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Abstract

Investigation of the transformations of vector spaces, whose most abstract formula-
tions are called matroids, is basic in mathematics; but transformations of discrete spaces
have received relatively little attention. This paper develops the concept of transforma-
tions of discrete spaces in the context of antimatroid closure spaces. The nature of these
transformations are quite different from those encountered in linear algebra because the
underlying spaces are strikingly different. The transformation properties of “closed”,
“continuous” and “order preserving” are defined and explored. The classic graph trans-
formations, homomorphism and topological sort, are examined in the context of these
properties.

Then we define a deletion which we believe plays a central role in discrete trans-
formations. Antimatroid closure spaces, when partially ordered, can be interpreted as
lattices. We show that deletions induce lower semihomomorphisms between the corre-
sponding lattices.

*Research supported in part by DOE grant DE-FG05-95ER25254.



1 Introduction

By a discrete space we mean a set of elements, points, or other phenomena which we will
generically call our universe, denoted by U. Individual points of U will be denoted by lower
case letters: a,b,...,p,q,... € U. By 2U, we mean the powerset on U, or collection of all
subsets of U. Elements of 2U we will denote by upper case letters: 5,7, X,Y, Z.
Throughout this paper we will be concerned with functions, or operators, defined on QU,
in contrast to functions defined on U. We call them transformations, and we will denote
them using a postfix notation in which the operator/transformation symbol is separated
from its preceding operand/argument by a period. We notationally conform to that found
in [8] in which binary operations are denoted by infix expressions and unary operations

are denoted by suffix expressions. For example, if 9U L. 9U is 4 transformation mapping
subsets of U into other subsets of U, then for X,Y C U, we would use the expression
(X NY).f to denote the image of their intersection.
One such transformation is a uniquely generated closure operator, ¢, by which we mean

a function 2V 2 2U satisfying the closure axioms:

X CX.op

X CY implies X.¢o C Y.

Xpo=X.0*=X.

X.o=Y.pimplies (X NY).p=Xp=Y.p
The last axiom is non-standard. It is not hard to show that closure operators which satisfy
this additional axiom are uniquely generated in the sense that for any set Y, there exists a
unique minimal set X CY such that X.¢ = Y.. One can also show [16] that

Theorem 1.1 A closure operator is uniquely generated if and only if it satisfies the anti-
exchange property

if p,qg & X.p then p € (X U{q}).0 implies ¢ ¢ (X U{p}).p.

In contrast, any set of elements U with an operator o satisfying the first three closure
axioms, together with the Steinitz-MacLane exchange axiom
if p,q ¢ X.o then p € (X U{q}).c implies ¢ € (X U {p}).0
is called a matroid [10] [17] [2].! Any set U and closure operator ¢ satisfying an anti-
exchange axiom, (U, ), is called an antimatroid [3] [9], or closure space [16].2 Other
common names for this concept are APS greedoid, shelling structure [7], alignment [6], or
convex geometry [5] provided only that one further requires the empty set, @, to be closed.

!The closure operator o of a matroid is normally called the spanning operator.

2Closure spaces are far more abundant than one might expect. For example, there exist at least 202
distinct closure spaces comprised of 5 elements. More generally, it can be shown that there exist more than
n” distinct, non-isomorphic closure spaces provided = > 10 [15]. Similarly, there are many different closure
operators, .



By the generator of X, or basis® of X, denoted X.3, we mean a minimal set Y such that
Y.o = X.p. B is another well-defined transformation of 2U into 2Y.

The classical way of discussing the properties of functions is in terms of the topologies of
their domains and codomains. We will use closure spaces associated with a discrete space,
U, in much the same way, as the underlying structure by which to discuss the properties of
a transformation f.

Antimatroid closure spaces have been studied in [16], in which the subsets X,Y C U
are partially ordered by <, where,

X <, Y ifandonlyif Y NX.pCXCY.yp (1)

This is a partial order on all the subsets of U, not just its closed subsets. It is possible
to show that this partial ordering of 2U is, in fact, a well structured lattice, £, called the
closure lattice of U. Figure 1(a) illustrates a typical closure lattice.

The regularity of structure suggested by this figure really exists, c.f. [16]. The collection
of closed subsets, for which X = X.p, forms a lower semimodular sublattice [(),abcde],
denoted in this figure by bolder strings and joined by solid lines that are generally inclined
from the lower left to the upper right which denote covering relationships.?

The generators, b, ¢, e, be, be, d and de, are connected to the corresponding closed sets
that they generate by dashed lines generally inclined from lower right to the upper left. It
can be shown that each of the lattice intervals [X.p, X.0] is a boolean lattice. In the case of
the 8 subsets comprising [abcde, de] and [abced, d], we indicate their constituent elements
and a dashed outline.

The dotted lines denote a few of the covering relationships between non-closed elements
in different boolean intervals. These covering relationships, which we denote by X <, Z,
do indeed echo those of the closed subgraph sublattice. In particular, we have the following
results which can be found in [16].

Theorem 1.2 (Fundamental Covering Theorem) Ifp ¢ X then

(a) X <, XU{p} ifand only if p ¢ X.¢p
(b) XU{p} <, X if and only if p € X.¢p
where (a) is a cover if and only if (X U {p}).¢ = X.o U {p} and

(b) is always a covering relationship.

Moreover, if ¢ is uniquely generated then (a) and (b) characterize all covering relations in
Y <)

®The term “basis” has so many connotations, especially with respect to vector spaces and their change
of basis, that we prefer the more neutral “generator”.

*The lower semimodularity of closed subsets partially ordered by inclusion has been repeatedly discovered
by many authors. See Monjardet [11] for an interesting summary.
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Figure 1: A Closure Lattice, £

Corollary 1.3 LetY <, Z.

(a) If Z =Y U{p}, then both Y and Z are closed.
(b) If Z =Y —{p}, then Z is not closed.

Lemma 1.4 If ¢ is uniquely generated, and if Z # O is closed,

(a) p € Z.08 if and only if Z — {p} is closed,
in which case Z. — {p} C (Z — {p}).5;

(b) p,q € Z.3 implies there exist closed sets Y,,Y, C Z
such thatpe Y,,q €Y, andp € Y,,q & Yy;

(c) if .o = O, there exists p € Z such that {p} is closed.



Theorem 1.5 (Fundamental Structure Theorem) Let X.¢o <, Y.p andlet X € [X.p, X.0].
There exists a unique Y € [Y.p,Y.5] such that X <, Y, where Y is minimal wrt. <,
(mazimal wrt. C). Moreover Y = X UA where A = Y.o — X.po and Y = Y. — § where
0=X.p—X.

Figure 1(a) illustrates this theorem. Every interval [X.¢, X.f] can be projected “upwards”.
By Theorem 1.2, every covering relation is marked by the difference of just one element
between the two sets. Consequently, it can be illustrative to label covering relations (edges)
with the corresponding element.

