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Abstract

The concept of distance in matroids and geometric lattices is a familiar one. This
paper examines the problem of defining a metric over anti-matroids and their corre-
sponding lower semi-modular lattices and some ensuing consequences. One of the most
intriguing results is that distance need not be “local” in an anti-matriod. The distance
between two points may be affected by changes that are far removed from either point.

1 Anti-Matroids

An anti-matroid consists of a set of elements, points, or other phenomena which we
generically call its universe, denoted by U. Individual elements of U are denoted by lower
case letters: a,b,...,p,q,... € U. By 2U, we mean the powerset on U, or collection of all
subsets of U. Elements of 2Y we will denote by upper case letters: X,Y, Z. There must
also be a closure operator, ¢, that satisfies the usual three closure axioms:

X CX.op

X CY implies X.o C Y.

Xpo=Xp*=X.
To these we postulate an anti-exchange axiom

If p,g € X.o then p € (X U{q}).p implies ¢ & (X U{p}).¢.
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Closure systems satisfying an exchange axiom are called matroids in general, or vector
spaces when there is an underlying field. C.f. [26] [17] [25]. Anti-matroids which satisfy
the anti-exchange axiom have received less attention, c.f. [7] [15] [11]. And frequently they
have been studied under different names, such as alignments [10], convex geometries [9], or
closure spaces [21]. The latter name emphasizes the central role of the closure operator in
anti-matroids. It is not difficult to show that the anti-exchange axiom is equivalent to the
property

X.po=Y.p impliess (XNY)p=Xp=Yop (1)
which has been called the unique generation property [21].

Anti-matroids are far more abundant than one might expect. For example, there exist
at least 202 distinct anti-matroids comprised of 5 elements. More generally, for an n element
universe U, n > 10, it can be shown that there exist more than n”™ distinct, non-isomorphic
anti-matroids over U [20].

By the generator (or basis) of X, denoted X.3, we mean a minimal set Y such that
Y.¢o = X.p. And, because ¢ is uniquely generated (1), this set is unique. Another important
property of uniquely generated closure operators [9] [21] is

Lemma 1.1 Let X be closed. X — {p} is closed if and only if p € X.53.
The subsets of an anti-matroid (U, ¢) can be partially ordered by <, where,

X<, Y ifandonlyif Y NX.eCXCVYyp (2)

This is a partial order on all the subsets of U, not just its closed subsets. It is possible
to show that this partial ordering of 2U is, in fact, a well structured lattice, £, called the
closure lattice of U [21]. Figure 1 illustrates a representative closure lattice.

The regularity of structure suggested by this figure really exists, c.f. [21]. The collection
of closed subsets, for which X = X.¢p, forms a lower semi-modular sublattice £ = [@, abcde],
denoted in this figure by bolder characters and solid lines denoting the covering relationships.
The generators, ¢, d, bc, c¢d and e, are connected to the corresponding closed sets that they
generate by dashed lines. It can be shown that each of the lattice intervals [X.p, X.gen] is
a boolean lattice. In the case of the 16 subsets comprising [abcde, €] we just suggest them
with few representative elements and a dashed outline. The dotted lines denote covering
relationships between elements in different boolean intervals. As expressed in the following
theorem, these covering relationships do indeed echo those of the closed subgraph sublattice.
The following theorem, from [21], has been called the “Fundamental Structure Theorem”.

Theorem 1.2 Let X.p <, Y.p and let X € [X.p,X.0]. There exists a unique Y €
[Y.p,Y.0] such that X<,Y, where Y is minimal wrt. <, (mazimal wrt. C). Moreover
Y=XUA where A=Y.o— X.pandY =Y.o — § where § = X.po — X.

A classical way of regarding the properties of distance and separation is in terms of the
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Figure 1: A Closure Lattice, £

topology of the space and its open sets. With a discrete space, U, we use closure spaces in
much the same way, as the underlying structure by which to develop a distance concept 6.

2 Distance

By the upper set over X, denoted X.], we mean the set of all closed sets W such that
X C W. By definition, this collection T of subsets has a minimal element; it is X.p. In
Figure 1, {b}.1 = {b, ab, abc, abd, abed, abede} and {c}.] = {ac, abc, abed, abede}. One may
think of X.T as being the set of all closed sets of U in which X participates.

