Evaluating the binary partition function when $N = 2^{n-*}$

John L. Pfaltz University of Virginia

April 24, 1995

Abstract

We present a linear algorithm to count the number of binary partitions of 2^n . It is also shown how such binary partitions are related to closure spaces on n elements, thereby giving a lower bound on their enumeration as well.

1 Background

A binary partition of the integer N is a sequence of non-negative integers $\langle a_n, \dots, a_0 \rangle$, such that

$$a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0 = N.$$
 (1)

The number of such sequences, denoted b(N), is called the binary partition function. Both the function and its evaluation have been well investigated. It is described in Sloane's Handbook, [13]. A short history of the binary partition function can be found in [1], in which Churchhouse describes his calculation of b(N) on an early Atlas computer. Our method of evaluation improves on his only because we restrict ourselves to the special case in which $N=2^n$. Consequently, we must first address the issue: "why consider such a special case?".

The concept of uniquely generated closure spaces has begun to be studied as a common thread emerging in computer applications, in graphs, and in discrete geometries. Briefly, a closure operator φ is said to be uniquely generated if in addition to the customary closure axioms¹

$$X \subseteq X.\varphi$$

^{*}Research supported in part by DOE grant DE-FG05-95ER25254.

¹We will denote closure operators using a suffix notation.

$$X \subseteq Y \text{ implies } X.\varphi \subseteq Y.\varphi$$

$$X.\varphi.\varphi = X.\varphi^2 = X.\varphi$$
(2)

we add a fourth which distinguishes this closure concept from more familiar topological closure,

$$X.\varphi = Y.\varphi \text{ implies } (X \cap Y).\varphi = X.\varphi = Y.\varphi$$
 (3)

Closure operators satisfying (3) above are uniquely generated in the sense that for any set Z, there exists a unique minimal set $X \subseteq Z$, called its $generator^2$ and denoted Z.gen, such that $X.\varphi = Z.\varphi$. Such a closure operator acting on a set, or universe, of elements, \mathbf{U} , is said to be a $closure\ space\ (\mathbf{U},\varphi)$, as in [7]. Readily, a subset X will be closed if $X.\varphi = X.^3$ The importance of uniquely generated closure spaces lies in the fact that in discrete systems they play a role that is in many respects analogous to the vector spaces of classical mathematics. We establish this parallel in the next paragraph.

A closure operator σ , satisfying the three closure axioms of (2), together with the Steinitz-MacLane exchange property

if
$$y \notin X.\sigma$$
 then $y \in (X \cup \{x\}).\sigma$ implies $x \in (X \cup \{y\}).\sigma$ (4)

can be shown to be the closure operator of a matroid, \mathcal{M} [14]. Similarly, a closure φ satisfying the three closure axioms and the *anti-exchange* property

if
$$x, y \notin X.\varphi$$
 then $y \in (X \cup \{x\}).\varphi$ implies $x \notin (X \cup \{y\}).\varphi$ (5)

is the closure operator of an anti-matroid, \mathcal{A} [3]. It can be shown [8] [12] that a closure operator is uniquely generated if and only if it satisfies the anti-exchange property (5). A matroid, \mathcal{M} , is a set system that generalizes the independent sets of a linear algebra. The closure of these sets, commonly called its *spanning* operator, is a *vector space*. Uniquely generated closure spaces, therefore, are the analogs of vector spaces, but with respect to anti-matroids. From now on, we will simply call them *closure spaces*.

Closure operators are fairly common, although they frequently have other names, for example "convexity". The convex hull of a discrete set is an uniquely generated closure. A theory of convex geometries is developed in [5]. Convexity in graphs has been examined in [11] [6]. The "lower ideals", or "down sets" of a partially ordered set are closed. In concurrent computing, the concept of a "transaction" is a simple closure operator. Algorithmic closure, in particular that of greedy algorithms is found in [9], which introduces the term "greedoid", a secial kind of anti-matroid.

²Readily, if X_1 and X_2 were distinct minimal generators of $Z.\varphi$, then because $X_1.\varphi = X_2.\varphi = Z.\varphi$, we must have, by (3), $(X_1 \cap X_2).\varphi = Z.\varphi$ contradicting minimality.

³The family \mathcal{C} of closed sets is closed under intersection, and this characterization is equivalent to (2), c.f. [4].