In our development of transformations we will also use the following lemmas, which
have the feeling and flavor of relative topologies. Let (U, ) be any closure space and let
W C U. By the restriction of ¢ to W, denoted ¢|,, we mean

Yolw=YpenW, VY CW.
We will also call this a relative closure.

Lemma 1.6 |y is a closure operator, which is uniquely generated if ¢ is.

Proof:
(1) Because X CW, X C X.oNW = X.|w.
2) Lt XCYCW. Xoply =XpnNWCYoNW =Y.0|u.

(3) (X.plw)-plw = (XpNW).plw
=(XenNW)enW
CXponWenW
=XoenNW = X.o|w
The other containment follows from (1).
(4) Let ¢ be uniquely generated and let X.p|y = Y.p|w. X.oNW =Y.oNW implies X.¢o = Y.p
(since X.p CWand Yo CW). So, X.plw =X oNW=(XNY)enNW =(XNY).p|ly. O

Corollary 1.7 Any subset W of an antimatroid closure space (U,p) generales a corre-
sponding subspace (W, ¢|w).

As shown below, the restriction of a closed set will always be closed. The ability to infer
that X is closed wrt. ¢ when its restriction is closed wrt. |y is of more interest. The
following lemma gives two sufficient conditions. Neither is necessary.

Lemma 1.8

(a) X closed wrt. ¢ implies X N W is closed wrt. ¢|y.



(b) If W is closed wrt. ¢ and X C W, then
X closed wrt. ¢|y implies X is closed wrt. .

(c) If X is closed wrt. |y and (X.op — X)N (U -W) =0, then
X closed wrt. .

Proof:

(a) If X is closed wrt. ¢ then X.o = X and

(XnW)plw CXple NWelw =XenWnNW=XNW.
(b) X closed wrt. ¢|y implies X.oNW = X.

But X C W and W closed imply X.o C W,s0 X.oNW = X.po = X.
(¢) If X is not closed wrt. ¢, then (X.¢o — X) = A.

Let X be closed wrt. ¢|w s0o @ = X.p|w—X = (X.oNW)—X = (X.p— X)NW. Consequently
ACU-W,and (X.o—X)N(U-W)#0. O

2 Transformations

!
By a transformation of U to U’, we mean a function f which maps 2Y into oU , and
which we usually denote in terms of the base sets as U Jou.

We have already seen two transformations, U —— U and U . U which map the sets of
2U into 2U. Another well-known transformation is the natural extension of a point map
f:U — U’ to subsets of U using the familiar definition Y.f = {y’ € U'|(Jy € Y)[y' = y.f]}.
Still two more transformations are the upper, and lower, bound operators on a partially
ordered set.

To ground our intuitive understanding of transformations in terms of the natural ex-
tension of a point map (as is customary in topology) is to invite confusion. It is much
better to begin with a closure operator, ¢, as one’s paradigm because transformations can
be wildly misbehaved. In fact, probably the best definition of chaos is given in terms of
transformations [1]. There is ample scope for misbehavior because we observe that if U and
U’ are sets of n elements each, there exist only n” distinct functions f : U — U’ compared

to (27)?" transformations U L. U". To achieve any results of interest we must constrain
the transformations.

One can enumerate a long, non-exhaustive list of transformation properties, e.g. f is
said to be:

contractive if |Y.f] <|Y];
expansive if |Y.f| > |Y];
monotone if X CY implies X.f CY.f;
antimonotone if X CY implies X.f DY.f;



uniquely generated if X.f=Y.f implies (X NY).f = X.f,
union preserving f(XUY)f=X.fuY.f;or
stable ifY.fCY,

for all X,Y C U.

We observe that closure, ¢, is monotone and expansive; while § is contractive and
stable, but not monotone. ¢ need not be uniquely generated, but the results of this paper
are restricted to examples where it is. Lower, and upper, bound operators are antimonotone;
and the natural extension of a point function is union preserving and monotone.

If we regard f as a mapping defined on the closure space (U, ¢), as suggested by Figure 2,
then we may begin to explore other properties associated with f. Foremost is the question,

U —f> U/

-l

(U,9) (U, )

Figure 2: f regarded as a closure space transformation

when is the diagram of Figure 2 commutative?

2.1 Continuous and Closed Transformations

Any transformation (U, ¢) A, (U’, ¢') that maps closed sets of U into the closed sets of
U’ would naturally be called a closed transformation by analogy to topologically open
maps. That is, f is closed if Y closed in (U, ¢) implies Y.f is closed in (U.f,¢'). In these
definitions we tacitly assume that U.f is closed in U’ with respect to ¢’. This ensures,
by Lemma 1.8, that the relative closure of ¢’ with respect to U.f is conformable with the
closure on U’.

Lemma 2.1 If (U, ) 4, (U',¢') is monotone and closed, then
X.f¢CXepf, VXCU

Proof: By monotonicity, X.f C X.¢.f. But, since X.¢ is closed and f is closed, X.f.o' C X.p.f.
O

Monotonicity appears to be a basic property. It can be used to obtain several interesting
results. Occasionally, we also want a weak form of inverse monotonicity; that is, we want



to be able to assert that there exists at least one pre-image set also satisfying the inclusion

property. A transformation U . U s said to be upper monotone if

(a) it is monotone, i.e. X C Y implies X.f CY.f, and
(b) X.f CY.f implies there exists Yy such that Yp.f =Y.f and X C Y.

It is easily shown that:

Lemma 2.2 Let U N U’ be any transformation.
(a) If (X NY).f=X.fNY.f, then f is monotone.
(b) If ( XUY).f = X.fUY.f, then f is upper monotone

Proof:
(a) X CY implies XNY = X. Consequently, X.fNY.f = (XNY).f = X.f, implying X.f CY.f.

(b) Let X CY implying X UY =Y. Then, X.fUY.f = (X UY).f =Y.f implying X.f CY.f.
To establish upper monotonicity, let X.f CY.f. Let Yo = X UY. Then Yp.f = (X UY).f =
XfUuY.f=Y.fand X CY;. O

A transformation (U, ¢) 4, (U, ¢') is said to be continuous if Y. f closed in (U.f, ¢")
implies Y.po.f =Y.f

Continuity is traditionally defined in terms of properties of the inverse map, as in “the
inverse image of closed sets is closed”. This appears different. Readily, Y'.f~! is a collection
of sets {Y C U|Y.f = Y'}. To be continuous every set Y € Y'.f~! need not be closed in
U just because Y’ is closed in U’; but whenever Y € Y'.f~! its closure must be as well.
For an equivalent formulation, let Y/ be closed in U’ and let Y’.f~! be partially ordered by

inclusion. If f is continuous, then Y maximal in Y’.f~! implies Y is closed in U.