If one wants to define a metric on an anti-matroid (U, ¢) it should be with respect to
the closure operator, . By the distance, §( X, Z), between two sets X and Z we mean the
relative number of closed sets that separate X and Z; that contain one or the other, but



not both. More specifically, we will let
60X, Z2) = Xl +|Zpl| =2 [(Xp v Zeg) (3)

We should observe that ¢ is really defined only on the lower semi-modular sublattice of
closed subsets, because all subsets with the same closure are considered to be equivalent,
hence of distance zero from each other.

Lemma 2.1 (X UZ).o=X.pV Zyp

Proof: X.o C(XUZ).pso X.p <, (X UZ).p because the sublattice of closed sets is partially
ordered by inclusion. Similarly, Z.o <, (X U Z).p. Thus X.oV Z.p <, (X UZ).p.

Let W denote X.¢V Z.p. By Theorem 1.2, we know there exists X’ in the lattice interval [W, W.5]
such that X C X’. Similarly, there exists Z’, 7 C Z’ in this same interval. Because the interval is a
boolean algebra, X' U Z' € [Z,Z.53]. Moreover, X UZ C X'UZ' so (XUZ).p <, X.pVZ.p. O

Now, we may replace the V operator of the last term with an easier to manage U operator,
so that (3) becomes

§(X,7) = |X.p |+ Zep1] =2+ /(X U Z)p.]] (4)

A non-negative symmetric function é satisfying the triangle inequality is called a metric
provided é(z,y) = 0 iff z = y. Weaker distance functions such as ours are called pseudo-
metrics. Kelley has observed that “the closure of a set X in a pseudo-metric space must be
the set of all points which are of zero distance from X7 ([14] p.120).

Lemma 2.2 The integer function, 6(X,7) defined by
6(X,Z) = [X.oll+ |21 -2 (XU Z).p1]
is a pseudometric over (U, ¢).

Proof:  Readily, §(X,7) = 6(Z,X), and if X.¢ = Z.p then §(X,Z) = 0; so in particular
8(X,X) = 0. Consequently, it remains only to prove the triangle inequality; that §(X,Z7) <
§(X,Y)+6(Y,Z2),VX,Y, Z. To simplify our expressions we may assume that X,Y, Z are all closed,
and use the form §(X, 7) = | X.o.1|+ |Z.¢.7| — 2 (X U Z).¢.1]. So we need show that

A+ 121 = 2 1(X U Z).p 1] < XA+ Y11 = 2+ [(X UY ) ]+ VoA + |20 =2 (Y U 2)..1]
or, after collecting and cancelling terms, |Y.1| = [(X UY).e. 1| > (YU Z).¢.7| — (X U Z).¢0.1].
The left-hand expression counts those closed sets W such that Y C W, but X ¢ W, while the right
expression counts the closed sets W’ such that YU Z C W' and X UZ € W'. Readily, if W' is



b la b ¢ d e
a |0 3 3 4 6
b 0 4 3 5
C 0 3 3
d 0 2
e 0

Table 1: Distances between singleton elements of Figure 1

counted in the second sum, Y C W’ and X € W'; so it was counted in the first sum. Consequently

the inequality holds. O

Applying this distance function to the anti-matroid of Figure 1 yields Table 1.

The definition of distance, as given in (3), is somewhat unusual. It can be worthwhile
examining other candidates. Many lattice based distance functions employ the height of the
lattice element within the lattice. We recall that an atomic, upper semi-modular lattice is
said to be geometric [6] [12], and that one can show the expression dy(z, z) = h(z)+h(z)—2-
h(z A z), where h denotes height, is a metric on these geometric lattices. Expression (3) was
suggested by this definition and the similarity and difference is apparent. This definition
seems counter intuitive in anti-matroids because, in the lattice of Figure 1, the subset {bd}
is closer to {bcd} with a different closure than to {ad} which has the same closure. Further,
all closed points (singleton sets), whose intersection must be @, will be of distance 2 from
each other.

Another distance candidate could be

do(z,2)=h(zVz)—h(z A 2)
This can be shown to be a metric whenever the sublattice of closed sets is modular. But,
when this sublattice is only lower semi-modular! as in Figure 4, shown on a later page, it
fails to satisfy the triangle inequality. In that anti-matroid, dy(a,e) = h(aVe)—h(aAe) =
h(acde) — h(0) = 4. But, dy(a,c) + d(c,e) = h(ac) — h(0) + h(ce) — h(0) = 2. As yet, we
have found no other reasonable candidate formulae to be pseudometrics in anti-matroids.

