Historical Perspectives

George Boole (1815-1864)

- Mathematician and philosopher
- Invented symbolic / Boolean logic
- Invented Boolean algebra, i.e. "calculus of reasoning"
- A founder of computer science
- "An Investigation into the Laws of Thought"
- Influenced De Morgan, Schröder, Shannon
- All modern computers, electronics, phones, data transmission, rely on Boolean principles

Binary letter from Grandal

Mozart writing the digital version of his symphony No. 38 in D major.

Historical Perspectives

Augustus De Morgan (1806-1871)

- Mathematician and logician
- Developed logic \& mathematical induction
- De Morgan's Laws in logic \& set theory
- Invented relational algebra
- Corresponded extensively with Hamilton
- Influenced Russell, Whitehead, and Tarski
- Studied paradoxes

A Budget of
Paradoxes AUGUSTUS DE MORGAN

Historical Perspectives

Charles Babbage (1791-1871)

- Mathematician, philosopher, inventor mechanical engineer, and economist
- The father of computing
- Built world's first mechanical computer - the "difference engine" (1822)

- Originated the programmable computer
- the "analytical engine" (1837)
- Worked in cryptography
- Developed Babbage's principle of division of labor

Babbage's Difference Engine

- World's first mechanical computer
- Designed in 1822, redesigned in 1847-1849
- 25,000 parts, 15 tons, 8 ft tall, 31 digits of precision
- Tabulated polynomial functions, used Newton's method
- Approximated logarithmic and polynomial functions
- Used decimal number system and hand-crank

Babbage's Difference Engine

Thenrm

Babbage's difference engine built from Mechano and Lego

Babbage's Analytical Engine

- World's first general-purpose computer
- Designed in 1837, redesigned throughout Babbage's life
- Turing-complete, memory: 1000x50 digits (21 kB)
- Fully programmable "CPU", used punched cards
- Featured ALU, "microcode", loops, and printer!
- Could multiply two 20-digit numbers in 3 min
- Few components built by Babbage; constructed in 1991

68000000036103010004441
8100000038800097 訋148
68200000031001008736141
6830000003150746658389
6840000003790868589405
6850000003043481704284
$6860000003890607 / 018 \% 1$

JCharles Babbage Institute - Mozilla Firefor
@ Most Yisited Getting Started \AA Latest Headines \square Customize Links \square Free Hotmail \square http://www. scientific.... \square suggested Sites \square Web slice Gallery \square Windows Marketplace \square Windows Media \square Windows

University of Minnesota
University of Minnesota Institute of Technology University of Minnesota Libraries | One Stop | Directories | Search U of M

LIBRARIES
Home | Contact
ABOUT CBI
About CBI
CBI Blog
Visitor Information
CBI Newslefter
Become a Friend of CB About Charles Babbage

COLLECTIONS
About the Archives Search Collection Guides Oral History Database NEW FEATUREIBurroughs Photographs CBI Hosted Publications Recent Print Acquisitions

RESEARCH PROGRAM
Research Projects
Norberg Travel Fund
Tomash Fellowship
CBI Reprint Series CBI Staff Publication List

RELATED

RESOURCES
Related Web Sites vintage Computer Sources Computing Industry in MN

WELCOME TO THE CHARLES BABBAGE INSTITUTE

The Charles Babbage Institute (CBI) is an archives and research center dedicated to preserving the history of information technology and promoting and conducting research in the field.
Primary support for CBI is provided by the University of Minnesota, through the Institute of Technology and the University Libraries. Additional support is provided by corporate donors and individuals through the Friends of CB

SPOTLIGHT

- May 20th MHHC: IBM's Blue Gene
- New CB/ Newsletter (Spring 2009, Vol. 31:1)
- McDonald Named 2009-2010 Tomash Fellow
- 2009 Norberg Travel Award Recipients

THE CBI ARCHIVES

The CBI Archives collects, preserves and provides access to rich archival collections and rare publications documenting the history of technology. Detailed archival finding aids are available. Researchers can also access digitized images (Burroughs Corporation Image Database) and one of the world's largest collections of research grade oral history interviews (CBI Oral History Database) through the CBI Web site. More »

SEARCH THE COLLECTIONS

Finding Aids	Images	Catalog	
Find:		Search	Finding aids are online guides to the collections in the Charles Babbage
Institute.			

