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CS3102 Theory of Computation 
Solutions to Selected Problems from Set 1 

Department of Computer Science, University of Virginia 
 

Gabriel Robins 
 

Please start solving these problems immediately, don’t procrastinate, and work in study groups.  Please 
prove all your answers; informal arguments are acceptable, but please make them precise / detailed / convincing 
enough so that they can be easily made rigorous if necessary.  To review notation and definitions, please read 
the "Basic Concepts" summary posted on the class Web site, and also read the corresponding chapters from the 
Sipser textbook and Polya’s “How to Solve It”. 

 
Please do not simply copy answers that you do not fully understand; on homeworks and on exams we 

reserve the right to ask you to explain any of your answers verbally in person (and we have exercised this 
option in the past). Please familiarize yourself with the UVa Honor Code as well as with the course Cheating 
Policy summarized on page 3 of the Course Syllabus.  To fully understand and master the material of this 
course typically requires an average effort of at least six to ten hours per week, as well as regular meetings with 
the TAs and attendance of the weekly problem-solving sessions.   

 
This is not a “due homework”, but rather a “pool of problems” meant to calibrate the scope and depth of 

the knowledge / skills in CS theory that you (eventually) need to have for the course exams, becoming a better 
problem-solver, be able to think more abstractly, and growing into a more effective computer scientist.  You 
don’t necessarily have to completely solve every last question in this problem set (although it would be great if 
you did!).  Rather, please solve as many of these problems as you can, and use this problem set as a resource to 
improve your problem-solving skills, hone your abstract thinking, and to find out what topics you need to 
further focus on and learn more deeply.  Recall that most of the midterm and final exam questions in this course 
will come from these problem sets, so your best strategy of studying for the exams in this course is to solve 
(including in study groups) as many of these problems as possible, and the sooner the better! 

 

Advice: Please try to solve the easier problems first (where the meta-problem here is to figure out which 
are the easier ones  ).  Don’t spend too long on any single problem without also attempting (in parallel) to 
solve other problems as well.  This way, solutions to the easier problems (at least easier for you) will reveal 
themselves much sooner (think about this as a “hedging strategy” or “dovetailing strategy”). 

http://www.cs.virginia.edu/~robins/cs3102/basics.pdf
http://www.cs.virginia.edu/~robins/cs3102
https://www.amazon.com/Introduction-Theory-Computation-Michael-Sipser/dp/0534950973
https://www.amazon.com/gp/product/069111966X/
https://honor.virginia.edu/
http://www.cs.virginia.edu/~robins/cs3102/slides/CS3102_Syllabus.pdf


2 

2. True or false: 

 a. ØØ 

Solution: True; the empty set is a subset of any set. 

 b. ØØ 

Solution: False; the empty set has no proper subsets. 

 c. ØØ 

Solution: False; the empty set has no elements in it. 

 d. {1,2}{1,2} 

Solution: True, since 2{1,2} = {Ø,{1},{2},{1,2}}.  Generally, SS always holds. 

 e. {1,2}  2{1,2} 

Solution: False, since neither 1 nor 2 is a member of {Ø,{1},{2},{1,2}} (although {1} and {2} 

are: watch your types!). 

 f. {x,y}{{x,y}} 

Solution: True. 

3. Write the following set explicitly: 2{1, 2}{v,w} 
 

Solution: 2{1, 2}{v,w} = {Ø,{1},{2},{1,2}}{v,w} 
  = {(Ø,v),({1},v),({2},v),({1,2},v),(Ø,w),({1},w),({2},w),({1,2},w)} 

 

4. Prove without using induction that for an arbitrary finite set S, the sets 2S and {0,1}|S| 

have the same number of elements. 

Solution: Any subset T of a finite set S may be uniquely represented by a string of |S| bits, 
encoding which elements of S are present and which are missing in the subset T.  Conversely, 
each string of n bits thus uniquely encodes a distinct subset of an n-element set.  Since there are 

2
n
 bit strings of length n, a set of n elements has exactly 2

n
 distinct subsets. 
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5. Which of the following sets are closed under the specified operations: 

 a) {x | x is an odd integer}, multiplication 

Solution: Closed, since the product of two integers is always an integer. 

 b) {y | y=2n, n some integer}, subtraction 

Solution: Closed, since the difference of two even integers is always an even integer. 

 c) {2m+1 | m some integer}, division 

Solution: Not closed, since the quotient of two odd integers is usually not an odd integer. 

 d) {z | z=a+bi where a and b are real and i= -1 }, exponentiation 

Solution: Closed, since for two complex numbers x and y, x
y
 is always a complex number. 