Let d(X, Z) denote any arbitrary, symmetric, positive function that is bounded over the
power set of a discrete space U. Let M denote the maximum value of d. It is easy to see
that d' defined d'(X,Z7) = d(X,Z) + M when X # Z must satisfy the triangle property.
Consequently, in a discrete space, for a real (or integer) valued function to just satisfy the
three traditional metric axioms:

§(X,X)=0

! As shown in [19] [8] the sublattice of sets, closed with respect to a uniquely generated closure operator,

must be lower semi-modular.



I(X,Y)=46(Y,X)

(X, Z)<6X,Y)+ (Y, Z)
is only a minimal requirement. We will say that an integer valued function, é is an efficient
pseudometric if § satisfies the three metric axioms, and in addition,

X, Z)=46(X,Y)+46(Y,Z7), forsome X,Y,Z

I(X,Y)=1 for some X,Y.
We observe that §(X, Z) as shown in Table 1 conforms to the first of these properties, since
d(a,e) = 6(a,c)+ 6(c,e); but not apparently to the second. However, § is not defined only
on singleton elements, but on all 32 subsets of U. Table 1 shows just a fraction of these
distances. In particular, the reader can verify that 6({abcde}, {abcd}) = 1. We can show,
in general, that:

Lemma 2.3 In any non-trivial anti-matroid (with more than 2 closed sets) there exist X,

Y, Z such that 6(X,7Z) = 6(X,Y)+ 8(Y, Z2).

Proof: Let Z = U. If Z covers only one set, let that set be Y and let X be any set covered by
Y. (Note that Y is the only closed set covering X, and that X,Y and Z are all closed.) |Z.1| =
LY. f]=2and |X.T|=3and XUY =Y, XUZ =YUZ = Z. Consequently, §(X,7) =3+1-2 =2,
(X, Y)=3+4+2-4=1,6Y,Z2)=24+1-2=1,s0that §(X,2) =6(X,Y)+6(,2).

So assume Z covers several sets, including Y7 and Y5 Since the sublattice of closed sets is lower semi-
modular, Y7 and Y; cover Y1AY;. Let Y be Y; and let X = Y;AY;. Since £ is meet distributive,
Y; and Yy are the only elements covering X, so |X.1| = 4,|Y.]| = 2, and |Z.]| = 1. Consequently,
§(X,Z2)=441-2=3,6X,Y)=44+2—-4=2,and é(V,Z)=2+1-1=1. O

Corollary 2.4 The pseudometric 6(X,Z) = |X.o.1|+|Y.@.7| =2- (X UY ).0.1| is efficient.

Proof: By Lemma 2.3 there exist X,Y, Z such that §(X,7) = §(X,Y)+46(Y, Z).
Consider any closed set Z covered by U. Readily, 6(Z,U)=1. O

¢ is a pseudometric on all the subsets of (U, ¢), but, if @ is closed and z and y denote
singleton elements in U, it is not difficult to show that §(z,y) = 0 implies = y. Because
¢ is uniquely generated, z and y cannot have the same closure, lest ({z} N{y}).p = D.po =
{z}.¢. It is not hard to see that if @) is closed, every singleton set {z} must be either closed
or a generator. In any case, § is a metric on the points of U.

Because 0.1 = C = { all closed sets }, (0, X ) provides an upper bound on all distances
from X to any other set. In fact,

Lemma 2.5 Let (U, ) be any anti-matroid. For all sets X,Y, §(X,Y) < 6(0,U), with
equality only if X, Y = @, U.

Proof: We may assume that X,Y, and @ are all closed, because § is invariant with respect to
closure equivalence classes. Next, we let C denote the collection of all closed sets.



Now, we observe that for any set X,
6(X,0) = [X.1+C[—2-[X.1] = |C] - [X.1]

or | X.1] = |C| — 6(X, D).
Now, let X and Y be any closed sets.

