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Abstract

We present a linear algorithm to count the number of binary partitions of 2™. It
is also shown how such binary partitions are related to closure spaces on n elements,
thereby giving a lower bound on their enumeration as well.

1 Background

A binary partition of the integer N is a sequence of non-negative integers < a,,---,ag >,
such that
2"+ @y 2" a2 Fag-2° = N (1)

The number of such sequences, denoted b(N), is called the binary partition function. Both
the function and its evaluation have been well investigated. It is described in Sloane’s
Handbook, [13]. A short history of the binary partition function can be found in [1], in
which Churchhouse describes his calculation of b(N) on an early Atlas computer. Our
method of evaluation improves on his only because we restrict ourselves to the special case
in which N = 2". Consequently, we must first address the issue: “why consider such a
special case?”.

The concept of uniquely generated closure spaces has begun to be studied as a common
thread emerging in computer applications, in graphs, and in discrete geometries. Briefly, a
closure operator ¢ is said to be uniquely generated if in addition to the customary closure
axioms!
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!"We will denote closure operators using a suffix notation.



X C Y implies X.oCVY.p (2)
Xop = X=X

we add a fourth which distinguishes this closure concept from more familiar topological

closure,
X.o=Y.p implies (XNY).p=X.p=Y.p (3)

Closure operators satisfying (3) above are uniquely generated in the sense that for any set
Z, there exists a unique minimal set X C Z, called its generator? and denoted Z.gen, such
that X.p = Z.o. Such a closure operator acting on a set, or universe, of elements, U, is said
to be a closure space (U, ¢), as in [7]. Readily, a subset X will be closed if X.¢o = X.* The
importance of uniquely generated closure spaces lies in the fact that in discrete systems they
play a role that is in many respects analogous to the vector spaces of classical mathematics.
We establish this parallel in the next paragraph.

A closure operator o, satisfying the three closure axioms of (2), together with the
Steinitz-MacLane exchange property

if y¢ X.o then ye (XU {z}).c implies z € (X U{y}).o (4)

can be shown to be the closure operator of a matroid, M [14]. Similarly, a closure ¢
satisfying the three closure axioms and the anti-exchange property

if z,y¢ X.p then ye (XU{z}).p implies =z ¢ (X U{y}).¢ (5)

is the closure operator of an anti-matroid, A [3]. It can be shown [8] [12] that a closure
operator is uniquely generated if and only if it satisfies the anti-exchange property (5). A
matroid, M, is a set system that generalizes the independent sets of a linear algebra. The
closure of these sets, commonly called its spanning operator, is a vector space. Uniquely
generated closure spaces, therefore, are the analogs of vector spaces, but with respect to
anti-matroids. From now on, we will simply call them closure spaces.

Closure operators are fairly common, although they frequently have other names, for
example “convexity”. The convex hull of a discrete set is an uniquely generated closure. A
theory of convex geometries is developed in [5]. Convexity in graphs has been examined in
[11] [6]. The “lower ideals”, or “down sets” of a partially ordered set are closed. In concur-
rent computing, the concept of a “transaction” is a simple closure operator. Algorithmic
closure, in particular that of greedy algorithms is found in [9], which introduces the term
“greedoid”, a secial kind of anti-matroid.

?Readily, if X; and X, were distinct minimal generators of Z.¢, then because Xi.¢ = Xo.¢ = Z.¢0, we
must have, by (3), (X1 N X2).¢ = Z.p contradicting minimality.
#The family C of closed sets is closed under intersection, and this characterization is equivalent to (2),

c.f. [4].



The subsets of a closure space can be partially ordered to create a lattice [12], with
many interesting properties. Of most importance is the observation that for any set Z C U
the cardinality of { X | X.p = Z.¢} must be a power of 2. Thus any uniquely generated
closure operator ¢ partitions the subsets of U into a disjoint collection of subsets, each
containing a single closed set and each consisting of 2% subsets. Let aj denote the number
of collections with 2% subsets. The sequence < a”,a” ', a""2,--- a2, a',a® >= 2" is thus a
compact description of a closure space (U, ¢), where |U| = n. Moreover, it is shown in [12]
that for every such binary partition of 2" there exists at least one closure space with that
property. Consequently, the enumeration of binary partitions of 2" becomes a lower bound
on the enumeration of closure spaces over n elements.