THE CBI RESEARCH PROGRAM

CBI's historical research program identifies areas in which to collect archival materials fosters new understanding of developments in the history of computing, software, and networking; supports the work of scholars outside the Institute (Tomash Fellowship and Norberg Travel Grant); and works collaboratively with individuals and organizations throughout the world. More "

HAVE A QUESTION?

Ask a CBI archivist your questions about collections and services through instant message during regular business hours

IM an Archivist

CBI Archivist is offline

[^0]
Historical Perspectives

Countess Ada Lovelace (1815-1852)

- Daughter of Lord Byron
- Tutored in math and logic by De Morgan
- Wrote the "manual" for Babbage's analytical engine, as well as programs for it
- World's first computer programmer!
- Foresaw the vast potential of computers
- Babbage: "The Enchantress of Numbers"
- DoD's Ada language "MIL-STD-1815"

The International Language for Software Engineering

Ada Eyron, Lady Lovelace
1515-1958
 Smaron er leay buck fikidey belor

"One of the Year's to Besty" (2) al Id wowt

24-30 March 2009| $\mathbf{\text { C3.25 }}$ | computerweekly.com

ComputerWeekly

 atia lougace Day24 mari2u0
IN THIS ISSUE

Will IBM buy Sun? If IBM buys Sun Microsystems how will the diverse product portfolios fit together? NEWS ANALYSIS 12
OGC 'secret' out The Office of Goverrment Commarca finally puodishas two ID card Gateway reviens NEWS 8

Tech terms banned π professionals react vith hostity to a ist of words council leaders viant to ban news analrsis 10
Beware of SaaS risk The cost benefits of soltware-as-a-service should not blind comperies to polentia hazards NEWS ANALYSIS 14

Web past to present Ne celebrate 20 years of the internet by looking back at key events in its development THIS WEEK ON THE WEB 20

Leadership lessons

CWSOO Club president shares his insights on challenges and opportunities facing II leadars strategy 22

*A SPLENDID AND ENTHRALLING PRRTRAIT." -THE SUNDAY TIMES (LINDON)

SClEMCE

"IT"SA THRILLER\%" NEW SCIENTIST
BENJAMIN-WOOLLEY

주응

Lovelace Medal Home
About the medal How to nominate 2009 winner
Past winners

Related Areas
Lovelace Lecture
IT Professionals
Events \& Awards

Lovelace Medal

The Lovelace Medal is presented to individuals who have made a contribution which is of major significance in the advancement of Information Systems or which adds significantly to the understanding of Information Systems.

About the medal

Lovelace Medal 2009

2009 winner
The winner of the 2009 Lovelace Medal is Professor Yorick Wilks.

Previous Lectures

Video: A tribute to Karen Spärck Jones
The 2008 BCS Lovelace Medal lecture was a very special event dedicated to the memory of Karen Spärck Jones who was presented the award just weeks before she died last year. The lecture was delivered by Dr Ann Copestake and is now available to watch online.

2007 Lovelace Lecture - Sir Tim Berners-Lee
The Web is a technical and social creation, dependent on both technical protocols and social conventions. The origins and potential futures of this large scale, emergent
phenomena were discussed by Sir Tim Berners-Lee in this
year's BCS Lovelace Lecture - now available to watch via this website.