S(X,Y) = |XJ|+ Y.l —2- (X UY).q]
€| — 8(X,0) + || — 6(Y,0) — 2 (|| — §(X UY, D))
2.8(X UY,0) - [6(X,0) + (Y, 0)]

2-6(XUY,0)-6X,Y) (by triangle inequality)

N

Hence, §(X,Y) < 6(X UY,0), with equality only if X =@ or Y = Q.
Since §(X UY,D) denotes the number of closed sets that do not contain X UY, it has a unique
maximum when X UY = U. So

(X,Y)<6(XUY,0) <4(U,0)

with equality if and only if X = @, Y = U. O

A diameter of an anti-matroid (U, ¢) is a pair of non-empty sets, X and Y, such that
0(X,Y) is maximal. We let d denote the value of this diameter and interchangably use the
term diameler to mean both the pair of sets and the distance. We require the sets defining
the diameter to be non-empty, because otherwise by Lemma 2.5, the maximal §(X,Y) is
always 6(©,U) which equals the total number of closed sets minus one.

3 Anti-Matroids Induced by Ideals in Partial Orders

If U is any partially ordered set, then there are three natural closure transformations:
Yor={aslz<y, yeY}
Yop={z2ly<z yeY}
Yoo ={zlyn <z <y, y1,92 €Y}
In [21] these are called path closures. The first two are ideal operators, the latter is an
interval operator.? The closure lattice of Figure 1 is that generated by considering the
partially ordered set of Figure 2 and ¢ as the closure operator. Verifying that the lattice
of Figure 1 is generated by the partial order (2) and closure operator ¢; on Figure 2 can
be valuable.
We may instead employ the right ideal closure operator, ¢r. This gives rise the the
lattice structured anti-matroid shown in Figure 3

In [19], the author called this interval operator a conver hull operator; in [9] [10], it is called an order
convez operator. The C subscript suggests “convex”.
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Figure 3: Closure lattice, Lr = (U, ¢p)

Even though the anti-matroids of figures 1 and 3 were generated by the same underly-
ing graph (Figure 2), they are quite different. (Because anti-matroids and distances can be
generated with respect to multiple closure operators, we commonly subscript lattice des-
ignators and the distance designator with respect to the underlying closure operator, e.g.
Lr,Lr,61,0r.) But, when we apply the distance function to the anti-matroid {abcdef}, op)
of Figure 3 we obtain Table 2.

The values of Table 2 are identical to those of Table 1, even though the anti-matroids
are not at all similar. This is not a coincidence. But to establish this curious result we need
two preliminary lemmas based on the anti-chains (mutually incomparable elements) in G.
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Table 2: Distances between individual points of Figure 2 given ¢p.

Lemma 3.1 Let G = (U, <) be any partial order (or acyclic graph). The anti-matroids
(U, ¢r,) and (U, ¢g) determined by the path closures @5 and ¢ on G have precisely the
same number of closed sets.

Proof: Let Z be any closed set in (U, p;). We claim its generator 7.4 is an anti-chain in G
because, if z,z € 7.3 and # < z then Z. is not minimal.

Clearly, the generators of closed sets with respect to ¢p are also anti-chains. Consequently, the
number of closed sets in (U, ¢;) and (U, ¢p) is the number of distinct anti-chains in G, and these

serve as the common generators of both. O

Lemma 3.2 Let G = (U, <) be any partial order (or acyclic graph), and let {z1,..., &y,

Z1y ..., 2n} be an anti-chain. Let |, denote all subsets, closed w.r.t ¢y, that contain{zy,..., 2}
but not {z1,...,2,}, and let |, denote all subsets, closed w.r.t pp that contain {z1,...,2z,}
but not {x1,...,xn}, then |T,.| =11.|.

Proof: Let X be a closed set w.r.t ¢, with z; € X,z; ¢ X. X = U~ X is closed w.r.t ¢ because
if there exists an edge (a,b) € E,a € X,b € X, then X was not closed w.r.t. ¢, . Hence, z; € X
establishing the 1-1 correspondence.

(Readily, this lemma can be generalized because the elements z; need not be themselves an anti-

chain, only incomparable with any z;, and conversely.) O

Theorem 3.3 Let G = (U, E) be an acyclic graph (partial order), giving rise to two distinct
closure spaces (U, ;) and (U, pR). For any singleton elements, w,z € U, §p(w,z) =
r(w, 2).

Proof: We must show that |w.¢r. 1] + |z.¢p. 1] — 2 - {wz}.op 1] = |w.er-T| + |2.¢p.1] — 2 -
Let n = |U]| be fixed and run an induction on the number of edges of G.

