Composite Metrics for System Throughput in HPC

John D. McCalpin, Ph.D.
IBM Corporation
Austin, TX

SuperComputing 2003
Phoenix, AZ
November 20, 2003
Overview

• The HPC Challenge Benchmark was announced last night at the TOP500 BOF

• The HPC Challenge Benchmark consists of
 – LINPACK (HPL)
 – STREAM
 – PTRANS (transposing the array used by HPL)
 – GUPS
 – and some low-level MPI latency & BW measurements

• No single figure of merit is defined
The Big Question

- Q: How should one think about composite figures of merit based on such a collection of low-level measurements?
- A: Composite Figures of Merit must be based on “time” rather than “rate”
 - i.e., weighted harmonic means of rates
- Why?
 - Combining “rates” in any other way fails to have a “Law of Diminishing Returns”
Does Peak GFLOPS predict SPECfp_rate2000?

![Graph showing SPECfp_rate2000 vs Peak MFLOPS](image)
Does Sustained Memory Bandwidth predict SPECfp_rate2000?
A Simple Composite Model

- Assume the time to solution is composed of a compute time proportional to peak GFLOPS plus a memory transfer time proportional to sustained memory bandwidth.
- Assume “x Bytes/FLOP” to get:

\[
\text{"Balanced GFLOPS"} \equiv \frac{1 \ "\text{Effective FP op}"}{\left(\frac{1 \ \text{FP op}}{\text{Peak GFLOPS}} \right) + \left(\frac{x \ \text{Bytes}}{\text{Sustained GB/s}} \right)}
\]
Does this Revised Metric predict SPECfp_rate2000?

Optimized SPECfp_rate2000 Estimates

![Graph showing the optimized SPECfp_rate2000 estimates](image)
Statistical Metrics

Peak GFLOPS, SWIM BW, Optimal

- R squared
- (Std Error)/Mean
What about other applications?

- Effectiveness of caches varies by application area
- Requirements for interconnect performance vary by application area
 - Some apps are short-message dominated
 - Some apps are long-message dominated
- Composite models can be tuned to specific application areas – if app properties known
BW Reduction due to 4 MB Cache

- CFD
- CHEM
- Linear
- Crash
- Modal
- Nonlinear
- OR
- Resv

Truncated.....
An Example Model tuned for CFD

• Analyze applications and pick reasonable values:

\[
\text{"Balanced GFLOPS"} \equiv \frac{1 \text{ "Effective FP op"}}{\left(\frac{1 \text{ FP op}}{\text{LINPACK GFLOPS}} \right) + \left(\frac{2 \text{ Bytes}}{\text{STREAM GB/s}} \right) + \left(\frac{0.1 \text{ Bytes}}{\text{Network GB/s}} \right)}
\]

• Two cases tested:
 – Assume long messages (network BW tracks PTRANS)
 – Assume short messages (network BW tracks GUPS)

• The relative time contributions will quickly identify applications that are poorly balanced for the target workload
Comparing p655 cluster vs p690 SMP
Assumes long messages

- p655 cluster 45 GFLOPS
- p690 SMP 23 GFLOPS
Comparing p655 cluster vs p690 SMP
Assumes short messages

p655 cluster 13 GFLOPS
p690 SMP 21 GFLOPS
Summary

• The composite methodology is
 – Simple to understand
 – Based on the components of the HPC Challenge Benchmark
 – Based on a mathematically correct model of performance

• Much work remains on documenting the work requirements of various application areas in relation to the component microbenchmarks