Previous winners

Previous winners of the Lovelace Medal have included:

2008 - Dr Tony Storey
2007 - Karen Sparck-Jones
2006 - Sir Tim Berners-Lee 2005 - Dr Nicholas McKeown

Ada Lovelace notes on "Sketch of the Analytical Engine Invented by Charles Babbage", by L. F. Menabrea, 1843
Her notes (three times longer than the paper itself!) contain the world's first computer program (for calculating Bernoulli numbers):

World's first computer program (for calculating Bernoulli numbers), by Ada Lovelace, 1843:

Quotes from the Ada Lovelace notes on

"Sketch of the Analytical Engine Invented by Charles Babbage", 1843
"We may say most aptly, that the Analytical Engine weaves algebraical patterns just as the Jacquard-loom weaves flowers and leaves."
"Again, it might act upon other things besides
number, were objects found whose mutual
fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine. Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent."

Quotes from the Ada Lovelace notes on

"Sketch of the Analytical Engine Invented by Charles Babbage", 1843
"Many persons who are not conversant with mathematical studies, imagine that because the business of the engine is to give its results in numerical notation, the nature of its processes must consequently be arithmetical and numerical, rather than algebraical and analytical. This is an error. The engine can arrange and combine its numerical quantities exactly as if they were letters or any other general symbols; and in fact it might bring out its results in algebraical notation, were provisions made accordingly."
"But it would be a mistake to suppose that because its results are given in the notation of a more restricted science, its processes are therefore restricted to those of that science. The object of the engine is in fact to give the utmost practical efficiency to the resources of numerical interpretations of the higher science of analysis, while it uses the processes and combinations of this latter."

[BABBAGE]. -- MENABREA, Luigi Federico (1809-1896). Sketch of the Analytical Engine invented by Charles Babbage... with notes by the translator. Offprint from: Scientific Memoirs. Translated by Augusta Ada King, Countess of Lovelace (1809-1896). Volume 3. London: Richard and John E. Taylor, 1843.

ENLARGE \& Zoom Q

Price Realized Set Currency)
\$170,500

Estimate
\$10,000-\$15,000

Sale Information
Sale 2013
Important Scientific Books: The Richard Green Library
17 June 2008
New York, Rockefeller Plaza
ription
[BABBAGE]. -- MENABREA, Luigi Federico (1809-1896). Sketch of the Analytical Engine invented by Charles Babbage... with notes by the translator. Offprint from: Scientific Memoirs. Translated by Augusta Ada King, Countess of Lovelace (1809-1896). Volume 3. London: Richard and John E. Taylor, 1843.

LOTS IN THIS SALE

NEW YORK, ROCKEFELLER PLAZA | 17 JUNE

Important Scientific Books
The Richard Green Library

Problem: Give as many proofs as you can for the Pythagorean Theorem. i.e., $a^{2}+b^{2}=c^{2}$ holds for any right triangle with sides $\mathrm{a} \& \mathrm{~b}$ and hypotenuse c .

Problem: Does the Pythagorean theorem generalize to arbitrary figures on the sides of a right triangle?

Pythagoream ©heorem: $c^{2}=a^{2}+b^{2}$

Problem: compute 111111111^{2} in your head.

Problem: What is the approximate value of:

$$
\left(1+9^{\wedge}\left(-\left(4^{\wedge}\left(7^{*} 6\right)\right)\right)\right)^{\wedge}\left(3^{\wedge}\left(2^{\wedge} 85\right)\right) \approx ?
$$

Problem: Does every closed simple curve contain the vertices of an equilateral triangle?

A Simple Closed Curve!

A Simple Closed Curve!

A Simple Closed Curve!

A Simple Closed Curve!

Traveling Salesperson Art

- Compute TSP Tour
- Optimal is NP-complete

So use heuristics

- Convert image to B\&W
- Sample image density
to obtain a pointset
- Run TSP heuristics
- Can use minimunis trees (easy to compute)
- Can also use minimaio el
matchings (easy docormpute)
- What about colors?