2 Counting Partitions

Let P™ denote the set {m; =< a,, - -,ag, --ap >} of all binary partitions of 2". Several
characteristics of P" are readily apparent. First, a, # 0 if and only if a; = 0 for all
0 < k < n. Second, since the right hand side is even and all terms ay, - 2%, k& > 0 must be

even, the coeflicient ag must be even. Third, if < ---,ag,ar_1,--- > is a partition of P”",
then < -+ ar — 1,ap_1 + 2,--- > must be as well. And fourth, if < a,,---,ag,---,a, > is
a partition in P" then < a,,---,ag, - -,ap,0 > is a partition in P™+1,

With these observations, it is not difficult to write a process which generates all partitions
in lexicographic order. Doing so, and displaying each partition, generates the following
enumerations of P? and P*. It is quite easy to verify by inspection that each sequence is a

n=3 n=4
1 0 0 0 1 0 0 0 0 0 0 2 1 6
0 2 0 0 0 2 0 0 0 0 0 2 0 8
0 1 2 0 0 1 2 0 0 0 0 1 6 0
0 1 1 2 0 1 1 2 0 0 0 1 5 2
0 1 0 4 0 1 1 1 2 0 0 1 4 4
0 0 4 0 0 1 1 0 4 0 0 1 3 6
0 0 3 2 0 1 0 4 0 0 0 1 2 8
0 0 2 4 0 1 0 3 2 0 0 1 1 10
0 0 1 6 0 1 0 2 4 0 0 1 o 12
0 0 0 8 0 1 0 1 6 0 0 0 8 0
0 1 0 0 8 0 0 0 7 2
0 0 4 0 0 0 0 0 6 4
0 0 3 2 0 0 0 0 5 6
0 0 3 1 2 0 0 0 4 8
0 0 3 0 4 0 0 0 3 10
0 0 2 4 0 0 0 0 2 12
0 0 2 3 2 0 0 0 1 14
0 0 2 2 4 0 0 0 0 16

Figure 1: P3 and P*

partition of 27. And because they are in lexicographic order, one can verify that all possible



partitions have been generated.
Because < ay,_1,--+,a9 >€ P implies < a,_1, -+, ag,0 >€ P", it follows that

b(2") = b(2" ") + pn (6)

where p,, denotes the number of partitions 7; € P" in which ag # 0. We say such partitions
are normal because they correspond to closure spaces in which the empty set is closed.

In the lexicographic order of P", if 77" =< @y, --,a2,a1,0 >€ P",a; # 0, then there
must follow the sequence S of partitions, < a,,---,a2,a1-1,2 >, < ap, -+, az,a1—2,4 >,
s, < Gy, e, a2,0,2a7 >. There are two such sequences in P?; < 0,1,2,0 > followed by

<0,1,1,2> and < 0,1,0,4 >, and < 0,0,4,0 > followed by < 0,0,3,2>, < 0,0,2,4 >,

< 0,0,1,6 >, and < 0,0,0,8 >. In P* there are 6 such subsequences because there are 6
normal partitions in P?; the last consists of 8 normal partitions following < 0,0,0,8,0 >.
Once this pattern is perceived the counting process becomes evident. In Figure 2 we re-
inforce this pattern by showing just the first 8 and the last 34 (of 202) partitions in P>,

1 0 0 0 0 0 0 1 1 1 2 0
0 2 0 0 0 0 0 1 1 1 1 2
0 1 2 0 0 0 0 1 1 1 0 4
0 1 1 2 0 0 0 1 1 0 4 0
0 0 0 2 1 22 0 0 0 0 16 0
0 0 0 2 0 24 0 0 0 0 15 2
0 0 0 1 14 0 0 0 0 0 14 4
0 0 0 1 13 2 0 0 0 0 13 6
0 0 0 1 12 4 0 0 0 0 12 8
0 0 0 1 11 6 0 0 0 0o 11 10
0 0 0 1 10 8 0 0 0 0 10 12
0 0 0 1 9 10 0 0 0 0 9 14
0 0 0 1 8 12 0 0 0 0 8 16
0 0 0 1 7 14 0 0 0 0 7 18
0 0 0 1 6 16 0 0 0 0 6 20
0 0 0 1 5 18 0 0 0 0 5 22
0 0 0 1 4 20 0 0 0 0 4 24
0 0 0 1 3 22 0 0 0 0 3 26
0 0 0 1 2 24 0 0 0 0 2 28
0 0 0 1 1 26 0 0 0 0 1 30
0 0 0 1 0 28 0 0 0 0 0 32

Figure 2: First 8 and last 34 partitions of P?