To understand the reason for this definition, consider the simple transformation f of
Figure 3 which maps a linear order on 3 points onto a linear order on 2 points, as indicated
by the assignments to the right. This f could be regarded as an epitome of a “continuous”
graph transformation. The graph on {d’, ¢’} is closed with respect to any of the closure
operators that we normally associate with such acyclic graphs, while {ac} € {a’,c'}.f71 is
closed with respect to none of them. Clearly, we can’t require every pre-image to be closed.
We believe the definition of “continuity” that we have given captures the intuitive notion
of the concept correctly. The second motivation is Lemma 2.3, below.
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Figure 3: A “continuous” transformation

Lemma 2.3 If(U, ) 7 (U’ ¢) is onto, upper monotone and continuous with U. [ closed
in (U',¢) then

Yio.f CY.f¢!, WY CU

Proof: Y.f CY.f.¢'. Let 2/ =Y.f.po' C U.f. Since f is onto, 37 such that Z.f = Z’. Now by
upper monotonicity, 37y,Y C Zy such that Zo.f = Z.f = Y.f.¢'. Finally, since f is continuous,
Zowp.f =Y.f.¢'. But,since Y C Zy, Y. C Zy., and by monotonicity, Y.po.f C Zg.o.f = Y.f.©'. O

Corollary 2.4 If (U, o) . (U', ¢') is onto, upper monotone, continuous, and closed then
Xof=X.f¢, VXCU

which establishes sufficient conditions for ¢ and f to be commutative transformations in
Figure 2.

2.2 Transformations of Graph Theory

Graph theory provides a rich load of transformations over discrete spaces, particularly
graph homomorphisms. In this section we describe graph homomorphisms in terms of the
properties we have just defined. Of particular interest will be the transformation properties
of monotonicity, continuity and closure.

Let G = (N, ). One may regard either the nodes, points, or vertices, N, of the graph
as one’s universe, U; or one may treat the edge set, F, as U. For this paper, we assume the

former. Let G' = (N', E'). A function f: N — N'is called a graph homomorphism?® ,

denoted G - G’ if

*Part (b) of this definition requires a preimage under f for every edge in G'. Some authors do not impose
this requirement.



(a) (z,y)€ Eand z.f #y.f imply (z.f,y.f) € E'
(b) (2',y') € E' implies there exists (z,y) € F such that
z.f=a' and y.f = ¢
The transformation of Figure 3 is a graph homomorphism.
Since it is not hard to show that transitive closure on an edge set E is uniquely generated
if and only if G is acyclic, we assume N is partially ordered by <, and we assume that ¢ is
one of

Yo, = {z]2<y, yeY}
Yop = {2|y<z yeY} (2)
Yoo = {e|n<e<y, yp,peY}

which we collectively call path closures. The first two are ideal operators, the latter is an
interval operator.® The closure of Figure 1(a) is obtained by applying ¢, to the graph of
Figure 1(b).

By a subgraph H of G we mean any set Ny C N with edge set E|y,, that is a full
subgraph.

Lemma 2.5 Let [ : G — G’ be a graph homomorphism, and let ¢ be any path closure. If
H' is closed in G' then H = H'.f~! is closed in .

Proof: Readily z < z implies z.f < z.f.
case p;: Let H' be closed in G’ so that z/ € H', ' < 2/ imply ' € H'. Let z € H'.f~* C U’ and
let x < z. Since f is a homomorphism z.f <’ z.f. Because H’ is left closed, z.f € H' implying
x € H' =1 so H'.f~1 is left closed.
case pg: Virtually identical.
case po: Let H' be closed wrt. ¢, and let z,2 C H'.f~1. If y is a point on a path, such that
z <y< zthen y.fisonapath z.f <y.f <z.fin G'. Since H' is ¢ closed, y.f € H' implying
y € H'.f~1 which is therefore also closed wrt. . O

We have used the notation, f : G — G’ to emphasize that f regarded as a graph
homomorphism is simply a function mapping one node set into another; it is not really a
transformation. The natural extension, in which Y.f ={y' € N'|(Jy € Y)[y' = y.f]} makes
it a transformation of 2%V to 2V'.
Lemma 2.6 Let [ : G — G’ be a graph homomorphism, and let ¢ be any path closure. The
natural extension GG SR G' is conlinuous.

Proof: Readily, any natural extension f preserves unions, so by 2.2 is upper monotone. Let H
be a subgraph of G such that H.f is closed. So H C H.f.f~!, which is the set of all points € P

®In [13], the author called the interval operator the convez hull operator; in [5] [6], it is called an order
conveg operator.

10



such that z.f € H.f. By Lemma 2.5, H.f.f~! is closed. Consequently, I C H.po C H.f.f~! implies
H.f C Hyp.f C H.f; so equality follows. O

While the natural extension of any graph homomorphism f must be continuous, it need
not be closed as the counter example of Figure 4 illustrates. Readily, the set {abd} is closed

7 i f a,//\d,
\ \C//

c<——e

a

Figure 4: Graph homomorphism, f, that is not closed

in U with respect to ¢;, but its image {a’d’'d'} is not closed in U’ because ¢’ € {a'b/d'}.;..

The topological sort, 7, of a partially ordered set provides another example. It is easy
to show that 7 is not normally closed with respect to either ¢; or ¢o; but that it is
continuous, onto, and upper monotone. Indeed, since Y.p; = {z|z < y,y € Y}, the fact
that Y.p;.7 C Y.7.0o1, or equivalently that z < y implies 2.7 < y.7 is often taken to be its
definition.

It is not surprising that graph homomorphisms and topological sorts are continuous.
Just as in analysis, it is natural to first define and study well-behaved transformations.

2.3 Order Preserving Transformations

Equation (1) defines partial orders <, and <_ on (U,¢) and (U’,¢') respectively. A
transformation f is said to be order preserving if X <, Y implies X.f <, Y.f for all
X,Y C U. It would be hoped that closed, continuous transformations would be order
preserving. But, this need not be true. Consider Figure 5, in which the nodes @ and b
of the graph on the left both map onto @’ on the right. It is not hard to verify that f

’

ag C\d f a’/c\d’
b/

Figure 5: Graph homomorphism, f, that is not order preserving

is onto, upper monotonic, closed and continuous with respect to ¢r. But f is not order
preserving w.r.t. ¢y, because if X = {c¢} and Y = {bcd}, then readily X <, Y because
YNXeo={c} CXCVY.p yet X.f£,Y.f because Y.f N X.f.¢/ = {d'c'} £ {c'} = X.[.

In Figure 5, f is a graph homomorphism, hence union preserving. So even adding this
property to continuity, closure, onto and upper monotonicity is insufficient to ensure that
Jf be order preserving. But,

11



Theorem 2.7 If (U, p) R (U, ¢') is closed, continuous, onto, upper monotone and in-
tersection preserving, then f is order preserving.

Proof: Let X <, Y,s0 Y NX.¢o C X C Y.o. Because f is intersection preserving, we have
using Lemma 2.1, Y.f N X.f.¢' CY.fNnXef=((YNXyp).f CX.f. And, by Lemma 2.3,
XfCYofCYfy' or X.f <, Y.f. O

Closure and continuity, by themselves are insufficient to ensure that a transformation
is order preserving; but one might hope that order preserving transformations are closed,
continuous, and commute with ¢, as in Figure 2. Unfortunately, we can only prove

Lemma 2.8 IfU L. U is order preserving, then

(a) fis closed (provided U.f is closed in U’),
(b) X.p.fCX.f¢, VX CU.
Proof:
(a) Let X be closed in (U, ¢), then X <, U implying X.f <, U.f, so X.f is closed.