 
6. Is the transitive closure of a symmetric closure of a binary relation necessarily reflexive? 

(Assume that every element of the “universe” set participates in at lease one relation 
pair.) 

Solution: In general, for any pair (x,y) in such a relation, closure under symmetry implies (y,x) is 
also in the relation, and closure under transitivity then implies that (x,x) must be in the relation as 
well.  Thus, such a relation must necessarily be reflexive.  The only exceptions to this are 
relations where some elements of the domain are not involved in any tuple of the defined relation 
(but defining the domain of a relation to implicitly be equal to the union of all elements involved 
in any tuple eliminates such exceptions, and makes the original statement true in general). 

7. True or false: a countable union of countable sets is countable. 

Solution: Use dovetailing to arrange a countable list of all the elements in all the sets.  The 
elements (i,j) on such a list may, for example, be sorted by the magnitude of the sum i+j where 

(i,j) corresponds to the ith element of the jth set. 

8. True or false: if T is countable, then the set {S | ST, S finite} is also countable. 

Solution: If T is countable, then the set {S | TS, S finite} is indeed countable; note that it is 

not sufficient to simply list the finite subsets of T by increasing size, because there may be an 

infinite number of them for a particular size (even for size 1, e.g., all the singleton (one-element) 

subsets in T), and so our list will not be exhaustive.  On the other hand, since S is constrained to 

be finite, a finite description would suffice to completely describe such an S: in the worst case, 

simple list all the indices in T of the elements of S using some unique code (e.g., encode each 
S={T

i1
, T

i2
, ..., T

ik
} as the string $i

1
$i

2
$...$i

k
$).  Now sort all of these strings by lexicographic 
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order (size first, and then within size by dictionary order), to give us a one-to-one 

correspondence between {S | TS, S finite} and the naturals.  Note that if the restriction 

“finite” on S is lifted, our original definition (which now boils down to {S | TS}), is simply 

that of the powerset of S, which has cardinality always bigger than S itself. 

9. Give a simple bijection for each one of the following pairs of sets: 

 a) the integers, and the odd integers. 

Solution: h(x) = 2x+1 

 b) the integers, and the positive integers. 

Solution:  g(x) = 2x+1 if x is a non-negative integer 

  g(x) = -2x if x is a negative integer 

 c) the naturals, and the rationals crossed with the integers. 

Solution: Represent each element of QZ as (
a
b
 ,c), where a,b,c  Z, b0, and sort these elements 

by increasing order of |a|+|b|+|c|.  Now simply number the elements in this sorted list using the 

natural numbers, and this is the bijection we seek.  Note: this was an implicit use of dovetailing. 

10. Is there a bijection between {x | x  R, 0 x 1} and R? 
 

Solution: Yes; there exists many possible different bijections between the open unit interval 

namely (0,1)={x| xR, 0<x<1} and R; here we pictorially present one possible bijection 

(constructed via the intermediate curve of a half-circle) – our bijection is the composition of the 

two bijections shown: 

 

The Real  Number Line



Bi jection between 

uni t segment and 

a hal f-circle

Bi jection between  

hal f-ci rcle and rea l 

number l ine

The open unit s egment (0,1)



hal f- 

a circle
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But the interval [0,1] = {x| xR, 0x1} is closed (i.e., containing its endpoints 0 and 1), so now 

the question is "to what points on the real line do we map the end points 0 and 1 of the unit 

interval?"  One possible answer is to look at one countable subset of our bijection relation:  {( 
1
2  , 

x1), (
1
4  , x2), (

1
8  , x3), (

1
16  , x4), ...,  (

1

2k  , xk), ...} where the first components are points in the unit 

interval, and the second components are the corresponding points on the real number line.  Now 

we simply modify our original bijection by replacing this entire family of pairs by the following 

new family:  {( 
1
2  , 0), (

1
4  , 1), (

1
8  , x1), (

1
16  , x2), (

1
32  , x3)...,  (

1

2k+2  , xk), ...}; we have simply 

pushed every point in this family two places down to accommodate our two endpoints 

(remember the story of the hotel with the infinite number of rooms!).  Now the two problematic 

endpoints 0 and 1 are included, and we are left with a perfect bijection between the closed unit 

interval and all of the real numbers. 

