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Abstract. We develop the concept of a “closure space” which appears
with different names in many aspects of graph theory. We show that
acyclic graphs can be almost characterized by the partition coefficients
of their associated closure spaces. The resulting nearly total ordering of
all acyclic graphs (or partial orders) provides an effective isomorphism
filter and the basis for efficient retrieval in secondary storage.

1 Binary Partitions

In this paper we combine two mathematical threads and apply them in a graph-
theoretic context. The first thread of binary partitions was studied by Euler
as early as 1750. The second thread involving closure spaces is of more recent
origin. A binary partition of a positive integer N is its expression as a sum of
powers of 2. Mahler [16], and Churchhouse [3] [4] have studied binary partitions
from a number theoretic point of view. Because our intention is to connect these
partitions with closure spaces, we will confine our attention to the special case
where N is also a power of 2.

By a binary partition of 27 we mean a sequence of non-negative integers
<---yap >, 0<k <nsuch that

an 2"+ an_1-2"" P 4ta,_5- 2" 4 a2 ag 20 =27 (1)

or Y h_o @k 28 = 97 The set of all such partitions we denote by P". (From
now on we frequently omit the adjective ”binary”.)

Several characteristics of (1) are readily apparent. First, a, # 0 if and only
if ap = 0 for all 0 < k& < n. Second, since the right hand side is even and all
terms ay - 2%, k > 0 must be even, the coefficient ap must be even. Third, if

< ---,ap,ar—1, -+ > is a partition, then < .-+ a — 1,a_1 + 2, > must
be as well. And fourth, if < a,,---,ag, -+,a, > is a partition of 2" then <
Un,- -, ay, -, ap,0 > is a partition of 27+1,

With these observations, it is not difficult to write a process which generates
all partitions in lexicographic order. Doing so, and displaying each partition,
generates the following enumerations of P3 and P*. It is quite easy to verify by
inspection that each sequence is a partition of 2”. And because they are in lexi-
cographic order, one can verify that all possible partitions have been generated.

If one were to run the same program with n = 5 there would be 202 generated
partitions which are are impractical to display in a paper of this length.

* Research supported in part by DOE grant DE-FG05-95ER25254.



n=3 n=4
1 0 0 O 1 0 0 0 O 0 0 2 1 6
0 2 0 O 0 2 0 0 O 0 0 2 0 8
01 2 0 01 2 0 0 0 0 1 6 0
0 1 1 2 01 1 2 0 0 0 1 5 2
0 1 0 4 o1 1 1 2 0 0 1 4 4
0 0 4 0 01 1 0 4 0 0 1 3 6
0 0 3 2 01 0 4 0 0 0 1 2 8
0 0 2 4 01 0 3 2 0 0 1 1 10
0 0 1 6 01 0 2 4 0 0 1 0 12
0 0 0 8 01 0 1 6 0 0 0 8 0
01 0 0 8 0 0 0 7 2
0 0 4 0 O 0 0 0 6 4
0 0 3 2 0 0 0 0 5 6
00 3 1 2 0 0 0 4 8
0 0 3 0 4 0 0 0 3 10
0 0 2 4 0 0 0 0 2 12
0 0 2 3 2 0 0 0 1 14
0 0 2 2 4 0 0 0 0 16

Fig.1. P3 and P*

2 Closure Spaces

The preceding discussion of binary partitions will take on additional interest if
we introduce the concept of a closure space. We let U denote some universe

of elements of interest. Lower case letters a,b, - -, x,y, z will denote individual
elements of U, and upper case letters will denote subsets. A set, U, and a closure
operator, o, satisfying the following three closure axioms?

X C X

X CY implies X.p CY.p (2)

Xopp=Xet=Xyp

are said to be a closure space (U, @), as in [12]. X is said to be closed® if X.p = X.
A closure operator, ¢, is said to be uniquely generated if it also satisfies the
following fourth axiom, which serves to distinguish it from a topological closure,

X.po =Y. implies (XNY).p=X.p=Yp (3)

Closure operators satisfying (3) above are uniquely generated in the sense that
for any set 7, there exists a unique minimal set X C 7, called its generator and
denoted Z.gen, such that X.¢ = Z.0.* The importance of uniquely generated

2 We will write these expressions using the mixed infix/suffix form more common in
algebra. That is, binary set operators will be written using infix and unary transfor-
mations will be written using suffix notation, as in (X NY).f to denote the image
of X NY under f. This notation greatly simplifies expressions involving transforma-
tions of closure spaces; and the redundant dot delimiter is of great value when using
computer parsing techniques.