The subsets of a closure space can be partially ordered to create a lattice [12], with many interesting properties. Of most importance is the observation that for any set $Z \subseteq \mathbf{U}$ the cardinality of $\{X \mid X.\varphi = Z.\varphi\}$ must be a power of 2. Thus any uniquely generated closure operator φ partitions the subsets of \mathbf{U} into a disjoint collection of subsets, each containing a single closed set and each consisting of 2^k subsets. Let a_k denote the number of collections with 2^k subsets. The sequence (\mathbf{U}, α) , where $|\mathbf{U}| = n$. Moreover, it is shown in [12] that for every such binary partition of 2^n there exists at least one closure space with that property. Consequently, the enumeration of binary partitions of 2^n becomes a lower bound on the enumeration of closure spaces over n elements.

2 Counting Partitions

Let \mathbf{P}^n denote the set $\{\pi_i = \langle a_n, \cdots, a_k, \cdots a_0 \rangle \}$ of all binary partitions of 2^n . Several characteristics of \mathbf{P}^n are readily apparent. First, $a_n \neq 0$ if and only if $a_k = 0$ for all $0 \leq k < n$. Second, since the right hand side is even and all terms $a_k \cdot 2^k$, k > 0 must be even, the coefficient a_0 must be even. Third, if $\langle \cdots, a_k, a_{k-1}, \cdots \rangle$ is a partition of \mathbf{P}^n , then $\langle \cdots, a_k - 1, a_{k-1} + 2, \cdots \rangle$ must be as well. And fourth, if $\langle a_n, \cdots, a_k, \cdots, a_o \rangle$ is a partition in \mathbf{P}^n then $\langle a_n, \cdots, a_k, \cdots, a_0, 0 \rangle$ is a partition in \mathbf{P}^{n+1} .

With these observations, it is not difficult to write a process which generates all partitions in lexicographic order. Doing so, and displaying each partition, generates the following enumerations of \mathbf{P}^3 and \mathbf{P}^4 . It is quite easy to verify by inspection that each sequence is a

	n =	= 3							n = 4					
1	0	0	0	1	0	0	0	0		0	0	2	1	6
0	2	0	0	0	2	0	0	0		0	0	2	0	8
0	1	2	0	0	1	2	0	0		0	0	1	6	0
0	1	1	2	0	1	1	2	0		0	0	1	5	2
0	1	0	4	0	1	1	1	2		0	0	1	4	4
0	0	4	0	0	1	1	0	4		0	0	1	3	6
0	0	3	2	0	1	0	4	0		0	0	1	2	8
0	0	2	4	0	1	0	3	2		0	0	1	1	10
0	0	1	6	0	1	0	2	4		0	0	1	0	12
0	0	0	8	0	1	0	1	6		0	0	0	8	0
				0	1	0	0	8		0	0	0	7	2
				0	0	4	0	0		0	0	0	6	4
				0	0	3	2	0		0	0	0	5	6
				0	0	3	1	2 4		0	0	0	4	8
				0	0	3	0	4		0	0	0	3	10
				0	0	2	4	0		0	0	0	2	12
				0	0	2	3	2		0	0	0	1	14
				0	0	2	2	4		0	0	0	0	16

Figure 1: \mathbf{P}^3 and \mathbf{P}^4

partition of 2^n . And because they are in lexicographic order, one can verify that all possible

partitions have been generated.

Because $\langle a_{n-1}, \cdots, a_0 \rangle \in \mathbf{P}^{n-1}$ implies $\langle a_{n-1}, \cdots, a_0, 0 \rangle \in \mathbf{P}^n$, it follows that

$$b(2^n) = b(2^{n-1}) + p_n (6)$$

where p_n denotes the number of partitions $\pi_i \in \mathbf{P}^n$ in which $a_0 \neq 0$. We say such partitions are *normal* because they correspond to closure spaces in which the empty set is closed.

In the lexicographic order of \mathbf{P}^n , if $\pi_i^n = \langle a_n, \cdots, a_2, a_1, 0 \rangle \in \mathbf{P}^n, a_1 \neq 0$, then there must follow the sequence $S_{a_1}^n$ of partitions, $\langle a_n, \cdots, a_2, a_1 - 1, 2 \rangle$, $\langle a_n, \cdots, a_2, a_1 - 2, 4 \rangle$, $\langle a_n, \cdots, a_2, 0, 2a_1 \rangle$. There are two such sequences in \mathbf{P}^3 ; $\langle 0, 1, 2, 0 \rangle$ followed by $\langle 0, 1, 1, 2 \rangle$ and $\langle 0, 1, 0, 4 \rangle$, and $\langle 0, 0, 4, 0 \rangle$ followed by $\langle 0, 0, 3, 2 \rangle$, $\langle 0, 0, 2, 4 \rangle$, $\langle 0, 0, 1, 6 \rangle$, and $\langle 0, 0, 0, 8 \rangle$. In \mathbf{P}^4 there are 6 such subsequences because there are 6 normal partitions in \mathbf{P}^3 ; the last consists of 8 normal partitions following $\langle 0, 0, 0, 8, 0 \rangle$. Once this pattern is perceived the counting process becomes evident. In Figure 2 we reinforce this pattern by showing just the first 8 and the last 34 (of 202) partitions in \mathbf{P}^5 .