Historical Perspectives

John Venn (1834-1923)

- Logician and philosopher
- Worked in logic, probability, set theory
- Introduced the "Venn diagram" (1880)
- Very widely used, many applications
- Ties together fundamental concepts from logic, geometry, combinatorics, knot theory

John Venn

THE

PRINCIPLES
OF
EMPIRICAL
OR
INDUCTIVE LOGIC

The Extended Chomsky Hierarchy

exposed Venn diagrams $n=5$

symmetric k-fold Venn diagrams $n=2$

http://www.combinatorics.org/Surveys/ds5/VennEJC.html

Venn diagram puzzles:

Answer Panel:

Puzzle solution:

Final Exams

The Marx Brothers

The Ironic Truth about Venn Diagrams

Historical Perspectives

Charles Dodgson (1832-1898)

- AKA "Lewis Carroll"
- Mathematician, logician, author, photographer
- Wrote "Alice in Wonderland", "Jabberwocky", and "Through the Looking Glass"
- Popularized logic \& syllogisms and made it fun!
- Invented "Scrabble" and "word ladder" games
- Profoundly influenced literature, art, and culture

Dlementay Treatise
$0 n$
Determinnants

Charles Lus Dodgson
因

Mathematical Recreations of Lewis Carroll
SYMBOLIC GAME OF
LOGIC LOGIC
TWO BOOKS BOUND AS ONE

Alice and the White Knight: A Lesson in Logic, Semantics, and Pointers

'You are sad,' the Knight said in an anxious tone: `let me sing you a song to comfort you.' 'Is it very long?' Alice asked, for she had heard a good deal of poetry that day. `It's long,' said the Knight, `but it's very, very beautiful. Everybody that hears me sing it -- either it brings the tears into their eyes, or else --' logical disjunction! 'Or else what?' said Alice, for the Knight had made a sudden pause. law of the excluded middle! 'Or else it doesn't, you know. The name of the song is called "Haddocks' Eyes".' pointer to a pointer! `Oh, that's the name of the song, is it?' Alice said, trying to feel interested.
`No, you don't understand,' the Knight said, looking a little vexed. `That's what the name is called. The name really is "The Aged Aged Man".' pointer dereferencing: meta-pointer resolved!
`Then I ought to have said "That's what the song is called"?' Alice corrected herself. separation of abstractions: variable vs. pointer! `No, you oughtn't: that's quite another thing! The song is called "Ways and Means": but that's only what it's called, you know!'
call-by-name vs. call-by-value!
'Well, what is the song, then?' said Alice, who was by this time completely bewildered
`I was coming to that,' the Knight said. `The song really is "A-sitting On a Gate ": and the tune's my own invention.'

Lewis Carroll Society of North America

| HOME | ABOUT US | MEMBERSHIP | NEWS | PUBLICATIONS | EDUCATION | LINKS | FAQ |

WELCOME

Welcome to The Lewis Carroll Society of North America (LCSNA) homepage. The LCSNA is a non-profit organization dedicated to furthering Carroll studies, increasing accessibility of research material, and maintaining public awareness of Carroll's contributions to society and culture. This website is one way we share information with Carroll enthusiasts around the World. If you are a Carrollian and would like to help in these endeavors, or if you simply enjoy Carroll and want to be among other people with a like interest, please consider joining the LCSNA.

For detailed information about C.L.Dodgson ("Lewis Carroll") and his creations, please access the Lewis Carroll Homepage.

Spring Meeting

The 2009 Spring meeting will be held in beautiful Sante Fe, New Mexico, on May 9. Please consult the newly updated (as of April 24th) meeting agenda for all of the details. See you there.

[^1]

Historical Perspectives

Georg Cantor (1845-1918)

- Created modern set theory
- Invented trans-finite arithmetic (highly controvertial at the time)
- Invented diagonalization argument
- First to use 1-to-1 correspondences with sets
- Proved some infinities "bigger" than others
- Showed an infinite hierarchy of infinities
- Formulated continuum hypothesis
- Cantor's theorem, "Cantor set", Cantor dust, Cantor cube, Cantor space, Cantor's paradox
- Laid foundation for computer science theory
- Influenced Hilbert, Godel, Church, Turing

GEORG CANTOR

CONTRIBUTIONS
TO THE
FOUNDING
OF THE
THEORY OF
TRANSFINITE NUMBERS

From Ahmes to Cantor

∞

Philosophical Perspectives on Infinity

everything

 and more

THE MATHEMATICS OF INFINITY

Raymond M. Smullyan

To get this list we make an infinite matrix containing all the positive rational numbers, as shown in Figure 4.16. The i th row contains all numbers with numerator i and the j th column has all numbers with denominator j. So the number $\frac{i}{j}$ occurs in the i th row and j th column.