(b) First, X.o.f C X.f.¢' because X <, X.p implying X.po.f <, X.f
or, X.f NX.pf CXpfCX.fy. O

But, if we add just the property of monotonicity we obtain

Corollary 2.9 If (U, ) 2 (U', ¢') is monotone and order preserving then

Xp.f=X.f.¢, ¥YXCU
Proof: By monotonicity, X C X.¢ implies X.f C X.p.f. So because f is closed (Lemma 2.8),
Xfo' CXpfo=Xpf O

In all the results of this section, monotonicity has been a key property. It is a kind of
well-formed behavior that seems natural to expect. But making it so central may be wrong.
The fundamental issue remains “when is X.p.f = X.f.¢' 77, but in the next section we
approach it rather differently.

3 Deletions

Perhaps the simplest transformation that can be applied to a closure space is just the
removal of one, or more, of its points. We call them deletions. But before defining deletions
themselves it is convenient to develop a concept of dependence.

12



3.1 Dependence

We say that ¢ is dependent on p with respect to Y if
qgY.e but ge(YU{p})p.
Readily p € Y.p else (Y U {p}).¢ = Y.o. Hence, by anti-exchange p € (Y U {q}).¢.
We let Y.A, denote the set of all such ¢ that are dependent on p with respect to Y.
Clearly, if p € Y. then p € Y.A,. This, and other simple properties of these dependence
sets, are summarized in:

Lemma 3.1 In a uniquely generated, antimatroid closure space, (U, @),
(a) Vp, X.eNX.A,=0.
(b) p € X.¢ implies X.Ap, = 0.
(¢c) X.Ap # O implies p € X.A,.
(d) X.A, = {p} implies
(1) X <, XU{p},
(2) both X and X U {p} are closed.
(e)p & X.pand X £, X U{p} if and only if 3¢ € X.Ap, q#p, (i.e. | XAy >2).
(f) g€ X.A,, q#p implies O C X.A; C X.A,.
(9) X.Ap = X.p.A,

Proof:
(a)-(c¢) By definition.
(d) Corollary of Fundamental Covering Theorem 1.2(a).
(e) p¢ X.pimplies X <, XU{p} (by FCT 1.2), and since X £, XU{p}, X.pU{p} C (XU{p}).¢
ordg € (XU{p}.p,q¢ X.oand ¢ # p.
(f) By anti symmetry, p ¢ X.A,.
(g) g€ XA, ifand only if ¢ ¢ X.p and ¢ € X U {p}.A, and in turn if and only if ¢ € X.p.A,. O

While we define dependence with respect to arbitrary Y, by Lemma 3.1(g) we can

restrict it to closed sets. In this case, the K-factor relation of [5] can be restated as
¢ <y p =4y q€Y.A

and their Theorem 2.3, that (U, ) is a convez geomelry (i.e. uniquely generated) if and
only if the relation <y is a partial order for all closed Y, follows easily. Indeed, convex
geometries provide a fertile source of antimatroid closure spaces. A simple 5 point geometry
is illustrated in Figure 6(a). Its closure lattice, where the closure operator ¢ is the convex
hull operator, is shown is Figure 6(b). Notice that ¢ € {abc}.A, C {ab}.A, and ¢ €

{aq}.Ap = {abg}.A, = {cp}.

13
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Figure 6: A convex geometry (U, ¢) and Ly,

Covering relationships are important in discrete structures, e.g. Theorem 1.2. In addi-
tion to the covering properties expressed in Lemma 3.1(d) and (e), we have

Lemma 3.2 For all X C U, if p & X.p then X U X.A, covers (X UX.A,) — {p}.

Proof: This is virtually a corollary of Lemma 3.1(d) since X UX.A, = (X UX.A,) — {p}).A, O

Dependence is directly related to the lattice structure described in Theorem 1.5 which
asserts if Y.p <, Z.p then for each Y € [Y.p,Y.5] there exists a unique Z € [Z.p, Z.[]
such that Y UA = Z. A in this theorem is a dependence set. Paths from the lower left to
upper right constitute dependence sets. Dependence, A, and generators, §, are intertwined
by the following lemma.

Lemma 3.3 Forallpg X.p, pe(XU{p}).0 CX.pU{p}.

Proof: Readily (X U {p}).0 € X.p, since p & X.p. Let, ¢ € (X U {p}).5. (X U{q}tU{p}).¢ =
(XU{p}).. Hence by unique generation property, (XU{p}).8 C (XU{p})N(XU{q}U{p}) = XU{p}
implying either g = p or ¢ € X.

Since p & X.¢, (X U{p}).8 € X.p. So from the observation above, p € (X U {p}).5.

Finally, by Lemma 1.4(a), (X U{p}).f—{p} C X.5. O

The implications of this lemma can be seen in Figure 1(a). Since {e}.¢; = {ace} =
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{ce}.or, {ce}.0 = {e}. {ce}.Ay = {b} and ({ce} U {b}).0 = {be} = {ce}.5 U {b}. But,

the same properties hold even when the dependency set is not a singleton. For example,

({ce} U{d}).p = {de} = {ce}.BU {d)}.

3.2 The Deletion Transformation

By a single point deletion, x,, of a closure space (U, ¢), we mean a transformation
(U, ) 22 (U, '), where U’ = U — {p} and ¢’ = ¢|, and Xp is defined by:

|y if pgY
Yoxp = { YUY —{p}).A, - {p} othperwise, )

We observe, that x, is a well-defined, onto function, and that for notational clarity we may
omit the subscript p when it is clear from the context what point is being eliminated in the
deletion.

Lemma 3.4 Y — {p} C Yo, C Yo—{p} =Yoo, VpeUYCU

Proof: Ifp & Y the result is essentially trivial. Let p € Y. We first observe that either Y.¢ covers, or
is covered by, Y.o—{p},so Y.o.xp = Y.po—{p}. Sincep € Y, Y.0, = YU(Y —{p}).Ap,—{p}. But, since

Y —{phH A ={g | ¢& Y —{p}).p,g €Y.} C Y., it follows that Y.o, C Y.o — {p} = Y.0.xp.
O

Covering relationships involving the deleted element p are important. The impact of
deletion is clearly revealed by the following definition which is equivalent to (3) and which
is easily established using Theorem 1.2 and Lemmas 3.1 and 3.2.

Y if pgyY
Yx,=1< Y —{p} if Y coversY —{p},orY — {p} coversY

YUY —{p}).A, — {p} otherwise,
If Y is closed and p € Y, then either p € V.5 whence Y covers Y —{p} orp g Y.GsoY —{p}
covers Y. In any case, Y closed implies Y.x, =Y — {p}.