						n = 5						
1	0	0	0	0	0		0	1	1	1	2	0
0	2	0	0	0	0		0	1	1	1	1	2
0	1	2	0	0	0		0	1	1	1	0	4
0	1	1	2	0	0		0	1	1	0	4	0
_	_	1	_				_	_	_			_
0	0	0	2	1	22		0	0	0	0	16	0
0	0	0	2 1	0	24		0	0	0	0	15	2
0	0	0		14	0		0	0	0	0	14	4
0	0	0	1	13	2		0	0	0	0	13	6
0	0	0	1	12	4		0	0	0	0	12	8
0	0	0	1	11	6		0	0	0	0	11	10
0	0	0	1	10	8		0	0	0	0	10	12
0	0	0	1	9	10		0	0	0	0	9	14
0	0	0	1	8	12		0	0	0	0	8	16
0	0	0	1	7	14		0	0	0	0	7	18
0	0	0	1	6	16		0	0	0	0	6	20
0	0	0	1	5	18		0	0	0	0	5	22
0	0	0	1	4	20		0	0	0	0	4	24
0	0	0	1	3	22		0	0	0	0	3	26
0	0	0	1	2	24		0	0	0	0	2	28
ō	Ō	Ō	1	1	26		Ō	Ō	Ō	ō	1	30
Ō	Ō	Ō	1	Ō	28		Ō	Ō	Ō	0	Ō	32

Figure 2: First 8 and last 34 partitions of \mathbf{P}^5

Notice that these subsequences of normal partitions (with $a_0 \neq 0$) were generated by the three normal partitions < 0, 1, 1, 1, 2 >, < 0, 0, 0, 1, 14 >, and < 0, 0, 0, 0, 16 > of \mathbf{P}^4 .

The length of a sequence $S_{a_1}^n$ is a_1 . Hence, each normal partition $\pi_i^{n-1} \in \mathbf{P}^{n-1}$ gives rise to a subsequence of $a_1^n = a_0^{n-1}$ normal partitions in \mathbf{P}^n . If one carefully keeps track of all normal permutations in \mathbf{P}^{n-1} , then one can use the mechanism above to generate all

Figure 3: a_0 coefficient in sequences S_k^n of normal partitions

normal partitions in \mathbf{P}^n . This is illustrated in Figure 3 in which subsequences S_k^n of normal partitions are enumerated (by showing only the a_0 value) in vertical columns for n=1 through 4, and horizontally (to conserve space) for n=5. For n=1 through 4, each entry a_0^n in S_i^n denotes to its right (with \Rightarrow) the last entry $< 2a_1, 0, \dots, a_{n+1} >$ in the sequence $S_{a_0}^{n+1}$ that it generates.

Observe in this figure, that when n=3, all 6 partitions with $a_0 \neq 0$ are enumerated in just two subsequences S_2^3 and S_4^3 , which were generated by the two normal partitions in \mathbf{P}^2 . With n=4 the 26 normal partitions of \mathbf{P}^4 are enumerated in two occurrences of the subsequences S_2^4 and S_4^4 , together with single occurrences of S_6^4 and S_8^4 , which themselves were generated from the 6 normal partitions of \mathbf{P}^3 . Fortunately, since all sequences S_k^n have the form $2, 4, \dots, k$, we need only keep track of the number of such sequences in \mathbf{P}^n , not their actual composition.

Let σ_k^n , k even, denote the *number* of subsequences S_k^n of normal partitions in \mathbf{P}^n . Based on Figure 3 we can construct Table 1.

Since every normal partition of \mathbf{P}^n belongs to such a subsequence, we have

$$p_n = \sum_{even \ k}^{2^{n-1}} k \cdot \sigma_k^n \tag{7}$$

n	2	3	4	5	6
p_n	2	6	26	166	1,626
\overline{k}			σ_k^n		
2	1	1	2	6	26
4		1	2	6	26
6			1	4	20
8			1	4	20
10				2	14
12				2	14
14				1	10
16				1	10
18					6
20					6
22					4
24					4
26					2
28					2
30					1
32					1

Table 1: Counts σ_k^n of subsequences S_k^n of normal partitions in \mathbf{P}^n

Using Table 1 and equation (7) one obtains $p_7 = 25,510$, and by (6) $b(2^6) = 1,828$, so $b(2^7) = b(2^6) + p_7 = 27,338$. It only remains to determine $\sigma_k^{n+1}, 2 \le k \le 2^n$ given $\sigma_j^n, 2 \le j \le 2^{n-1}$.