If |E| = 0, then every point z € U is isolated and every subset X C U is closed. Since each point =
is in half the subsets, and each doubleton {zy} is in half of these:

bp(w,z) = 2n7tgon-t_9.9n-2

= 2t = Sr(w,2)



Let |E| =1 and let & = {(x,y)}. All sets closed w.r.t ¢y that contain y must contain z as well. So
using the reasoning above and observing that of the 2"~! subsets containing w (or z) # z,y, half
will contain y, and of those half (or 2”~3) will not contain z, and so not be closed, we have:

6L(r,y) — 2n—1+2n—1_2.2n—2
— 2n—2
(SL(;'L’,Z) — 2n—1+(2n—1_2n—3)_2.2n—2
— 2n—1 _ 2n—3
6L(w,y) — (277,—1 _Qn—3)+2n—2_2.2n—3
— 2TL—1 _ 2TL—3
6L(w, Z) — (Qn—l _ Qn—S) + (Qn—l _ 2n—3) —9. (Qn—,? _ 2n—4)
— 2n—1 _ 2n—3

Similar reasoning will yield identical values for ég.
Finally, assume the induction hypothesis that 6z (w, z) = ér(w, z), and let the edge (2, y) be added
to £, whence we will talk of §7 (w,2) and 8 (w, z).

Case

Case

1: 87 (z,y) = 8%(z,y) In 6.(z,y) = |z 1| + |y-er-1] — 2 - [{zy}.p.T| we observe that
neither the first nor third terms will be changed since any closed set containing z remains
closed. But, the second term may be decremented since formerly closed subsets not containing
z that contain y will not longer be closed.

In 6p(z,y) = |e.er- 1|+ |y-er- 11— 2 {zy}.¢r.1| we employ the same analysis to observe that
only the first term changes — to be decremented by the number of formerly closed subsets of
z not containing y.

But, by Lemma 3.2 there is a 1-1 correspondence between these two sets, so both expression
are decremented equally.

2: 87 (x,2) = 8%(x,2) We consider subcases involving the relationship of z to z in G:

z < z in G: then every ép-closed set containing z contains z. Consequently, 67 (z,2) =
lz.or 1] + |z 1] — 2 - {zz}.¢r.1] is unchanged. Similarly, every 6g-closed set con-
taining z also contains z, so §%(z, z) is also unchanged.

z < z in G: This case follows the argument above.

z is incomparable with z: For this case, we must further consider the relationship of y to
zin G.
If y is incomparable to z, or y < z we use Lemma 3.2 to ensure that §1(x, z) and ér(z, 2)
are decremented identically to obtain 67 (z,z) = 6% (z, 2).
So assume y < z. Consider the expression 6r(z,2) = |z.or 1|+ 2.0 T =2 |[{zz}.¢r.1|.
Every closed set containing z contains y, but only the second term need be decremented
by those subsets that do not also contain z. In dgr(z,z) = |z.¢g.1| + |z.¢r.1| — 2 -
[{zz}.¢0p.T| only the first term |z.¢g.1| need be decremented by the number of sets not
containing y. Again we use Lemma 3.2 to establish that these are the same.
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The full proof requires that we individually demonstrate that 67 (y,z) = §%(y,2), 67 (w,2z) =
8% (w, z) on a tedious case by case basis, using similar arguments. O

It is important to note the restrictions implicit in this theorem. First, it applies only
to those closure operators on U which are ideal path operators, ¢; or ¢p. Second, only
the distances between singleton elements of U are invariant; distances between arbitrary
subsets need not be equal. For example, it is easy to calculate that dr({cd},U) = 1 in
(U, ¢p) of Figure 1, but ér({cd},U) =3 in (U, ¢p) in Figure 3.

Finally, we may employ the path closure operator, ¢, or convex closure. If we calculate
the distances between individual points with respect to this closure, we get those shown
in Table 3. There are many more closed sets in the lattice Lo than in L7, or Lg, so the

bcla Db c d e

a |0 11 11 12 14
b 0 12 11 13
c 0 11 11
d 0 10
e 0

Table 3: Distances between individual elements of Figure 2 given ¢.

distance are apparently greater. We discuss path closure, along with convex geometries in
the following section.