The family C of closed sets is closed under intersection, and this characterization is
equivalent to (2), c.f. [9].

* Readily, if X; and X, were distinct minimal generators of Z.¢, then because X;.¢ =

X2.¢0 = Z.p, we must have, by (3), (X1 N X2).¢ = Z.¢ contradicting minimality.



closure spaces lies in the fact that in discrete systems they play a role that is
in many respects analogous to the vector spaces of classical mathematics. We
establish this parallel in the next paragraph.

A closure operator o, satisfying the three closure axioms of (2), together with
the Steinitz-MacLane ezchange property

if y¢ X.o then ye (X U{x}).0c implies z € (X U{y}).c 4)

can be shown to be the closure operator of a matroid [25] [26]. Recall that a
matroid is a set system which generalizes the independent sets of a linear algebra,
and a wvector space is the closure, usually called the spanning operator, of one or
more of these independent sets. Now (4) has the familiar interpretation: if y is
not in the vector subspace spanned by X, but is in the vector space formed by
adjoining z as a basis vector, then  must be in the vector space spanned when
y is adjoined to X.

Similarly, a closure ¢ satisfying the three closure axioms and the anti-exchange

property
if z,y¢ X.¢ then ye (XU {z}).¢ implies z & (X U{y}).¢ (5)
is the closure operator of an anti-matroid [7] [15]. In [21] it is shown that

Theorem 1. A closure operator is uniquely generated if and only if it satisfies
the anti-exchange property (5).

Therefore, uniquely generated closure spaces are precisely the analogs of vector
spaces, but with respect to anti-matroids. From now on, we will simply call
them closure spaces. Because they are uniquely generated, any closure space is
completely characterized by enumerating its closed sets and their generators,
that is by enumerating [X.¢, X.gen], VX C U.

Closure spaces are fairly common in computer science and its applications,
although they frequently have other names. Transitive closure, for example of
the set of edges in an acyclic graph or of functional dependencies in an acyclic
database schema, gives rise to a closure space. The term “convexity” is often
applied to closure concepts, and many examples of convexity concepts occurring
in graphs can be found in [8] [11] and [14]. Convexity in discrete geometries also
yields a number of intuitively satisfying closure spaces. The convex hull operator
is the closure operator. See [10] for an excellent treatment of convezr geometries.
Finally, numerous examples of anti-matroids, whose closure will yield a closure
space, can be found in the survey of anti-matroids [7] or the text on greedoids
[15] which generalize an important class of computer algorithms.

We have found that ideal and interval operators in partially ordered sets, or
acyclic graphs provide an abundance of easily accessible examples. It is not hard
to show that the path structure of an acyclic graph is uniquely generated [21].

That is, there is a unique, minimal representation® of any acyclic graph which

® Minimal in the sense that removal of any edge yields a graph with a different path
structure, transitive closure, or partial order. We usually illustrate acyclic relation-
ships with basic representations; they are far less cluttered.



we call a basic graph [18]. These are commonly used in the implementation of
acyclic data structures and processes.

One can organize the closed sets of a closure space in many ways. The most
natural is to partially order them by inclusion, in which case it can be shown
that the partial order will be a lower semi-modular (or meet-distributive) lattice
[17] [9]. A more interesting partial order, <, of all subsets is given by

X<,Y if and only if YNXpeCXCVYep VX, Y CU. (6)

")

which is described in [21]. The closure space with this partial order can be shown
to be a lattice, Ly ), called the closure lattice of (U, ¢). Figure 2 illustrates the

Fig. 2. The closure lattice Ly ) of a small 7 point closure space.



structure of a small 7 point closure space. The closed sets of (U, ) are set in
bold face, and connected by solid lines. These closed sets form a sublattice whose
partial order is by inclusion. It can be instructive to diagram the points and
their set membership of this space. Since {g} is the generator of U = {abedefg},
the closure of {g}, or any set containing the point g, is the whole space. The
generator of {abce} are the points {ae}, and so forth. There are 64 subsets whose
closure is {abcedefg}; they constitute the lattice interval [abedefg, g]. To avoid
clutter, we simply denote all of them by a single dotted ellipse. Only one of its
elements {efg} is indicated. (From now on, we also ignore {-- -} delimiting sets
of enumerated points.)