3.3 Properties of Deletion

In this section, we explore the transformation properties of deletion. For example, one
would wish that deletions x, were monotone so the results of Section 2.1 could be applied;
but they are not. Consider the single point deletion y; of Figure 7. Here, we use convex
path closure, ¢-. The subsets of (U, ) have been partitioned into pre-image subsets
as indicated by dotted lines. The subsets Y of (U, ¢ ) have been ordered by (1) to form
Lw,p,)- Elements of (U’, ¢} ) have the same labels, but primed, and are similarly ordered.

15



d
a<—0 ﬁ A =—b =

ac ad b
\ \ abcd a'c
\ ; / h
\ \
N N
N / \ \
c abd bed a’b’¢’

Sy AN
DX A
N\ N

2
Figure 7: A single point deletion, y,, that is not monotone

Readily, {ad} C {acd}, but {ad}.x; = {a'V'} € {¢'¢'} = {acd}.xy. We can, however, prove

a restricted form of monotonicity.

Lemma 3.5 Let (U, ) -2 (U’, &) be a single point deletion

(a) If Y1 and Yy are closed, then (Y1 NY2).xp = Y1.xp N Y2.Xp-
Let Y1 g YQ.

(b) If either Y1 or Y; is closed, then Yi.x, C Y3.xp.

(c) If Y1.¢ = Y., then Y1.x, C Ya.xp.

Proof:

(a) Since Y7 and Yz are closed, Y1 N Y2 must be as well. If p € Y1 (or Y3 or Y1 NY3) then
Yi.xp = Y1 — {p}. Consequently, (Y1 NY2).xp =Y1 NY>s — {p} =Y1.xp NY2.X,.

(b) Let Y7 be closed. If p € Y7 the result follows immediately. Otherwise, by Lemma 3.4, Y1.x, =
—{p}. So Yi.xp = Y1 —{p} C Yo — {p} C Ya.xp.
Let Y3 be closed. If p € Y5, the result is again immediate. By Lemma 3.4, Y1.x, C Y1.¢o— {p}.
But Y7 C Y5 implies V1.9 C Yo.0 = Y3, 50 Y1.xp C Yoo — {p} = Ya.x,.

() i, Yo e[Yo,Y.8l. f pg Yo, then pg Yy, and Yi.xp, = Y1 C Yo = Yo.xp
If p €Yy, but p € Yy, then p ¢ V.8 and Y> — {p} covers Y3. Consequently Yi.x, = Y1 C
- {P} = Y2~Xp-
Let p € Yy implyingp € Yo, If p € Y. 3, then V7 <, Y1 — {p} and Y5 <, Yo — {p}. Thus,
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Yl-Xp = Yl—{p} g Y2_{p} = YQ.Xp. Whlle lfp € Yﬁ, then Y1~Xp = Y1U(Y1—{p})Ap—{p} =
Viu{glg € (Yi—{p})-Ap Ag€Vip}—{p} CYaU{q| g€ (Ya—{p}). Ap Aq € Yoo} —{p} =
Y5.Xp, because V1.0 = Yo.0. O

Observe that if both Y; and Y; are closed, then Lemma 3.5(b) is a simple corollary of
the preceding part (a) and Lemma 2.2.

Three more deletions, all defined on the 5 point graph of Figure 4, will help develop
the sense of this transformation. Again, in all cases we use convex path closure, ¢-. The
deletion, x,, of Figure 8 is the simplest. All sets are mapped onto themselves or to one they

b<—od Xe r<=—d
S S—=— e

: ‘ M

' N N

v tabed .\ - abce bede /X%\
A} N

Figure 8: The single point deletion, x, applied to the closure space of Figure 4

cover (or are covered by). Notice however, that (a), {acde}.x. = {d'd'€'} C {d'b/d'e'} =
{abcde}.x., so Lemma 3.4 cannot be strengthened, and (b) that the closed set {ace} is
mapped onto {a’e’} which is a generator in (U, ¢ ), but closed in (U’, ¢}.).

Lemma 3.6 Single point deletions (U, ¢) LR (U',¢') are closed. Le. if Y is closed wrt.
@, then Y.x, is closed wrt. ¢'.

Proof: Let Y be closed wrt . If p ¢ Y, then by Lemma 1.8(a) ¥ = Y., is closed wrt. ¢|y.
If p € Y, then because Y is closed, either Y covers Y — {p}(p € Y.53), or vice versa. In either case,
Yxp, =Y —{p}. Andsince Y.x, =Y — {p} =Y NU’, Y.x, is closed wrt. ¢|y_{,} =¢'. O

Corollary 3.7 corresponds to Lemma 2.1 except that it does not invoke monotonicity.
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Corollary 3.7 If (U, ) R (U, ¢') is a single point deletion then
Yoxp-¢' CY.ox

Proof: By Lemma 3.4, Y.x, C Y.po.xp. Y.p is closed, so because x, is closed (Lemma 3.6)
Yxp¢' CY.oxp. O

The deletion, x,, of Figure 9 is a bit more complex. For example, {ade} maps onto

b<=—-d b=4d
ade Xe
RN c<—"7e <
A} ~
acde: : abde
~ \
~ AY
AR
N
acd e a'cd’
N N abcde N
N A N
\ ! . \
N N
N N N
ad ae a'd’
\ abed - v " abce bcde N abed
N N N
N Y
Ay A Y \
abc abd ace bed: - bee: bde - cde ¢ a’b’d’ bcd’
ab ac be bd be cd ce de a’b ad b bd dd
a b c d e a’ b’ [
(%] (]

Figure 9: The single point deletion, x, applied to the closure space of Figure 4

{a'c'd'} because ¢ € {ad}.A.. Observe the role of dependency sets; they insure that this
deletion is continuous. For example, {abe} maps onto {a'b’¢’} which is a closed set in
(U, ¢}). And while {abe} is not closed in (U, @) its closure {abce} = {abe}. also maps
onto {a’b’'c'}.

Lemma 3.8 Single point deletions, (U, o) e, (U',¢), are continuous. Le. if Y.x, is
closed, then Y.po.x, = Y.xp.

Proof: Let Y’ be closed in (U’,¢') and let Y.x, = Y’. We assume Y is not closed, else the result
follows trivially.

IfpgY then Y.x, =Y =Y’, so by Lemma 1.8(b), Y is closed wrt. ¢.

Let peY,s0 Y.y, =Y U(Y —{p}).A, — {p} =Y’ which is closed wrt. ¢’. Consequently by Lemma
1.8(b), Y U(Y — {p}).Ap, — {p} must be closed wrt. ¢ and by Theorem 1.2(a), Y U (Y — {p}).A,
must be closed wrt. ¢ as well. Because Y.oN[Y U (Y — {p}).A,] is closed, Y.o CY U(Y — {p}).A,.
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Moreover, Y.o = Y U(Y — {p}).A, because Vg € Y U(Y —{p}).A, either g € Y or ¢ € (Y — {p}).A,
implying ¢ € Y. (because p € Y). Thus, Y.o.x, =Y U(Y — {p}).A, —{p} =Y' O

Lemma 3.9 If (U, ) Xz, (U, ¢') is a single point deletion, then

Y.o.xp CYoxp'

/

Proof:  Since x, maps (U, ¢) onto (U’,¢’), where U’ = U — {p} and ¢’ = ¢|y_qp}, there
exists Yy C U such that Yy = Y.x,.¢', and since x, is continuous, we may assume Yj is closed.
Consequently, Yo.xp = Yo —{p} = Y.xp.¢’. Thus, Y.x, C Yy — {p} implying ¥ C Yy which is closed.