4 Atomic Anti-matroids

If ¢ is an ideal closure on a poset, as in the preceding section, then L, its sublattice of
closed subsets, must be distributive. And, if £ is distributive, there exists a poset (U, <)
such that ¢; will yield an isomorphic closed set structure over (U, <) [24]. For the closure
operators we normally encounter in applications, £ will be either distributive or atomic,
in the sense of [1] [22]. That is, the atoms A will consist of those elements covering the
0-element, and VX € £, X # 0, X = \/{a;|a; < X, a; € A}.> We emphasize that the closure

lattice E(U <) will be neither distributive nor atomic, only its sublattice of closed subsets,
— =¥

L.
An anti-matroid in which every singleton point is closed must be atomic. We will call
them atomic anti-matroids.? Convex path closure, ¢, on acyclic graphs is atomic. So

?H. Crapo and G.-C. Rota call this a “point lattice” in [5].
*One can have closure lattices in which £ is atomic, yet every singleton point need not be closed. This
will be the case if @ is not closed.

11



are convex geometries and monophonic closure on chordal graphs. Convex geometries, in
which the closure operator is the convez hull, of the designated points generate an abundance
of anti-matroids. We will denote closure with respect to a convex hull operator in a geometry
G by ¢g. Figure 4(a) illustrates a small convex geometry on 6 points. The entire space
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Figure 4: Closure lattice, Lg, based on ¢g4

{abede f} is generated by its extreme points {abed}.> The lattice L of Figure 4(b) illustrates
this geometric anti-matroid ({abedef}, pg). Because all singleton and doubleton sets, and
most triples, must be closed, the lower half is extremely busy. Consequently, we have
emphasized with larger type and bolder lines those closed sets with non-trivial generators,
i.e. X.0 # X.p. These constitute the “interesting” portion of the anti-matroid.

Calculating the inter-element distances in the anti-matroid of Figure 4, we obtain Table

4. We observe that the point b can be moved away from point d an indefinite distance (in

the plane) without altering the closed set relationships. The distances, é¢, of Table 4 will

°In the literature of convex geometry [9] [10], the term extreme point is synomonous to generator.

12



bgla Db c d e f

a |0 24 26 28 23 25
b 0 26 26 25 23
C 0 26 27 21
d 0 21 25
e 0 22
e 0

Table 4: Distances between individual elements of Lo = (U, ¢) of Figure 4

remain unchanged. Jamison, in [13], asserts that

“If topology is the rubber sheet geometry, in which structures can be stretched
and deformed because only limiting behavior is important, then alignments [anti-
matroids] are rigid sheet geometries, basically combinatorial in nature.”

The pseudometric of anti-matroids does not reflect Euclidean distance or any variant of it.

Given Lemma 2.5, one would expect that all diameters occur between U and singleton
elements. Sometimes this is true, for example, in the anti-matroid of Figure 3, one can
calculate that é({e}, U) = 7. It is a diameter. One would wish, however, that the diameter
of a anti-matroid would always occur between some pair of its points — between its atomic
elements. In the rest of this section we will show that atomicity of a anti-matroid is sufficient
to ensure that diameters always exist between pairs of individual points of the space.

Lemma 4.1 In an atomic anti-matroid, with |U| > 2
(a) @ is closed,
(b) if Y is closed and |Y| < 2 then Y.5 =Y,
(c) if Y is closed and |Y| > 2 then Y covers {Xq,..., X, },m > 2.

Proof:

a) The L¢y ©) has a zero element, that is covered by its atoms. Since the closed sets form a
U,¥)
sub-lattice that is closed under intersection, {z} N {y} = @ must be closed.

(b) Suppose Y has a generator Y. #Y. Y. C Y, so Y. must be either @ or a singleton element.
But these are closed, by (a) above and by atomicity of the anti-matroid.

(c) Let Y be closed, [Y| > 2. By the reasoning of (b), m = |Y.#| > 2. By Lemma 1.1, Y —
{1}, .Y —{ym},yi € Y. are all closed. O
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Lemma 4.2 Let (U,p) be an altomic anti-matroid, and let Y <, Z, where both are non-
empty, closed. There exists X incomparable with Y such that §(X,Y) > 6(Y,Z).

Proof: SinceY<,Z,Z=YVZand Z.1 CY.],506Y,2)=|Y1|+|Z21|-2-|Z1 = |Y1|-|Z1]. Z
cannot cover @. Let Ay denote the set of atoms spanned by Z. Since £ is atomic, there exists some
a; € Az,a; £,Y, a; VY <, Z. Let X be any set, {a;} <, X <, a; VY. Readily X is incomparable
with Y, X VY = 7 and Z.1 C X.T. Consequently

S(X,Y) = XA+ YA —2-[(X VY).1|
> YA+ 121 -2- (Y VZ).1|=6Y,2) O

Lemma 4.3 Let (U, @) be an atomic anti-matroid and let Y, Z be incomparable closed sets.
If Y does not cover O, there exists X <,Y such that 6(X,Z) > 6(Y, Z).