11. Generalize |2S| > |S| to arbitrary sets (not necessarily countable ones). 

 

Solution: Assume towards contradiction that some bijection actually exists between S and 2S, 

and call it ƒ: S2S.  Now form the set S' = {x | xS, x ƒ(x)}, and since we have a bijection 

between S and 2S, and S'2S, there must exist some x'S such that ƒ(x')=S'.  We can't have 

x'S' (since by the definition of S' we know that then x' may not be included in S'), but on the 

other hand we can't have x'S' either (since then by definition we must have included x' in S'), a 

logical contradiction.  It follows that a set and its powerset can never have the same cardinality.  

This proof is due to Georg Cantor in the late nineteenth century; note how it generalizes the 

diagonalization argument (which was used to show that |N|<|R|) to arbitrarily large sets. 
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12. What is the cardinality of each of the following sets ? 

 a. The set of all polynomials with rational coefficients. 

 

Solution: The set of all polynomials with rational coefficients is countable (and hence of 

cardinality 0): simply sort all such polynomials  
ak

bk
  Xk + 

ak-1

bk-1
  Xk-1 + ... + 

a1

b1
  X +  

0

0

b

a
 where 

ai, bi Zis sorted by increasing order of (|ai|) + (|bi|) + |k|, and then number the items on this 

list with consecutive integers beginning with 1 on up.  Clearly every polynomial appears 

somewhere on our list, and so this scheme describes a bijection between natural numbers and the 

polynomials with rational coefficients. 

 b. The set of all functions mapping reals to reals. 

 

Solution: The set F of all functions mapping reals to reals is certainly at least as big as |R|=1 

simply by considering the subset of F consisting of the constant functions {ƒr | ƒr:RR, rR, 

ƒr(x)=r}.  Moreover, we can see that F is also at least as big as the powerset of the reals, by 

considering the subset of F consisting of the class of boolean-valued "subset" selector functions 

over the reals: Fs = {ƒs | fs:RR, SR, ƒs(x)=1 if xS and ƒs(x)=0 if xS}.  The cardinality of 

Fs is clearly |2R| = 2, and therefore since Fs F we have | F|  2.  Finally, we observe that 

functions from reals to reals are a special case of arbitrary 2-place relations on the reals, and that 

any such relation  is an arbitrary subset of the real plane so  RR.  It follows that there exist 

exactly as many such relations as subsets of the plane, namely the number of such relations is 

|2RR|=2|RR|=2|R|=2.  Since a function is a special case of a relation (i.e., a relation with at 

most one element in the range for every element in the domain), it follows that the number of 

functions from reals to reals is also bounded from above by 2.  Combining this result | F|  2 

with our previous | F|  2 gives us the exact characterization we seek: | F|= 2. 

c. The set of all possible Java programs. 
 

Solution: The set of all possible Java programs is countable: simply list all such programs by 

increasing size (considering a program to be one long ASCII string), and within a particular size 

list them by lexicographic order.  This scheme describes a bijection between natural numbers 

and Java programs. 

 d. The set of all finite strings over the alphabet {0,1,2}. 
 

Solution: This is the language {0,1,2}*, a countable set: simply sort by string size and then by 

lexicographic order within size, numbering the resulting list with consecutive natural numbers. 
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 e. The set of all 55 matrices over the rationals. 
 

Solution: This set of all 55 matrices over the rationals can be put into one-

to-one correspondence with Q25or Z50which are both countable sets (by 

dovetailing).. 

 f. The set of all points in 3-dimensional Euclidean space. 
 

Solution: The set of all points in 3-dimensional Euclidean space R3 is isomorphic to any one of 

the following sets: R2, R=R1, Rk for any positive integer k, [0,1]={x| xR, 0x1}, [0,] for 

any real >0, etc, which are all of cardinality |R|=1.  In particular, a simple bijection between 

R3 and R may be given as follows: each real number may be "decomposed" into a unique triple 

of real numbers by taking all the digits with position divisible by 3 (with respect to the decimal 

point) as the first number of the triple, all the digits with position divisible by 3 (mod 1) as the 

second number of the triple, and all the digits with position divisible by 3 (mod 2) as the third 

number of the triple; conversely, a triple of real numbers may be "fused" into a unique real 

number by reversing this process. 

 g. The set of all valid English words. 
 

Solution: This is a large but finite set (see English Oxford Dictionary), whose cardinality is less 

than one million. 

 h. {Ø, N, Q, R} 

 

Solution: This is a finite set of cardinality four (although each of these elements is itself a set). 
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i. N  Z  Q 
 

Solution: The cardinality of any finite cross-product of countable sets is countable, by a simple 

argument: take a countable class of countable sets S1, S2, S3, ..., Sk, and form the cross product 

by left-association rule, such as (((S1 S2)  S3)  ...  Sk).  But we already know that the cross-

product of two countable sets is countable, by dovetailing (like in the proof that Q is countable), 

so it follows that at any intermediate stage in the computation of our form above remains 

countable.   