Since each sequence S_k^{n-1} of normal partitions in \mathbf{P}^{n-1} generates the subsequences $S_2^n, S_4^n, \dots, S_{2k}^n$ in \mathbf{P}^n , one can simply loop over all such subsequences σ_k^{n-1} and increment $\sigma_2^n, \dots, \sigma_{2k}^n$ as in the following code section

The $O(k^2)$ behavior of this double loop can become expensive when $k=2^{n-1}$ becomes large. We observe in Table 1, that the first two values of σ_k^n are determined by

$$\sigma_2^n = \sigma_4^n = p_{n-2} \tag{8}$$

and that subsequent values of σ_k^n can be calculated as

$$\sigma_k^n = \sigma_{k+2}^n = \sigma_{k-2}^n - \sigma_{\lfloor (k+2)/2 \rfloor - 2}^{n-1} \tag{9}$$

for $k = 6, 10, 14, \cdots$.

Putting together (6), (7), (8), and (9) one obtains

Theorem 2.1 The number, p_n , of distinct partitions of 2^n is given by:

$$p_n = p_{n-1} + \sum_{evenk}^{2^{n-1}} k \cdot \sigma_k^n$$

where
$$\sigma_k^n = \begin{cases} \sum_{even \ i} k \cdot \sigma_i^{n-2} & : \ k = 2, 4 \\ \sigma_{k-2}^n - \sigma_{\lfloor (k+2)/2 \rfloor - 2}^{n-1} & : \ k = (6, 8), (10, 12) \cdots \end{cases}$$

The primary advantage of expressing p_n in this manner is that it permits the following counting procedure, which although somewhat more complex, has linear behavior.

```
sigma[MAX_N+1][POWER_MAX_N];
long
         calculate_p (int n)
long
         ** Assumes sigma[n-1, 2**(n-2)] has been previously determined ** and globally stored.
          ** This procedure sets up sigma[n, 2**(n-1)], and returns
          ** the number p[n] of normal partitions with a[0] != 0
          int.
                    k, k_calc, max_k;
         long
          \max_{k} = 2**(n-1);
         switch (n)
            case 1:
                   return 1;
            case 2:
                    sigma[2][2] = 1;
            case 3:
                    sigma[3][2] = 1;
                    sigma[3][4] = 1;
                    break;
            {\tt default:}
                   sigma[n][2] = y[n-2];
sigma[n][4] = y[n-2];
                    for (k=6; k\leq \max_k; k+=4)
                             k_calc = (k+2)/2 - 2;
sigma[n][k] = sigma[n][k-2] - sigma[n-1][k_calc];
sigma[n][k+2] = sigma[n][k-2] - sigma[n-1][k_calc];
```

With this code one can generate the following Table 2 of partitions of 2^n . The values of

n	$b(2^n)$	p_{n}
3	10	6
4	36	26
5	202	166
6	1,828	$1,\!626$
7	27,338	$25,\!510$
8	$692,\!004$	$664,\!666$
9	$30,\!251,\!722$	29,559,718
10	2,320,518,948	2,290,267,226

Table 2: Total $b(2^n)$ and normal p_n partitions of 2^n

 $b(2^7)$ and $b(2^8)$ can be verified by enumerating all partitions, using the program of section 1, or by reference to [13].

Readily, $b(2^n)$ must be even because, as observed, a_0 must be even, so every subsequence of normal partitions is even. It is not hard to show that $|\mathbf{P}^n|$ grows super exponentially with respect to n. Based on the expression $\log b(n) \sim (\log n)^2/2$ found in [10], Churchhouse [2] gives the asymptotic upper bound $b(n) \sim O(n^{1/2 \cdot \log_2 n})$ or

$$b(2^n) = |\mathbf{P}^n| \sim O((2^n)^{n/2}). \tag{10}$$

The nature of this super exponential growth is difficult to intuitively comprehend because, unfortunately, equation (10) is a poor approximation for small values of n. In Table 3, we compare $b(2^n)$ with two lower bounding functions, n^n and $(2^n)^{n/3}$, and the upper bound $(2^n)^{n/2}$ to which it is eventually asymptotic. Besides giving some concrete feeling for the growth of the binary partition function, this table illustrates that a wealth of closure spaces exist for even small n.