Proof: Let Ay and Az denote the atoms spanned by Y and Z respectively. Since they are
incomparable A, Z A,, there exists an atom a, € A, — A,. Let X be any set, {a,}<, X<, Y.
XVZ=YVZ. Since Y.I C X.T,

5(X, 7)

XA+ 1211 =2- (X v 2).1]
YAl+1Z11=2-[(Y vV Z).1]
§(Y,Z) O

\%

From these we conclude that:

Theorem 4.4 Let (U, ¢) be an atomic anti-matroid. Every diameter is of the form §({a},{c}).
That is, a mazximal distance between non-emply sets must be between atoms.

Proof: Let Y and Z be any two sets. If Z<,Y, by Lemma 4.2 there exists X incomparable with
Z such that §(X,Z) > (Y, Z).

If Y and Z are incomparable, by Lemma 4.3 there exists X <,Y such that §(X,Z) > (Y, Z)

This process can be iterated until both sets are singleton, i.e. atoms that cover @. O

5 Non-Local Distance

One of the more surprising properties of this distance function is that it is “non-local”. For
example, just shifting the position of the point f of Figure 4 yields the distance matrix
shown in Figure 5. The distances §(a,b), 6(b, ¢) and 6(d, e) have all increased (see Table 4)
even though f appears to have no role in those distances.

14



-7 R a b ¢ d e f
a~ -~ N
\ N al|0 27 27 29 25 23
| \
\ N\
v f . b 0 24 26 26 24
2 .c
| 7 c 0 26 26 24
\‘e ///
! d 0 22 26
\ »
b e 0 22
d

f 0

Figure 5: Distances on modified convex geometry using ¢

One might argue that the space is small and f is really in the neighborhoods of a,b
and c. In a larger space with more separated elements the effect should vanish, or at least
diminish. Quite the reverse appears to be true. In the convex geometries of Figure 6,
moving h closer to g does decrease §(g,h) from 99 to 84. But is also decreases the distance
0(a, f) from 98 to 90. In fact, that small change decreases every distance, but not in any
kind of proportional way.

We turn to monophonic closure, ¢;; on chordal graphs for a final example of non-local
distance in anti-matroids. Recall that X.p,; consists of points on all chordless paths between
any two points z;,z; € X [9]. Figure 7(a) illustrates a chordal graph and the corresponding
interpoint distances based on ¢,;. Removing the single edge (f, g) creates the chordal graph
of Figure 7(b) and its associated distances. The distance é(a,b) is increased from 17 to 18,
even though the edge was removed from a distant portion of the graph.

In a Euclidean world, distance is a function of what is “between” the points. A measure
that is affected by non-local events is counter intuitive. Nevertheless it is a metric. We
conjecture that all efficient metrics one can define over anti-matroids will exhibit this non-
local, global behavior; and that it will be another characteristic that distinguishes anti-
matroids from matroids.

Such non-local measurement has received attention with the publication of a biography
of the physicist David Bohm [18]. In 1952, Bohm proposed an alternative model of quantum
behavior in which the Heisenberg uncertainty principle was explained by non-local events
he called “hidden variables” [2] [3]. This approach, refined in [4], had the same predictive

value as the wave formulation of the Copenhagen school. But it was not accepted by the
physics establishment. J. Robert Oppenheimer issued the well known quote, “if we cannot

disprove Bohm, then we must agree to ignore him”. Perhaps anti-matroids have a role in a
subatomic view of the universe.
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a b c d e f g h i
al| 0 106 122 119 130 98 117 126 122
b 0 116 119 122 116 101 130 120
c 0 129 116 126 105 96 132
d 0 103 123 130 107 107
! ! e 0 108 133 120 108
! PN !
J J f 0 117 124 98
/ : : 1
/ f / g 0 99 99
! __---e
o= h 0 112
as -
i 0
a b c d e f g h i
al 0 99 114 116 122 9 108 120 114
b 0 100 115 115 107 93 123 113
c 0 112 108 122 106 82 132
d 0 9 116 118 110 92
’ e 0 102 126 114 100
! N !
J - J f 0 108 114 100
! 1
/ f / g 0 8 98
', __---e
I —-- h 0 9%
al -
i 0

Figure 6: Two larger convex geometries with interpoint distances
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