 

It is important to note that there is only a finite number of cross-product operations here (namely 

two); if there was a countably infinite number of cross-product operations, then this result would 

no longer hold.  For example, if we cross the integers with themselves a countably infinite 

number of times, we get a set at least as large as the reals.  That is, each element in our infinite 

cross-product is an infinite ordered tuple, or a point in infinite-dimensional Euclidean space (also 

called a Hilbert space, after the mathematician who invented it, David Hilbert).  But such a tuple 

(s1, s2, s3, ..., sk,...) can uniquely represent an arbitrary real number 0.s1s2s3...sk... 

 j. R - Q 
 

Solution: In general, the cardinality of an uncountable set minus a countable one is still 

uncountable: if S = R - Q was countable, then so would S Q = R be countable by dovetailing, 

but we already know that R is not countable. 

 

13. Prove without using induction that n4-4n2 is divisible by 3 for all n0. 

Solution: This can be done by induction.  However, a simpler proof starts with the observation 

that n4-4n2 = (n2)(n+2)(n-2) and then noting that at least one of the factors n, n+2 or n-2 (or 

equivalently n, n-1 or n+1) must be divisible by 3. 

14. How many distinct boolean functions on N variables are there?  In other words, what is 

the value of |{ƒ | ƒ:{0,1}N{0,1}}| ? 

Solution: An N-ary boolean function is defined at 2n points in its domain, each of which can be 

mapped to one of two values.  Thus the number of such distinct functions is 22n
. 
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15. How many distinct N-ary functions are there from finite set A to finite set B?  Does this 

generalize the previous question? 

Solution: An N-ary function from a finite set A to a finite set B is defined at |A|n points in its 

domain, each of which can be mapped to one of |B| values.  Thus the number of such distinct 

functions is |B||A|n. 

16. Show that in any group of people, there are at least two people with the same number of 

acquaintances within the group.  Assume that the "acquaintance" relation is symmetric 

but non-reflexive. 
 

Solution: In a group of N people, each person knows between 0 and N-1 people.  If for all K 

such that 0KN-1 there is a person in the group that knows K other people, then some person P 

must know all N-1 people, which means that all other N-1 people must know P.  It follows that 

nobody in the group knows exactly 0 people, as required, which leaves only N-2 distinct choices 

for K.  Since there are now only N-1 possibilities for the number of acquaintances for each of the 

N people, it follows by the pigeon-hole principle that two people must have the same number of 

acquaintances. 
 

17. Show that in any group of six people, there are either 3 mutual strangers or 3 mutual 

acquaintances. 
 

Solution: This is an easy result from an elegant branch of combinatorics called Ramsey Theory: 

consider the complete graph on 6 vertices (representing the people), where edges are colored 

either blue or red (representing the "strangers" or "acquaintances" relationship), respectively.  

Focus on a particular vertex V; by the pigeon-hole principle, at least 3 of the edges emanating 

from V are of the same color , which without loss of generality we can assume to be red.  Call 

the vertices at the ends of these edges X, Y, and Z.  If any of the edges (X,Y), (Y,Z), or (Z,X) is 

also red, then we have a red triangle, and the theorem is true.  On the other hand, if all of these 

edges are blue, we have a blue triangle and the theorem is true again.  This is another illustration 

of the power of the pigeon-hole principle: in general, if k objects are placed into j bins, at least 

one bin must contain  
k
j
  objects; when k=j+1 this boils down to the weaker (but more 

common) version of the pigeon-hole principle. 
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18. A clique in a graph is a complete subgraph (i.e., all nodes are connected with edges).  

Show that every graph with N nodes contains a clique or the complement of a clique of 

size at least ½ log2N. 

 

Solution: This is a generalization of the previous problem.  First, color all the edges of the graph 

blue, and add all the missing edges and color those new edges red.  Now we need to find a 

mono-chromatic (i.e., same-color) clique of size ½ log2N.  Select one node V1 at random, and 

observe that by the pigeon-hole principle it must have adjacent edges of the same color to at least 

half of the remaining nodes; keep those nodes, but eliminate all the rest of the nodes (and their 

adjacent edges) from the graph, and color V1 using the color of its adjacent edges.  Now, iterate 

this process with the remaining (smaller) graph: pick another node V2, find out which color 

dominates at least half of its adjacent nodes, color V2 using that color, eliminate the remaining 

nodes, and keep iterating.  After log2N iterations there will be no nodes left, and at that point we 

have colored log2N nodes along the way, one node per iteration.  Note that by the pigeon-hole 

principle at least half of those nodes are of the same color, so the subgraph induced by those 

same-colored nodes is a clique of size ½ log2N. 