Closure lattices such as this have a number of unique properties which are
explored in [20]. Central to this development is

Theorem 2. The poset {Y;|Y.p <, Y; <, Y.gen}, is a boolean algebra on n
elements, where n = |Y.p| — |Y.gen|.

These boolean algebras, [Y.¢, Y.gen] are denoted by dotted ellipses in Figure 2.
It is not hard to see that each lattice interval, [Y.p,Y.gen] = {Y;|Y.gen C Y; C
Y.p}, and that |[Y.p, Y.gen]| = 27. Since every subset Y C U is an element of

some closure/generator interval, the decomposition of 92U into these intervals is
a binary partition of 2!”!, which we call the partition coefficients of (U, ). For
example, the binary partition corresponding to the closure space (U, ¢) of Figure
2is<01013408> (where a® = a” = 0 is the leading coefficient). There is a
single interval, [abede fg, g], of size 2°; so ag = 1. The three intervals of size 23,
[abede, de], [abedf, cf], and [abdf, f], imply that ag = 3. There are eight singleton
elements, abe, ab, ac,be,a, b, c and ), where X.po = X.gen. Consequently, ag = 8.
Those partitions for which ag # 0 we call normal. Customarily the closure of () is
empty®, even though it is not required in a the general theory of closure spaces.
The closure space of Figure 2 is normal.

These partition coefficients constitute an invariant of the closure space that
is independent of representation or isomorphic mappings. It is evident from
Theorem 2 and the preceding discussion that for every closure space there is a
corresponding binary partition of 21Y1. It can also be shown that for every binary
partition of 2" there exists a closure space on n elements with that [closed_set,
generator] structure.

3 Partition Coefficients of Acyclic Graphs

In this section, we apply the concept of closure spaces and their binary partition
coefficients to the study of acyclic graphs and partially ordered sets.

With any graph one can postulate a number of invariants. They may be any
of a variety of scalar quantities, such as covering or independence numbers [13]
or various polynomial expressions, e.g. chromatic polynomials [1]. It is desirable

6 That the convex closure of the empty set should be empty is so reasonable, it is
taken to be an axiom in [10] and [11].



if the invariant conveys information about the graph. A fairly popular invariant
of G is its characteristic polynomial [22]. In fact this terminology is slightly
misleading. One is really associating the graph G with a linear transformation 7,
for which the adjacency matrix of GG is a representation. Now, the characteristic
polynomial, eigenvalues, and eigenspaces of 7 can be regarded as invariants of
G [6].

We now do much the same. Given a poset, or acyclic graph G = (P, E), one
can use the path relation p to induce a partial order on the point set, P. Now
we set U = P, and let

Y'SDL = {Jfl(l‘,y) € [ € Y}a
Yor ={zl(y,z) €p, y€Y}, or (7)
Y‘PC:{xl(ylaz)epa($;y2)epa yl;yZEY}-

The first two closures are ideal operators on U, and the last is an interval
operator.7

For any acyclic graph G and uniquely generated closure ¢, such ¢, pg or
@ above; we have an induced closure space. In Figure 3, we illustrate the three
different closure spaces obtained by applying ¢, ¢g, and ¢ to a single 5 point
graph. Again, the sub-lattice of closed sets is denoted by solid lines. And, as
usual, we will denote the [closed_set, generator] intervals by dashed ellipses.
The partition coefficients of these three closure spaces are < 0013 3 2 >,
<010144> and <00014 20 > respectively. Readily, different closure
operators give rise to different partition coefficients.

We now treat the partition coefficients of this closure space as invariants of
G. As observed above, this invariant depends on the closure operator. For the
rest of this paper, we use only the ideal closure ¢ of (7). In Figure 4 we show
G*, that is the collection of all basic, acyclic graphs on 4 points, together with
the partition coefficients of their closure spaces. Because ¢ is path derived, any
graph with additional edges, but the same transitive closure, must have the same
associated closure space.