Now we turn this matrix into a list. One (bad) way to attempt it would be to begin the list with all the elements in the first row. That isn't a good approach because the first row is infinite, so the list would never get to the second row. Instead we list the elements on the diagonals, starting from the corner, which are superimposed on the diagram. The first diagonal contains the single element $\frac{1}{1}$, and the second diagonal contains the two elements $\frac{2}{1}$ and $\frac{1}{2}$. So the first three elements on the list are $\frac{1}{1}, \frac{2}{1}$, and $\frac{1}{2}$. In the third diagonal a complication arises. It contains $\frac{3}{1}, \frac{2}{2}$, and $\frac{1}{3}$. If we simply added these to the list, we would repeat $\frac{1}{1}=\frac{2}{2}$. We avoid doing so by skipping an element when it would cause a repetition. So we add only the two new elements $\frac{3}{1}$ and $\frac{1}{3}$. Continuing in this way we obtain a list of all the elements of \mathcal{Q}.

FIGURE 4.16

A correspondence of \mathcal{N} and \mathcal{Q}
After seeing the correspondence of \mathcal{N} and \mathcal{Q}, you might think that any two infinite sets can be shown to have the same size. After all, you need only demonstrate a correspondence, and this example shows that surprising correspondences do exist. However, for some infinite sets no correspondence with \mathcal{N} exists. These sets are simply too big. Such sets are called uncountable.

The set of real numbers is an example of an uncountable set. A real number is one that has a decimal representation. The numbers $\pi=3.1415926 \ldots$ and $\sqrt{2}=1.4142135 \ldots$ are examples of real numbers. Let \mathcal{R} be the set of real numbers. Cantor proved that \mathcal{R} is uncountable. In doing so he introduced the diagonalization method.
$A_{\text {DFA }}$ and $A_{\text {CFG }}$ were decidable, $A_{\text {TM }}$ is not. Let

$$
A_{\mathrm{TM}}=\{\langle M, w\rangle \mid M \text { is a } \mathrm{T} M \text { and } M \text { accepts } w\} .
$$

THEOREM 4.11

$A_{\text {Tм }}$ is undecidable.
Before we get to the proof, let's first observe that $A_{\text {TM }}$ is Turing-recognizable. Thus this theorem shows that recognizers are more powerful than deciders. Requiring a $T M$ to halt on all inputs restricts the kinds of languages that it can recognize. The following Turing machine U recognizes $A_{\text {TM }}$.
$U=$ "On input $\langle M, w\rangle$, where M is a $T M$ and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."
Note that this machine loops on input $\langle M, w\rangle$ if M loops on w, which is why this machine does not decide $A_{\text {TM. }}$. If the algorithm had some way to determine that M was not halting on w, it could reject. Hence $A_{\text {TM }}$ is sometimes called the balting problem. As we demonstrate, an algorithm has no way to make this determination.

The Turing machine U is interesting in its own right. It is an example of the universal Turing machine first proposed by Turing. This machine is called universal because it is capable of simulating any other Turing machine from the description of that machine. The universal Turing machine played an important early role in stimulating the development of stored-program computers.

THE DIAGONALIZATION METHOD

The proof of the undecidability of the halting problem uses a technique called diagonalization, discovered by mathematician Georg Cantor in 1873. Cantor was concerned with the problem of measuring the sizes of infinite sets. If we have two infinite sets, how can we tell whether one is larger than the other or whether they are of the same size? For finite sets, of course, answering these questions is easy. We simply count the elements in a finite set, and the resulting number is its size. But, if we try to count the elements of an infinite set, we will never finish! So we can't use the counting method to determine the relative sizes of infinite sets.