So, Yo CYpand Y.o.x, CYoxp =Yxp.¢'. O

Theorem 3.10 If (U, ) EEN (U, ¢') is a single point deletion, then
Y.o.xp = Yxpo@

Proof: (We observe that Y.x,.¢' C Y.o.x, by Corollary 3.7, even though we will not use this in
the proof.) If Y is closed, then by Lemma 3.6 Y.¢.x, is closed, so Y.x,.¢' = Y.¢.x,. Consequently,
we assume Y is not closed in (U, ¢). Either p € Y. or not.

If pgVY.pthen Y.o.x, =Y.0o =Y.0ly_{p) = Y.Xp.¢, 5O we assume p € Y.,

If p ¢ Y.3, then Y.p is covered by Y.po — {p} and either p ¢ Y or Y — {p} covers Y. In either
case, Y.o.xp, = Y. — {p} which by Lemma 3.6 must be closed in (U — {p}, ¢|lu_yp}). Hence
Yox, =Ye—{p}=Yelu_p =Yxp ¢

Finally, we assume p € Y. By Lemma 1.4(a), Y. covers Y. — {p} so Y.o.x, = Y. — {p} which
is closed in (U — {p}, ¢lu_1p}) as before. But Y need not cover ¥ — {p}. If Y does cover ¥ — {p}
then Yox, =Y —{p} € [Y.o — {p}, (V.o = {p}) .Bl. So, Y.o.x, =Y.o—{p} = (Y — {p}) .¢"

If y does not cover Y —{p}, then Y.x, = YU(Y —{p}).Ap,—{p} =Y U {q|q & (Y.o—{p}).p, but g€
Y.o } — {p}. This latter set is covered by Y U { ¢ | ¢ & (Yo —{p}).p, but g€ Yo} C Yo
Hence, Y.xp, € (Y — {p}).0,Y.o— {p} and so Y.xp.¢' =Y. — {p} = Y.o.xp. O

Finally, y, takes the connected graph G of Figure 10 onto a disconnected graph G’
whose closure lattice is the Boolean algebra on 4 elements. All sets are closed. It is an
exact copy of the Boolean algebra below {bcde} in L)

3.4 Lattice Morphisms

The preceding examples clearly indicate that deletions not only change the structure of the
graph, they also induce morphisms from one closure lattice to another. In fact, used the
lattice morphisms to help illustrate the behavior of the transformation. Consequently, we

extend the breadth of our investigations slightly. Let U L. U’ be a transformation of 2U
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a/ X%
ade
A \ c<——c¢ c<—"c¢
AY
\\ N
\ S,
acde abde
RN \
SO
’ h Y
d abe\ \\‘
ac
N N abcde
LN N
N T
N /\/]\
A} A}
ad ae
. abed: v abce bede bode
A} N
A} N
abc abd ace bed: - bee:  bde  cde b'ed bce’ b'd’e’ cde
ab ac bc bd be cd ce de b’c b'd b’e’ cd’ c’e’ d’e’
a b c d e b’ [ da’

Figure 10: The single point deletion, y, applied to the closure space of Figure 4

!/
into 2U". In Section 2, we explored the behavior of f when viewed as operating on the
antimatroid closure space (U, ¢), as illustrated in Figure 2. Now we formally consider the
behavior of transformations on the closure lattice, £y o) as illustrated in Figure 11.

v L w
L
(U, o)L, o)

= =

Loy —LrL o)

%)

Figure 11: Extending f to a lattice morphism

We have seen that all three deletions are closed and continuous. Apparently, all three
deletions induce natural lattice morphisms £y ) X, L pry- Now, as a prelude to demon-
strating the lattice morphism properties, we show that all three deletions are order preserv-

ing.
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Theorem 3.11 Single point deletions (U, ¢) R (U, ¢') are order preserving, that is if
X <, Z then X.xp <, Z.Xp.

Proof: Let x denote x,. X <, Z implies that Z N X.p C X C Z.p. We must show that
Xx <, Zx,or ZxNX.x.¢' CX.x C Z.x.¢ orsince x and ¢ commute (Theorem 3.10), Z.x N
X.px € X.x € Z.p.x. (Notice the importance of Theorem 3.10, which allows us to draw the
argument back into (U, ¢).) By Lemma 3.5(b), X C Z.¢ implies X.x C Z.p.x. So, we need only
prove the first containment, Z.x N X.p.x C X.x, as required by (1).

If 7 is closed, X <, Z implies X is closed. And, if X is closed, X.p.x = X.x, whence the first
containment is trivial.

We assume neither X nor 7 is closed. X <, Z implies by Theorem 1.5 that there exists
Zx € [Z.p, Z.0) such that Zx <, 7 and Zx = X U(Z.¢o — X.p). Consequently, Z C Zx, possibly,
Zx = Z. Wolg. we assume that Z.¢ covers X.o and X <, Zx, since otherwise we can make a
stepwise argument, using the transitivity of <, .

We have three cases: (a) pg Z.o, (b) p€ Z.p but p & X.p, and (¢) p € X. .

(a) fpg X.pthenpeg Zoso ZxNXpx=ZNXpC X=Xy

(b) Let pe X.p,p & X.p. Since X.p <, Z.o, X.p = Z.po—{p}and X = Zx —{p}. Now, Z C Zx
implies by Lemma 3.5(c) that Z.x C Zx.x = X.x. So, Z.x N X.o.x C X.p.

(¢) p € X.p. Either X.¢o — {p} covers X or X covers X.po—{p}. In either case, X.po.x = X.o—{p}.
Iftpg X.5, Z—{p}covers Z,s0 ZxNX.p=7Z—{p}nXe—{p} CX —{p}=Xx
Let pe ZB and let X.p = Z.o —{q}, ¢ # p. Zx.x = Zx U(Zx — {p}).A, — {p}. Now,
X C Zx U(Zx —{q}).Ap, so p € (Zx — {q}).A, implying ¢ & (Zx — {p}).A,. Thus,
ZxNXexCZxxNX —{p}CX.x. O

A deletion x, maps a closure space (U, ) onto a subset of itself (U’, ¢|yr_y,1), hence it
maps the lattice £y, ) onto the lattice L ry. We are interested in the nature of these
lattice morphisms. First we establish that

Lemma 3.12 In Ly,
(a) XNZ C XANZ C X.pN Z.p, with equality if X, or Z, is closed.
(b) (XNZ).p=X.pANZ.p=X.oN Z.p.