19. Show that the difference of an uncountable set and a countable set is uncountable. 
 

Solution: This generalizes problem 11(j): for an arbitrary uncountable set U and an arbitrary 

countable set C, note that U - C = U - UC.  But UC is countable since |UC|  |C| and C is 

countable.  We assume towards contradiction that  U - C = U - UC is countable.  Since the 

union of countable sets is countable, this implies that (U - UC)  (UC) = U is countable as 

well, a contradiction. 
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20. Show that the intersection of two uncountable sets can be empty, finite, countably 
infinite, or uncountably infinite. 

Solution: [0,1] [3,4] = Ø,   [0,1] [1,2] = {1},    (Q[0,1])Q[1,2]) = Q,    RR=R 

21. For an arbitrary language L, prove or disprove each of the following: 

 a) (L*)*=L* 

Solution: (L*)*=L* is always true: 

L* = L0L1L2L3... 

(L*)* = (L*)0(L*)1(L*)2(L*)3... = {^} (L*)(L*)2(L*)3...  = L* 

 b) L
+
=L*-{^} 

Solution: L
+
=L*-{^} is sometimes false.  For a counter-example, let L = {^}, so L

+
 = {^}, but 

L*-{^} = Ø.  In fact, any language L containing the empty string ^ would constitute a counter-

example, since L
+ 

will contain ^ but L*-{^} will not. 

 

You may solve any of the remaining problems for extra-credit: 

 

22. Characterize completely the cardinalities of all sets of identical test tubes that can be 

spun simultaneously in a 360-hole centrifuge in a balanced way (i.e. 1 test tube cannot be 

spun, but 2, 3, 4, and 5 can, etc.) 
 

23. Prove that there are an infinity of prime numbers. 
 

24. Prove or disprove: for any arbitrarily large natural number N, there exists N consecutive 

composite natural numbers (i.e. argue whether there exists “prime deserts” of arbitrarily 

large sizes). 
 

25. Compute the infinite sum (1/16) + (1/16)2 + (1/16)3 + (1/16)4 + … =  ? without using 

induction. 
 

26. Find a formula (as a function of n) for 13 + 23 + 33 + 43 + …+ n3 =  ?  and prove it using a 

picture (and without using induction). 

 

27. Prove that the square root of 2 is irrational. 
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28.  Are the complex numbers closed under exponentiation?  If so, what is the value of ii? 
 

29.  Does exponentiation preserve rationality?  Does exponentiation preserve irrationality?  

i.e., are there two irrational numbers x and y such that xy is rational? 

 

The Purpose of this Problem Set 
  

This assignment was designed to increase your familiarity with the basic concepts of and 

notation of discrete mathematics, including infinite sets, and proof techniques.  Don't be 

discouraged if you were not able to solve all of the problems, as some of them involved certain 

mathematical insights that you may not have encountered before.  However, if you were not able 

to solve at least half of these problems, please spend considerable additional time reviewing this 

material.  Go over the solutions above carefully, and try to understand why you missed some of 

them.  Also please work in groups with other students on solving homework problems – solving 

problems in teams is more efficient, as well as a lot of fun.  And of course, please solve lots of 

different problems (including other ones from our textbook as well as from other books) – 

there’s no substitute for lots of practice! 

 

On Better Mastering the Material 
  

One study method that I recommend is to put problems and concepts on index cards (and 

their solutions or definitions on the backs of the cards), and carry them in your pocket/purse; 

whenever you have a free moment (like when you wait for a bus, or stand in line at a store, etc.), 

pull a card out and try to solve a problem, reconstruct a proof, or recall a definition (a positive 

side-effect of this scheme is that you will tend to get less angry/impatient while waiting in these 

lines, because you will no longer be wasting your valuable time).  If you get in this habit, you 

will find that you can solve these problems more and more quickly, and that you are becoming 

more fluent in the material.  Please keep in mind that the basic definitions in this course are very 

important, since the material builds very heavily on top of previous material.  Ideally, you should 

be able to recite (and explain) the basic definitions and proof techniques at any time and without 

hesitation.  Most importantly, if you are not clear on something, please ask ASAP! 

 
 