For example, take the set of even integers and the set of all strings over $\{0,1\}$. Both sets are infinite and thus larger than any finite set, but is one of the two larger than the other? How can we compare their relative size?

Cantor proposed a rather nice solution to this problem. He observed that two finite sets have the same size if the elements of one set can be paired with the elements of the other set. This method compares the sizes without resorting to counting. We can extend this idea to infinite sets. Let's see what it means more precisely.

Problem: How can a new guest be accommodated in a full infinite hotel?

$$
f(\mathrm{n})=\mathrm{n}+1
$$

Problem: How can an infinity of new guests be accommodated in a full infinite hotel?
$f(\mathrm{n})=2 \mathrm{n}$

Problem: How can an infinity of infinities of new guests be accommodated in a full infinite hotel?

HLlBERTS HaEIL"

THE INFINITE HOTEL WAS ALWAYS FILLED TO CAPACITY.

UNFORTUNATELY, THEY WERE

THE MAID SET FIRE TO THE JOINT.

YET, IF A NEW GUEST ARRIVED, SHE WAS ALWAYS GIVEN A RoOM.

THE BRAIN-BRUISING HOTEL THE BRAIN-BRUISNG HOTEL MATICIANS AND PHLLOSOPUERS. THE LIEED TO ARGUE INTO
THE WEEHOURS ABOUT THE
NAIURE OF NITNTT. Nature of INFINTIT.

MANAGEMENT HAD TO HIRE A NEW MAID TO KEEP UP WITH THE MESS.

AFTER ALL, THERE WERE AN INFINITE NUMBER OF ROOMS. RooM 84372,29486,714,392,645, $913,653,898,652,732$

Aleph-mull hattles of here an the wall.
Alsph-mull hattles of heer,
If aue of thase hattles should happen to fall,
Aleph-mull hottles of heer an the wall.

Problem: Are there more integers than natural \#'s?

$\mathbb{N} \subset \mathbb{Z}$
$\mathbb{N} \neq \mathbb{Z}$
So $|\mathbb{N}|<|\mathbb{Z}|$?
Rearrangement:
Establishes 1-1
correspondence
$f: \mathbb{N} \leftrightarrow \mathbb{Z}$

$$
\Rightarrow|\mathbb{N}|=|\mathbb{Z}|
$$

Problem: Are there more rationals than natural \#'s?
$\mathbb{N} \subset \mathbb{Q}$
$\mathbb{N} \neq \mathbb{Q}$
$\operatorname{So}|\mathbb{N}|<|\mathbb{Q}| ?$
Dovetailing: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ $\Rightarrow|\mathbb{N}|=|\mathbb{Q}|$

Problem: Are there more rationals than natural \#'s?

$\mathbb{N} \subset \mathbb{Q}$
$\mathbb{N} \neq \mathbb{Q}$
$\operatorname{So}|\mathbb{N}|<|\mathbb{Q}| ?$
Dovetailing: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ $\Rightarrow|\mathbb{N}|=|\mathbb{Q}|$

Problem: Are there more rationals than natural \#'s?

$\mathbb{N} \subset \mathbb{Q}$
$\mathbb{N} \neq \mathbb{Q}$
So $|\mathbb{N}|<|\mathbb{Q}|$?
Dovetailing: Establishes 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ $\Rightarrow|\mathbb{N}|=|\mathbb{Q}|$

Problem: Why doesn't this "dovetailing" work?

There's no "last" element on the first line! 6 | So the $2^{\text {nd }}$ line | 5 | $\frac{5}{1}$ | $\frac{5}{2}$ | $\frac{5}{3}$ | $\frac{5}{4}$ | $\frac{5}{5}$ | $\frac{5}{6}$ | $\frac{5}{7}$ | $\frac{5}{8}$ | \cdots |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | is never reached!

