, then 
one relatively short descriptor record is inserted into the 
first index file for each 10 or more data records. Higher 
level index files may be even more highly compressed. 
Thus, with a "bottom-up" descriptor index we may 
expect storage overhead costs of less than 10 percent of  
the total data file. Cagley reports a typical storage over- 
head of  5 percent in his applications [4]. 

In index files that have been created by a "top-down" 
entry procedure which uses a heuristically guided process 
to "cluster" records and thus reduce descriptor bit dens- 
ities, we do not fully pack the blocks in the data file so 
room will be left for later insertions. In this case we have 
observed storage overhead costs of  from 20 to 40 percent 
of  the data file, depending on how finely tuned the entry 
procedure is. 

The issue of "tuning" an indexed descriptor system is 
an interesting one--precisely because it is possible to do 
so. Consider the problem of a record attribute which is 
seldom used in retrieval, but may be important when it 
is specified. With inverted files it is an all or nothing 
decision; either that attribute is inverted (with the same 
attendant costs as with inverting any other attribute) or 
it is not (forcing a sequential search of the entire file for 
retrieval on this attribute). In these files, the designer 
may decide on the relative importance of  any attribute 
and allocate a proportional number of  bits w in the 
descriptor. Both [1, 2] give formulae for optimally setting 
the dimensions of a bucket space, which are suggestive, 
but not quite accurate in this situation since they are 
based on a different expression for the expected number 
of  storage accesses per query. By the same token, one 
may tune the system by using a deeper structure of  three 
or more index files; this seems, however, to be unneces- 
sary with files of  less than a million records. 
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