Notice that these subsequences of normal partitions (with ey # 0) were generated by the
three normal partitions < 0,1,1,1,2>, < 0,0,0,1,14 >, and < 0,0,0,0,16 > of P,

The length of a sequence 57 is a;. Hence, each normal partition ﬂf_l € P! gives
rise to a subsequence of a} = ag_l normal partitions in P”. If one carefully keeps track

of all normal permutations in P*~1, then one can use the mechanism above to generate all
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2 =2 4

2 — 4 —2 4638
2 =2 4
4 —2 468
6 —2 46 8 10 12

2 —4 — 8 —2 46 8 10 12 14 16

2 =2 4

2 — 4 —2 4638
2 =2 4
4 —2 468
6 —2 46 8 10 12

4 — 8 —2 46 8 10 12 14 16
2 =2 4
4 —2 468
6 —2 46 8 10 12
8 —2 468 10 12 14 16
10 =—2 4 6 8 10 12 14 16 18 20

6 —12 —2 46 8 10 12 14 16 18 20 22 24
2 =2 4
4 —2 468
6 —2 46 8 10 12
8 —2 468 10 12 14 16
10 =—2 4 6 8 10 12 14 16 18 20
12 =—2 46 8 10 12 14 16 18 20 22 24
14 —2 4 6 8 10 12 14 16 18 20 22 24 26 28

2 —4 —8 —16 —2 46 8 10 12 14 16 18 20 22 24 26 28 30 32

Figure 3: ag coefficient in sequences S}’ of normal partitions

normal partitions in P". This is illustrated in Figure 3 in which subsequences S}’ of normal
partitions are enumerated (by showing only the ag value) in vertical columns for n = 1
through 4, and horizontally (to conserve space) for n = 5. For n = 1 through 4, each entry
al in S denotes to its right (with =) the last entry < 2a;,0,---,a,4+1 > in the sequence
ngl that it generates.

Observe in this figure, that when n = 3, all 6 partitions with ag # 0 are enumerated
in just two subsequences S5 and S5, which were generated by the two normal partitions in
P2. With n = 4 the 26 normal partitions of P* are enumerated in two occurrences of the
subsequences S3 and 537, together with single occurrences of 5S¢ and 5§, which themselves
were generated from the 6 normal partitions of P3. Fortunately, since all sequences Sy have
the form 2, 4, ---, k, we need only keep track of the number of such sequences in P”, not
their actual composition.

Let o}, k even, denote the number of subsequences 57’ of normal partitions in P". Based
on Figure 3 we can construct Table 1.

Since every normal partition of P™ belongs to such a subsequence, we have



n 2 3 4 5 6

Pn 2 6 26 166 1,626
k oy
2 1 1 2 6 26
4 1 2 6 26
6 1 4 20
8 1 4 20
10 2 14
12 2 14
14 1 10
16 1 10
18 6
20 6
22 4
24 4
26 2
28 2
30 1
32 1

Table 1: Counts o} of subsequences 5} of normal partitions in P"

Using Table 1 and equation (7) one obtains p; = 25,510, and by (6) b(2°) = 1,828, so
b(27) = b(2%) + p; = 27,338. It only remains to determine O']:L—H,Q <k < 2% given 07,2 <
g < 2nl

Since each sequence S,?_l of normal partitions in P""! generates the subsequences
5%,5%,--,5%. in P", one can simply loop over all such subsequences O'Z_l and increment
03,0y, as in the following code section

max k = 2%*x(n-1);
for (k=2; k<=max k; k+=2)

{
for (j=2; j<=2+%k; j+=2)

sigma[n] [j] += sigma[n-1]1[k];
}

The O(k?) behavior of this double loop can become expensive when k& = 277! becomes
large. We observe in Table 1, that the first two values of o}’ are determined by

0y = 0§ = Pn-2 (8)



and that subsequent values of o} can be calculated as

Of = Ofpg = Of_g — Uf@iz)/zj_Q (9)

for k =6,10,14,---.
Putting together (6), (7), (8), and (9) one obtains

Theorem 2.1 The number, p,, of distinct partitions of 2" is given by:

2n—1
Pn = Pn-1+ Z k‘O’Z
evenk
5 n Eeveni k.g?_Q : k:27
where o] = . n—
k Of_z = O (s2)/2) 2 k = (6,8),(10,12)---

The primary advantage of expressing p,, in this manner is that it permits the following
counting procedure, which although somewhat more complex, has linear behavior.

long  sigma[MAX N+1][POWERMAX N];

long calculatep (int n)
/*
** Assumes sigma[n-1, 2#*(n-2)] has been previously determined
** and globally stored.
** This procedure sets up sigma[n, 2¥*(n-1)], and returns

** the number p[n] of normal partitions with a[0] != 0
*/

int k, k_calc, max k;

long sum;

max k = 2%*x(n-1);

switch (n)

{

case 1:
return 1;

case 2:
sigma[2]1[2] = 1;
break;

case 3:
sigma[3]1[2] = 1;
sigma[3]1[4] = 1;
break;

default:
sigma[n] [2] = y[n-2];
sigma[n] [4] = y[n-2];

for (k=6; k<=max k; k+=4)

k_calc = (k+2)/2 - 2;
sigmal[n] [k] sigmal[n] [k-2] - sigma[n-1][kcalc];
sigma[n] [k+2] = sigmaln] [k-2] - sigma[n-1][k_calc];



break;

sum = 0;
for (k=2; k<=maxk; k += 2)

{

sum = sum + sigmal[n] [k]*k;
plnl = sum;

return sum;

}

With this code one can generate the following Table 2 of partitions of 2". The values of

n b(2™) Pn
3 10 6
4 36 26
5 202 166
6 1,828 1,626
7 27,338 25,510
8 692,004 664,666
9 30,251,722 29,559,718
10 | 2,320,518,948 2,290,267,226

Table 2: Total 5(2") and normal p,, partitions of 2"

b(27) and b(2%) can be verified by enumerating all partitions, using the program of section
1, or by reference to [13].

Readily, b(2") must be even because, as observed, ag must be even, so every subsequence
of normal partitions is even. It is not hard to show that |P"| grows super exponentially
with respect to n. Based on the expression log b(n) ~ (log n)?/2 found in [10], Churchhouse
[2] gives the asymptotic upper bound b(n) ~ O(n!/*t%2") or

b(2") = [P7| ~ O((2")"?). (10)

The nature of this super exponential growth is difficult to intuitively comprehend because,
unfortunately, equation (10) is a poor approximation for small values of n. In Table 3, we
compare b(2"%) with two lower bounding functions, 7" and (2)*/3, and the upper bound
(2”)”/2 to which it is eventually asymptotic. Besides giving some concrete feeling for the
growth of the binary partition function, this table illustrates that a wealth of closure spaces
exist for even small n.



n n" (273 b(2™) (272
2 | 4.000 10° 2.519 10°  4.000 10°  4.000 10°
3| 2.700 10 8.000 10° 1.000 10  2.262 10!
4 | 2.560 10> 4.031 10  3.600 10!  2.560 10?
5 (3.125 10  3.225 102  2.020 10> 5.792 103
6 | 4.665 10*  4.096 10> 1.828 10°  2.621 10°
718.23510° 8.257 10* 2.73310* 2.372 107
8| 1.677 107 2.642 10°  6.920 10°  4.294 10°
9| 3.874 108 1.342 10® 3.025 107  1.554 10'2
10 | 1.001 10'° 1.082 10 2.320 10° 1.125 10%°
11 | 2.853 10''  1.38510'? 3.163 10 1.630 10'®
12 | 8.916 10'? 2.814 10™ 7.747 103 4.722 10%!
13 | 3.088 10 9.078 10'® 3.439 10'¢ 2.735 10%°
14 | 1.111 10'® 4.648 10'® 2.789 10'° 3.169 10%°
15 | 4.379 10'7 3.777 10*2 4.160 10%? 7.343 10%®
16 | 1.844 10" 4.874 10*®> 4.874 1026 3.402 1038
17 | 8.27210%° 9.982 10*® 5.888 10 3.153 10*3

Table 3: b(2") compared with upper and lower bounding functions
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