\mathbf{n}	n^n	$(2^n)^{n/3}$	$b(2^n)$	$(2^n)^{n/2}$
2	$4.000\ 10^{0}$	$2.519 \ 10^{0}$	$4.000 \ 10^{0}$	$4.000 \ 10^{0}$
3	$2.700 \ 10^{1}$	$8.000 \ 10^{0}$	$1.000 \ 10^{1}$	$2.262 \ 10^{1}$
4	$2.560 \ 10^2$	$4.031 \ 10^{1}$	$3.600 \ 10^{1}$	$2.560 \ 10^2$
5	$3.125 \ 10^3$	$3.225 10^2$	$2.020 10^2$	$5.792 10^3$
6	$4.665 \ 10^4$	$4.096 \ 10^3$	$1.828 \ 10^3$	$2.621 10^5$
7	$8.235 10^5$	$8.257 \ 10^4$	$2.733 \ 10^4$	$2.372 10^7$
8	$1.677 \ 10^7$	$2.642 \ 10^6$	$6.920 10^5$	$4.294 10^9$
9	$3.874 \ 10^{8}$	$1.342 \ 10^{8}$	$3.025 10^7$	$1.554 \ 10^{12}$
10	$1.001 \ 10^{10}$	$1.082 \ 10^{10}$	$2.320 10^9$	$1.125 10^{15}$
11	$2.853 \ 10^{11}$	$1.385 \ 10^{12}$	$3.163 \ 10^{11}$	$1.630 \ 10^{18}$
12	$8.916 \ 10^{12}$	$2.814 \ 10^{14}$	$7.747 \ 10^{13}$	$4.722 \ 10^{21}$
13	$3.088 \ 10^{14}$	$9.078 \ 10^{16}$	$3.439 \ 10^{16}$	$2.735 10^{25}$
14	$1.111 \ 10^{16}$	$4.648 \ 10^{19}$	$2.789 \ 10^{19}$	$3.169 10^{29}$
15	$4.379 \ 10^{17}$	$3.777 \ 10^{22}$	$4.160 \ 10^{22}$	$7.343 10^{33}$
16	$1.844 \ 10^{19}$	$4.874 \ 10^{25}$	$4.874 \ 10^{26}$	$3.402 10^{38}$
17	$8.272 \ 10^{20}$	$9.982 \ 10^{28}$	$5.888 \ 10^{29}$	$3.153 10^{43}$

Table 3: $b(2^n)$ compared with upper and lower bounding functions

References

- [1] R.F. Churchhouse. Congruence properties of the binary partition function. *Proc. Cambridge Phil. Soc.*, 66(2):371–376, 1969.
- [2] R.F. Churchhouse. Binary partitions. In A.O.L. Atkin and B.J. Birch, editors, Computers in Number Theory, pages 397–400. Academic Press, 1971.
- [3] Brenda L. Dietrich. Matroids and antimatroids a survey. Discrete Mathematics, 78:223–237, 1989.
- [4] Paul H. Edelman. Meet-distributive lattices and the anti-exchange closure. Algebra Universalis, 10(3):290-299, 1980.
- [5] Paul H. Edelman and Robert E. Jamison. The theory of convex geometries. *Geometriae Dedicata*, 19(3):247–270, Dec. 1985.
- [6] Martin Farber and Robert E. Jamison. Convexity in graphs and hypergraphs. SIAM J. Algebra and Discrete Methods, 7(3):433-444, July 1986.

- [7] George Gratzer. General Lattice Theory. Academic Press, 1978.
- [8] A. J. Hoffman. Binding constraints and Helly numbers. In 2nd Intern'l Conf. on Combinatorial Math., volume 319, pages 284–288. Annals of the N.Y. Acad. of Sciences, 1979.
- [9] Bernhard Korte, Laszlo Lovasz, and Rainer Schrader. *Greedoids*. Springer-Verlag, Berlin, 1991.
- [10] K. Mahler. On a special functional equation. J. London Math. Soc., 15(58):115–123, Apr. 1940.
- [11] John L. Pfaltz. Convexity in directed graphs. J. of Comb. Theory, 10(2):143–162, Apr. 1971.
- [12] John L. Pfaltz. Closure lattices. *Discrete Mathematics*, 1995. (to appear), preprint available as Tech. Rpt. CS-94-02 through home page http://uvacs.cs.virginia.edu/.
- [13] N. J. A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973. On-line version at 'sequences@research.att.com'.
- [14] D.J.A. Welsh. Matroid Theory. Academic Press, 1976.