Proof:

(a) XAZ <, X implies (XAZ).pNX <, XAZ <, X.p
XANZ <, Zimplies (XAZ).oNZ <, XNZ <, Z.p
The last two containments together imply XAZ C X.p N Z.p, while the first two imply
(XAZ)pNXNZ CXAZ. orsince XAZ C(XAZ).p, XNZ CXAZ.
If X is closed, XAZ <, X implies XAZ is closed and XAZ C X. Consequently, (XAZ).oN
X=(XAZ)NZ=XNZ.
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(b) That X.o A Z.p = X.o N Z.p follows from the definition of closure. If either X or Z is closed,
the result follows directly from (a). Assume neither X nor 7 is closed, and that X.po # Z.¢
(else the conclusion is trivial).
Since XAZ C X.oNZ.p, (XAZ).0 C X.oNZ.p, 0t (XANZ).p <, X.pNZ.p. But, X.p <, X
and Z.p <, Zimply that X.oAZ.¢ <, XAZ, and by Theorem 1.5, X.oAZ.¢ <, (XAZ).p.
So X.oAZ.o = (XAZ).p. O

Recall that a lattice morphism £ N L' is called a homomorphism if it preserves
both the meet (A) and join (V) operators; it is called a meet homomorphisms if it just
preserves the meet operator, that is (zAz).f = z.f A z.f, forall z,z € £. Our goal now is to
show that deletions induce a morphism on the closure lattices that is midway between the
two. It is a meet homomorphism that preserves the join operator under specific conditions.
We first establishe that every deletion is a meet homomorphism.

Theorem 3.13 If (U, ¢) 22, (U', ¢) is a single point deletion, then
(XANZ)xp=XxpNZ.Xp

Proof: Let y denote x,. Let X, or Z, be closed. Then XAZ is closed and XAZ = X AN Z.p =
X N Z.p by Lemma 3.12(a). Consequently, by Lemma 3.5(a) and Theorem 3.10

(XAZ)x = (XNZe)x=XxNZpx
= XxNZxe =XxAZx.y
= XxANZx

So we assume neither X nor Z is closed.

If XAZ is closed, then XAZ = X.¢o A Z.p, and a slight extension of the argument above will suffice.
We assume XAZ is not closed and that X.¢ # Z.¢, since otherwise X, Z are in the same interval
[X.p, X.5], which is a Boolean algebra and the conclusion is evident.

Since XAZ is not closed it is in an interval [(XAZ).p, (XAZ).5]. By Lemma 3.12(b), (XAZ).¢ =
X.¢o A Z.p, and by Theorem 1.5, there exists unique elements Yx € [X.p, X.0], Yy € [Z., Z.3] such
that XAZ <, Yx <, X and XAZ <, Yz <, Z. So, XAZ = YxAYy as shown in the figure. It
suffices to show that (XAZ).x = (YxAYz).x = Yx.x A Yz.x, and it is easiest to follow the structure
of the proof if we assume that X.¢ and Z.¢ both cover (XAZ).¢ Le. |61| = |62] = 1. No generality
is lost thereby.

We first suppose that p & (XAZ).p, so (XAZ).x = XAZ. Ifp¢g X.pthen X.x =X andifp g Z.p
then Z.x = Z. Clearly, if p is an element of neither, then the conclusion follows trivially. Suppose
p € X.p, implying 61 = {p} and Yx.x = XAZ. 61 £ by ¢else X.op = Z.p. Sop & Yy, Yz.x = Yz, and
(Yx/\Yz).X = (X/\Z).X = XNZ = XNZANYz = Yx . xAYz.x.
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Next, we assume p € (XAZ).p. There are two cases. Either p € (XAZ).5, or not. First, we suppose
p & (XAZ).p, so neither §; nor 83 = {p}. (XAZ).x = (XAZ) —{p} € (XAZ).0,(XAZ).5]. By

Zo=Z-{p} -________ Tz
~ \\\\ h =
~ \\“\\ T~
X.O'ZX'{p} :::\\\;- X T~ YZ'{p) ~ .
N ~ o T PN
~ // ~
el > > T~
: A 20
,’51 ”5 2N
>~ K PR
<~ ; X.¢
D L
(XY).0=X"Z {p} \X”‘Z 3 %
~
~
~
~
X*2). ¢

Theorem 1.5, (XAZ) — {p} U {61} € [X.p, X.5] and covers (XAZ) U {p} = Yx. (XAZ)— {p} U
{62} € [Z.p, Z.0] and covers (XAZ) U {p} = Yz. Consequently, Yx . x AYz.x = (XAZ)U{é:} —
[0} A ((XAZ) U {82} — {p}) = (XAZ) — {p} = (XAZ).x.

This leaves just the case where p € (XAZ).5. Let p € (XAZ).8. Then (XAZ).p covers (XAZ —
{r}h).¢. If XAZ covers YAZ — {p} € (XAZ — {p}).¢, (XAZ — {p}).B], then we can use Theorem
1.5 as before to find the unique minimal Yx and Yz such that XAZ — {p} <, Yx <, X and
XNZ —A{p} <, Yz <, Z with (XAZ).x = XAZ —{p} =YxAYz = X.x AZ.x.

But, if p € (XAZ).8, XAZ need not cover XAZ — {p}. However, p € (XAZ).5 implies (XAZ).¢
covers (XAZ — {p}).p, and by Lemma 3.2, XAZ U (XAZ — {p}).A, must cover XAZ U (XAZ —
{r}H)Ap —{p} =(XAZ).x. Let Y = XAZU(XAZ —{p}).Ap, € (XNZ).0,(XNZ).f],s0Y —{p} =
XANZ U(XNZ —{p}).Ap, —{p} = (XAZ).x as in the figure. We have more cases; either p € X.5,
p € Z.4, or not. In the figure we show p ¢ X.5 and p € Z.3, but any of the four combinations
are possible. We assume this configuration. As before, there exist unique minimal Yx € X.¢ and

23



X.o:x-{p)\ Z_
~ o X“‘YX-{\P} ~ o

0/

(X2).0= Y-{p)\

~
~

*~2) 04}

Yy € Z.psuch that XAZ <, Yx <, XandY <, Yz <, Z.

(XAZ)x =Y —{p} = YAYz—{p}
Yx —{p} AN Yz —{p}
= X—{p} NYz—{p}=XxAZx

The other three cases are handled similarly. O

Theorem 3.11 could have be stated as a corollary to this lemma; or alternatively, we could
have used that theorem to first demonstrate that (XAZ).x, <, X.xp A Z.x,. We thought
that two different proofs, one which made abundant use of Theorem 3.10 and one which
made no mention of it whatever, were valuable.