The graphs of G* are not uniquely characterized by their coefficients; consider
graphs (9) and (10) which both have < 00 2 2 4 > as partition coefficients. But
(9) is connected whereas (10) is disconnected. Unfortunately, this distinction
is of little value. The connected, non-isomorphic graphs of Figure 5 both have
partition coefficients < 010224 > with respect to ¢ . We would note that while
the partition coefficients of Figures 5(a) and (b) are the same, their corresponding
closure spaces, as illustrated by the lattices are distinct. This follows from

"In [11], ¢ is called downset alignment and ¢ is called order convezity, but just
plain convezity in [17]. There are many conventions for drawing partially ordered
sets. In an effort to distinguish between the underlying acyclic graph and its closure
space, the author prefers to orient the former horizontally and the latter vertically.
Because we illustrate with a left to right horizontal orientation, we use the subscripts,
L(eft) and R(ight), to distinguish the ideal operators. The terms upper/lower ideal
and | operators are also encountered.



Fig. 3. Different closure spaces arising from the closure operators, ¢; (a), ¢ (b), and
ec (c).

Theorem 3. Fundamental Theorem of Distributive Lattices If (U, ¢) is
a finite closure space in which U s partially ordered and ¢ is an ideal operator,
then the set of closed sets, partially ordered by inclusion, is a distributed lattice.
Moreover, there is a one-to-one correspondence between the set of all distributive
lattices and such closure spaces.
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Fig. 4. All basic, acyclic 4 point graphs, G* and their partition coefficients (w.r.t. ¢;)

Proof. See theorem 3.4.1 of [24] O

Distinct, non-isomorphic, graphs must have distinct closure spaces, but dis-
tinct closure spaces may have the same partition coefficients, just as two dis-
tinct linear transformations may have the same characteristic polynomial. Con-
sequently, acyclic graphs cannot be completely characterized by their partition
coefficients. Nevertheless, these coefficients convey significant information about
the graphs and can be quite useful when manipulating them in computer sys-
tems.

The author has created one such computer system, capable of representing
arbitrary graphs, whose primary purpose is the study of properties of graph
transformations. For many of the studies of interest to us, we must generate
all, or a large sample of, non-isomorphic graph on n points. Comparing binary
partition coefficients is a useful filter for eliminating obviously non-isomorphic
pairs. In Table 1 we display the expected number of acyclic graphs on n points
that have the same identical binary partition coefficients, exp(|G| per bp). For
n = 8, there exist 16,999 distinct, non-isomorphic, acyclic graphs,® having 5,187
distinct partition coefficient sequences; so that an expected 3.277 have the same
binary partition coefficients. But two graphs with the same partition coefficients
need not have the same number of edges. They frequently do not. As shown on
the next line of Table 1, the expected number of graph with identical partition
coefficients and the same number of edges, exp(|G| per bp and |E|), drops to

8 The number of distinct » point acyclic graphs, or posets, grows exponentially. It is
known that |G™| is: 183,231 (n = 9), 2,567,284 (n = 10) and 46,794,427 (n = 11) [5].
No general enumeration formula is known.
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Fig. 5. Two graphs (a) and (b) having the partition coefficients < 010 2 2 4 > together
with their corresponding closure spaces

n =|P| | 3 4 5 6 7 8
1G] 5 16 63 318 2,405 16,999
exp(|G| per bp) 1.00 1.07 1.21 1.53 2.13 3.28

exp(|G| per bp and |E|)| 1.00 1.00 1.03 1.12 1.30 1.66

Table 1. Densities of acyclic graphs on » points when partitioned w.r.t. binary parti-
tion (bp) coeflicients and w.r.t number of edges.

1.656. In practice, these expectations transalate into a effective filter. In a recent
application that involved testing 1,034 M random pairs of 8-point graphs for
isomorphism (equality), we first applied the edge cardinality filter; 193 M pairs
passed this filter. Of these, only 148,762 had identical partition coefficients, and
of these 87,710 were actually isomorphic. The probability of being isomorphic,
given equal partition coefficients and numbers of edges was 1.69, compared to
1.66 as predicted by the table.

A quick measure of the effectiveness of invariant partition coefficients as an



isomorphism filter can be attained by comparing it with other common filters.
In Table 2, we count the number of equivalence classes generated in the family
G™ of all n point acyclic graphs, assuming (a) partition coefficients alone, (b)
partition coefficients plus equal edge cardinalities, (c¢) equal in (left) and out
(right) degrees, (d) equal in (left) and out (right) ideals, and (e) equal ideals
plus equal edge cardinalities. Readily, the expected number of graphs passing

nbr of equivalence classes
@ () © @ @
n| |G"|| coeff +|FE| degree ideal +|FE|
4 16 15 16 16 15 16
5 63 52 61 63 52 61
6 318 208 285 125 208 284
7