$\Rightarrow 1-1$ function is not defined!

$$
\begin{array}{l|llllllll}
3 & \frac{3}{1} & \frac{3}{2} & \frac{3}{3} & \frac{3}{4} & \frac{3}{5} & \frac{3}{6} & \frac{3}{7} & \frac{3}{8}
\end{array} \cdots .
$$

Dovetailing Reloaded

Dovetailing: $f: \mathbb{N} \leftrightarrow \mathbb{Z}$

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$

\mathbb{Z}
$\mathbb{N} 1223456789$
To show $|\mathbb{N}|=|\mathbb{Q}|$ we can construct $f: \mathbb{N} \leftrightarrow \mathbb{Q}$ by sorting x/y by increasing key $\max (|x|,|y|)_{3}$ while avoiding duplicates: $\max (|x|,|y|)=0,0,0$ $\max (|\mathrm{x}|,|\mathrm{y}|) \mathrm{B}: 011,141$
$\max \left(\mid x+1 v_{j}\right)=2: 132,241$
max $) \times,|y|)=3: 153,293,371,392$
\{finite new set at each step \}

- Dovetailing can have many disguises!
- So can diagonalization!

Theorem: There are more reals than rationals / integers.
Proof [Cantor]: Assume a 1-1 correspondence $f: \mathbb{N} \leftrightarrow \mathbb{R}$ i.e., there exists a table containing all of \mathbb{N} andall of \mathbb{R} :

But X is missing from our table! $\mathrm{X} \neq f(\mathrm{k}) \forall \dot{\mathrm{k}} \in \mathbb{N}$ $\Rightarrow f$ not a 1-1 correspondence
\Rightarrow contradiction
$\Rightarrow \mathbb{R}$ is not countable!
There are more reals than rationals / integers!

Problem 1: Why not just insert X into the table?
Problem 2: What if $\mathrm{X}=0.999 \ldots$ but $1.000 \ldots$ is already in table?

- Table with X inserted will have X' still missing! Inserting X (or any number of X's) will not help!
- To enforce unique table values, we can avoid using 9's and 0's in X .

Non-Existence Proofs

- Must cover all possible (usually infinite) scenarios!
- Examples / counter-examples are not convincing!
- Not "symmetric" to existence proofs!

Ex: proofs that you are a millionaire:

"Proof" that you are not a millionaire?

Cantor set:

Start with unit segment

- Remove (open) middle third
- Repeat recursively on all remaining segments
- Cantor set is all the remaining points

Total length removed: $1 / 3+2 / 9+4 / 27+8 / 81+\ldots=1$
Cantor set does not contain any intervals
Cantor set is not empty (since, e.g. interval endpoints remain)
An uncountable number of non-endpoints remain as well (e.g., 1/4) Cantor set is totally disconnected (no nontrivial connected subsets) Cantor set is self-similar with Hausdorff dimension of $\log _{3} 2=1.585$ Cantor set is a closed, totally bounded, compact, complete metric space, with uncountable cardinality and lebesque measure zero

Cロニン $\overline{=1}=\overline{=1}=$

 Cantor dust（2D generalization）：Cantor set crossed with itself```
############
####
####
Manzan
############
###
####
#####
```

：\＃\＃

\＃\＃\＃\＃\＃\＃\＃\＃\＃


\＃\＃\＃\＃\＃\＃\＃\＃$\# \#$



| \＃\＃ | \＃ |
| :---: | :---: |
| 㽧 | \＃\＃\＃\＃ |
| 䟧 | \＃\＃\＃\＃ |
| 䟧㗊 | \＃\＃ |

范


磁





## $\overline{\overline{=}} \overline{\underline{\underline{\underline{\underline{x}}}}} \underline{\underline{\underline{\underline{\underline{\underline{x}}}}}} \overline{\underline{\underline{\underline{e n}}}}$




[^0]:    $x$ Find:
    Waiting for guest 1.meeboo.org

[^1]:    $\times$ Fin