Some of the subtleties found in the last few cases of Theorem 3.13 are illustrated by
Figure 12. Observe that {df} = {bdf }A{cdf} so d € {df}.5 and {df}.x; ={f}.Aa — {d} =
{€'f'}. Now {df} does not cover {df}.xy in L,y as is so often the case. Moreover,
while {df} is covered by both {bdf} and {cdf} in Ly ), neither {bdf}.x; = {¢'f'} nor
{cdf}.xg = {'['} cover {df}.xy = {¢'f'}. Single point deletions need not preserve covering
relationships. However,

Lemma 3.14 If (U, ) Xp, (U',¢) is a single point deletion, and
(a) XVZ is closed,
(b) XVZ covers X and Z
then
(XVZ).xp = XXxpV Z.xp

Proof: Let o denote x,. Because o is order preserving, X.oVZ.o <, (XVZ).c. And because,
the sublattice of closed subsets is lower semimodular, X and Z each cover XAZ.

Ifpg XvZ, then p& X or Z, so the conclusion follows trivially.
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Figure 12: A single point deletion, x,

Let p € XVZ. Let X = XVZ —{¢x},Z = XVZ — {qz}. Suppose gqx = p (or gz = p), then
X.oc =X = (XVZ).0. By lower semimodularity, XAZ = Z — {p}. So, X.o0 = XAZ = (XAZ).c
implying (XVZ).0c <, X.oVZ.0.

If neither gx nor qz = p, we must consider cases.
If p € (XVZ).5 then there exists Y such that Y = XVZ — {p}. By meet distributivity (see
Edelman [4] or Pfaltz [13]) we have the substructure shown in the figure where the covering edges

XVz
I
I
I

q q
/ N
PN qz
\\/ p
X’\Y X"Z Y"

z
N ‘p 7
qz < ! //qx
XAYNZ

are labeled with the appropriate elements. (XVZ).c = Y' = Y.o,X.0c = X'AY' = (XAY).0,
Zo=Y'NZ'=(YNZ).0c and (XAZ).c = X'NY'ANZ' = (XANY AZ).c. The conclusion follows.
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Finally we suppose p ¢ (XVZ).6, implying XVZ — {p} € [(XVZ).,(XVZ).5] and (XVZ).0c =
(XVZ —{p}).o.

If pg X.5 (or p & Z.3) there is no problem since X.oc = (X — {p}.0, where X — {p} € [X.p, X.5
and by Theorem 1.5 X — {p} <, XVZ — {p}.

If pe X.8 (or p € Z.8) we have the configuration shown below. Here X.oc = (X — {p}).0c =

[t}

XVZ-{p}
o,
T XVz
X Z
q, g
z

X-{p} XA

XV —{gx}—{p} = (XVZ).0c — {¢’x}. By Theorem 1.2(a), this is a cover in (U’,¢') because

(X.oU{gx}) ¢ = Xo¢ U{ex}
= X.poU{gx} O

That this result cannot be generalized to all of L(y ) is also demonstrated by Figure
12 where {cdf} which is not closed covers {df} and {edef}; but {cdf}.x, = {¢'f'} does not
cover {df}.x, = {€¢'['}.

A lattice morphism £ 4, L' is said to be a lower semihomomorphism, or LSH, if for
all 2,z € L, (zAz).f=x.fAz.f and < 2Vz, z < zVz together imply (zVz).f = z.fVz.f.
Properties of lower semihomomorphisms can be found in [12].7

Corollary 3.15 If (U, ) R (U',¢') is a single point deletion then
Xp
. , . Lug) — Lwney
1s a lower semihomomorphism when restricted to the sublattice of closed subsets.

Proof: This is an immediate consequence of Theorem 3.13 and Lemma 3.14. O

Although deletions, x,, are lower semihomomorphic only on the sublattice of closed
subsets, it is sufficient, because antimatroid closure spaces are completely determined by
just this sublattice. (The generators, Y.3, of any closed subset Y can be determined by
examining the closed sets covered by Y.) We therefore say that deletions x induce a lower
semihomomorphic transformation of one closure space onto another.

"We caution the reader that [12] assumes that all lattices, which are called G-lattices, are atomic, that
is, all singleton elements are closed. This is a characteristic of all convex geometries, but need not be true in
general. For example, the ideal path closures ¢; and ¢ 5 yield atomic closure spaces only if they are totally
disconnected.
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4 Observations

One can make a number of observations based on the preceding sections. If, as is the case
with graph homomorphisms, one defines a transformation of discrete spaces in terms of a
point map f on the set U of elements, then one can’t have a deletion x, in which a point
p € U simply “disappears”. It would not be well-defined over all of U. But, because x is
defined on the power set 2U, one can have {p}.x, = 0. Now, deletions and their induced
lattice morphisms seem natural.

We have considered only single point deletions simply because they are so much clearer,
and because they are basic to the deletion concept. But, single point deletions can be com-
posed. Figure 13 illustrates the composition of y. with x,. Note the sublattice [0, ¢, d, ¢d]

b<=—-d X ed b’
-
(NS c=<=——=¢ e’
~
N ~
acde abde
~ \
~ N N
, N
. “u
acd b
~ N abcde
\ \
: A N : N albrel
A} N
ad ae
\  abcd \ . abce bede / \
\ \
\ a b'e’
A} N
abc abd ace bed: ‘bece  bde: -cde

>
S

ab ac be bd be cd ce de \

Figure 13: The composition of x,. and x,; applied to the closure space of Figure 4

of (U, ) which maps onto @ of (U’,¢'). Following [12], we call this the kernel of the
deletion x. If X and Z are in the kernel of a deletion, then because y is a semimodular
homomorphism, X AZ must be in the kernel, and XV Z is in the kernel if and only if it covers
both X and Z. We chose to illustrate x.; because it is clean and well-behaved. The reader
is encouraged to visualize y,,., the composition of x, with x,. It is far more interesting.
Based on the deletion concept, one can now define families of antimatroid closure spaces.
An early, but inadequate, attempt to do this in terms of “convex” graph homomorphisms
can be found in [14]. In essence, except for some simple, common closure spaces such as n
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independent, unrelated points, or n totally ordered points, the lattice structure of different
closure operators appear to be quite distinct. For example, let U consist of n points which
have an arbitrary partial order < on them. In general, the lattices of (U, ¢;) and (U, ¢p)
are quite distinct from (U, ¢y ) as well as each other. These, in turn, are structurally
different from the lattice obtained by considering the convex geometry of the same points
projected onto a plane, whose structure must be different from the convex geometry if the
points were projected into 3-space. (In these we implicitly assumed a Euclidean geometry;
other geometries may yield other antimatroid closure spaces.)

These families of closure lattices are quite interesting. Members within one family have
similarities which tend to distinguish them from members of another family. For example,
if we call a generating set X.0 non-trivial when X.3 C X.p, then if X.§ is non-trivial
in a planar convex geometry, |X.3| > 3; while X.3 non-trivial in a 3-dimensional convex
geometry ensures that |X.5| > 4. This characteristic difference is rather obvious; others
seem to be more subtle. We conjecture that, except for the kinds of special cases mentioned
above, there exist no semimodular lattice homomorphisms from closure lattices of one family
of antimatroid closure spaces onto the closure lattices of another family.
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