8

2,045 962 1,570 432 951 1,551
16,999 5,187 10,263 1,588 4,932 9,863

Table 2. Comparison of isomorphism filters on graphs with n points

any filter, as in Table 1, is the expected number of graphs per equivalence class.
The similarity of (a) and (b) with (d) and (e) is striking. This should not be too
surprising, since ¢ is an ideal operator. But, it is a one-sided ideal operator,
whereas (d) and (e) in Table 2 are based on two-sided ideals. Moreover, storage
of filter (e) requires 2 - n + 1 integers whereas filter (b) consists of just n + 1
integers. In terms of information content, the partition coefficients are nearly
twice as efficient. There may be more effective isomorphism filters, but we know
of none with as dense information content.

A lexicographic ordering of the partition coefficients is an invariant, nearly
total ordering of all acyclic graphs on n points. This can be of considerable value.
In particular, we can use binary search to quickly obtain the neighborhood of
any desired graph. The 4 point graphs of Figure 4 have been displayed in this
order.

Another use of our graph manipulation system has been to gather various
counts regarding basic, acyclic graphs on n = |P| points with e = |E| edges.
Some of these results are summarized in Table 3. The numbers of trees on n
points, connected graphs with n — 1 edges, is evident. We would observe that
the counts are quite different from the similar table of [5] which has graphs with
many more edges. They enumerate the transitively closed graphs (or partial
orders) with e edges, whereas we enumerate the basic (or minimal) graphs with
that order. Using the terminology of this paper, they count the edges in the
closure of a partial order, while we count the edges in its generator.

The partition coefficients appear to encode a considerable amount of addi-
tional graph specific information. For example, it is not difficult to prove that:



Pl=| 3 4 5 6 7 8

|E| |nc c|nc c¢|nc c¢|nc c| nc c nc c

0 1 1 1 1 1 1

1 1 1 1 1 1 1

2 3| 4 4 4

3 8| 11 12 12 12

4 21 2 27|43 46 47

5 121 14 91| 156 170

6 5| 5 87| 110 350| 670

7 45| 50 532 721 1,376

8 12| 12 475 550 3,272

9 3 3 201 216 4,298
10 71 74 3,197
11 14 14 1,565
12 7 7 554
13 186
14 44
15 16
16 4

Totals| 23| 6 10|19 44 | 80 238 | 395 1,650 | 2,487 14,512

|G™| 5 16 63 318 2,045 16,999

Table 3. Numbers of disconnected (nc) and connected (c) acyclic graphs on | P| points
with |E| edges

Theorem4. If the closure operator is ¢y, then ag must be a power of two,
whose exponent denotes the number of minimal (leftmost) elements.

It also appears that partition coefficients encode a measure of connectivity
information. After a tedious sequence of minor lemmas such as

Lemma 5. Let ¢ be a path based closure and let G = (P, E) on n points have
the closure coefficients < an, an_1, -, ag >. Then, GPTY = (PU{z}, E) has
the closure coefficients < 2 -ay, 2 -ap_1, -+, 2-ag >.

Lemma6. Let ¢ be the left (right) ideal closure. G'") = (P, E) has a greatest
(least) point if and only if the partition coefficient an—1 =1

one finally derives a curious result,

Theorem 7. Let ¢ be an ideal closure. If all the binary partition coefficients of
a graph, < an, an_1, -+ , a1, ag > (w.r.t an ideal closure} are even, then the
graph is disconnected or else there exists a disconnected graph with these binary
partition coefficients.

Suggested by this result, but not stated is the fact that if all the binary partition
coefficients associated with a graph are even, then, with very high probability,



the graph is disconnected. On the other hand, if even one coefficient is odd, the
graph is probably connected.

Of major concern with the use of closure spaces and their binary partition
coefficients as tools for the analysis and filtering of acyclic graphs, is the ex-
pected cost of generating them. The straightforward approach of generating all
2" subsets and calculating their closures is clearly impractical for even moderate
sized graphs. Fortunately, this is unnecessary. Given any closed set in a closure
space, and its generator, one can easily determine all closed sets that it covers
because,

Theorem 8. If ¢ is uniquely generated, and if X # () is closed, then p € X.gen
if and only if Z — {p} is closed.

Proof. See Lemma 3.1, [20].

This theorem is treated as the defining property of eztreme points, which are
the generators of convex sets in [10]. It appears in one form or another in many
efficient graph algorithms. For example, this property is used in [5] [2] to generate
partial orders, where the universe U is the edge set; their closure is transitive
closure; and a “cover” is a minimal edge set that generates the transitive closure.
In [11] and [8] it is exploited to characterize properties of undirected graphs, and
efficient algorithms to recognize them.

In our case, we use Theorem 8, to determine the closure space of a graph and
its partition coefficients by first putting the entire point set P, which must be
closed, in a queue. We then successively remove closed sets Y from the queue,
verify that we have not already processed it,” then apply generator(Y). We
increment ay where k = |Y| — |Y.gen|. For each y € Y.gen, we add Y — {y} to
the queue. The cost of generating the closure space is approximately |closedsets|-
costyenerator(y). Assuming costgenerator(y) is nearly constant'® given G, the cost
of generating partition coefficients will be clearly dominated by the number of
closed sets to be processed.

So, the key question becomes “what is the expected number of closed sets in
an acyclic graph on n points?” The number of closed sets in any particular G is
given by the sum of its partition coefficients, 7 a;. Table 4 enumerates these
expected values for 3 < n < 8, first for those graphs with precisely |F| edges,
and then for all graphs in G". Readily, the worst case behavior is O(2"); but
this occurs only if |E] = 0. As |E| increases the number of closed sets decreases
towards an asymptote. If G must be connected, so that |F| > n— 1, the number
of number of closed sets is close to the asymptote itself.

4 Counting Binary Partitions

We close by once again considering binary partitions. The space of acyclic graphs
grows exponentially. Is it reasonable to expect to characterize them by partition

® Because we use a queue, this is a level by level processing of the closed sets. It is
possible to reach the same closed set twice. C.f. figure 2.
10 With these small, finite graphs there is a hard upper bound for any n.



1P|

|E| 3 4 5 6 78
0 8.0 16.0 32.0 64.0 128.0 256.0
1 6.0 12.0 24.0 48.0 96.0 192.0
2 4.7 9.2 185 37.0 74.0 148.0
3 7.1 14.2 28.2 56.5 113.0
4 6.5 10.9 21.8 43.5 86.9
5 9.5 16.6 33.1 66.0
6 9.6 14.5 256 50.7
7 13.7 217 39.0
8 13.9 20.2 33.0
9 13.0 19.5 29.7
10 19.2  28.1
11 18.3 27.1
12 18.8  26.5
13 26.1
14 26.0
15 26.8
16 25.2
all graphs| 5.6 8.4 12.2 17.1 23.6 32.3

Table 4. Expected numbers of closed sets in graphs with | P| points and |E| edges

coefficients as n becomes large? How many binary partitions are there on n
points? It is customary to let b(n), called the binary partition function, denote
the number of binary partitions of n. As before, our interest is the number of
binary partitions of 2", that is 6(2"). In [3], it is shown that

b(Qn) - Cn,0+cn,1 (8)

where ci1o=c11 =1, chp10=cro=1,and cpy1; = Ei;o ¢n,x- This particu-
larly simple formulation was executed by Churchhouse on an Atlas computer in
1968 to obtain initial values of the binary partition function. A more complex,
but somewhat faster code is given in [19]. With this code one can generate the
following Table 5 of partitions of 2". The second column counts the number of
normal partitions in which ag # 0, which in accordance with observation four in
Section 1, is always |P™| — |P™~1|. Closure spaces associated with acyclic graphs
must be normal. The third column counts the number of such non-isomorphic
graphs on n points. It is easy to verify all sequences in Sloane’s Handbook of
Integer Sequences [23]. The point of this table is to illustrate that while the diver-
sity of acyclic graphs on n points has exponential growth, the variety of closure
spaces has super exponential growth; specifically 5(27) ~ (27)*/2. The concept
of uniquely generated closure spaces is clearly rich enough to be embraced as a
tool in the study of acyclic graphs and partially ordered spaces.



n| b6(2"%) =|P"| |normal] |G™
1 2 1 1
2 4 2 2
3 10 6 5
4 36 26 16
5 202 166 63
6 1,828 1,626 318
7 27,338 25,510 2,045
8 692,004 664,666 16,999
9| 30,251,722 29,559,718 183,231
10{ 2,320,518,948 2,290,267,226 2,567,284

Table 5. Number of partitions of 2", of normal partitions, of acyclic graphs
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