Gabriel Robins

Department of
Computer Science

University of Virginia

www.cs.virginia.edu/robins/theory

Problem: Can 5 test tubes be spun simultaneously in a

 12 -hole centrifuge in a balanced way?

- What approaches fail?

- What techniques work and why?
- Lessons and generalizations

Theory of Computation (CS3102) - Textbook

Textbook:
Introduction to the Theory of
Computation, by Michael Sipser
(MIT), $2^{\text {nd }}$ Edition, 2005

Good Articles / videos:

www.cs.virginia.edu/~robins/CS_readings.html

Theory of Computation (CS3102)

Required reading:

How to Solve It, by George Polya
(MIT), Princeton University Press, 1945

- A classic on problem solving

Theory of Computation (CS3102)

Good algorithms textbook:

 Introduction to Algorithms by Cormen et al (MIT) Third Edition, 2009

Ronald Rivest

Clifford Stein

Introduction to Algorithms

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
Third Edition
Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Intro duction to Algorithms uniquely combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elemen tary without sacrificing depth of coverage or mathematical rigor.

The first edition became a widely used text in universities worldwide as well as the standard reference for professionals. The second edition featured new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming. The third edition has been revised and updated throughout It includes two completely new chapters, on van Emde Boas trees and multithreaded algorithms, and substan tial additions to the chapter on recurrences (now called "Divide-and-Conquer"). It features improved treatment of dynamic programming and greedy algorithms and a new notion of edge-based flow in the material on flow networks. Many new exercises and problems have been added for this edition.

As of the third edition, this textbook is published exclusively by the MIT Press
Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and Rhetoric at Dartmouth College. Charles E. Leiserson is Professor of Computer Science and Engineering at MIT Ronald L. Rivest is Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT
"In light of the explosive growth in the amount of data and the diversity of computing applications, efficient al gorithms are needed now more than ever. This beautifully written, thoughtfully organized book is the definitive introductory book on the design and analysis of algorithms. The first half offers an effective method to teach and study algorithms; the second half then engages more advanced readers and curious students with compelling material on both the possibilities and the challenges in this fascinating field."
-Shang-Hua Teng, University of Southern California
"Introduction to Algorithms, the 'bible' of the field, is a comprehensive textbook covering the full spectrum of modern algorithms: from the fastest algorithms and data structures to polynomial-time algorithms for seemingly
 tational geometry, and number theory. The revised third edition notably adds a chapter on van Emde Boas trees, one of the most useful data structures, and on multithreaded algorithms, a topic of increasing importance." -Daniel Spielman, Department of Computer Science, Yale University
"As an educator and researcher in the field of algorithms for over two decades, I can unequivocally say that the Cormen book is the best textbook that I have ever seen on this subject. It offers an incisive, encyclopedic, and modern treatment of algorithms, and our department will continue to use it for teaching at both the graduate and undergraduate levels, as well as a reliable research reference."
-Gabriel Robins, Department of Computer Science, University of Virginia
Cover art: Alexander Calder, Big Red, 1959. Sheet metal and steel wire. $74 \times 114 \mathrm{in}$. ($188 \times 289.6 \mathrm{~cm}$.). Collection of Whitne Museum of American Art. Purchase, with funds from the Friends of the Whitney Museum of American Art, and exchange 61.46. Photograph copyright © 2009: Whitney Museum of American Art. © 2009 Calder Foundation, New York/Artists Rights Society (ARS), New York.

The MIT Press

Massachusetts Institute of Technology
Cambridge, Massachusetts 0214^{2}
http://mitpress.mit.edu

Theory of Computation (CS3102) - Syllabus

 A brief history of computing:- Aristotle, Euclid, Archimedes, Eratosthenes
- Abu Ali al-Hasan ibn al-Haytham
- Fibonacci, Descartes, Fermat, Pascal
- Newton, Euler, Gauss, Hamilton
- Boole, De Morgan, Babbage, Ada Agusta

- Venn, Carroll, Cantor, Hilbert, Russell
- Hardy, Ramanujan, Ramsey
- Godel, Church, Turing, von Neumann
- Shannon, Kleene, Chomsky

Theory of Computation Syllabus (continued)

Fundamentals:

- Set theory
- Predicate logic
- Formalisms and notation
- Infinities and countability
- Dovetailing / diagonalization
- Proof techniques
- Problem solving
- Asymptotic growth
- Review of graph theory

Theory of Computation Syllabus (continued)

Formal languages and machine models:

- The Chomsky hierarchy
- Regular languages / finite automata
- Context-free grammars / pushdown automata
- Unrestricted grammars / Turing machines
- Non-determinism
- Closure operators
- Pumping lemmas
- Non-closures
- Decidable properties

The Extended Chomsky Hierarchy

Theory of Computation Syllabus (continued)

Computability and undecidability:

- Basic models
- Modifications and extensions
- Computational universality
- Decidability
- Recognizability
- Undecidability
- Church-Turing thesis
- Rice's theorem

Theory of Computation Syllabus (continued)

NP-completeness:

- Resource-constrained computation
- Complexity classes
- Intractability
- Boolean satisfiability

- Cook-Levin theorem
- Transformations
- Graph clique problem
- Independent sets
- Hamiltonian cycles
- Colorability problems
- Heuristics

Theory of Computation Syllabus (continued)

Other topics (as time permits):

- Generalized number systems
- Oracles and relativization

- Zero-knowledge proofs
- Cryptography \& mental poker
- The Busy Beaver problem
- Randomness and compressibility
- The Turing test
- AI and the Technological Singularity

Generalized Numbers

?
Finitely describable numbers

Theorem: some real numbers are not finitely describable! Theorem: some finitely describable real numbers are not computable!

The Extended Chomsky Hierarchy

Dense infinite time \& space complexity hierarchies Other infinite complexity \& descriptive hierarchies

Overarching Philosophy

- Focus on the "big picture" \& "scientific method"
- Emphasis on problem solving \& creativity
- Discuss applications \& practice
- A primary objective: have fun!

Prerequisites

- Some discrete math \& algorithms knowledge
- Ideally, should have taken CS2102
- Course will "bootstrap" (albeit quickly) from first principles
- Critical: Tenacity, patience

Course Organization

- Exams: probably take home
- Decide by vote
- Flexible exam schedule
- Problem sets:
- Lots of problem solving
- Work in groups! (max size 6 people)
- Not formally graded
- Most exam questions will come from these sets!
- Homeworks:
- Will come from problem sets
- Formally graded
- Readings: papers / videos / books
- Extra credit problems
- In class \& take-home
- Find mistakes in slides, handouts, etc.

"Go for it, Sidney! You've got it! You've got it! Good hands! Don't choke!"
- Course materials posted on Web site www.cs.virginia.edu/robins/theory

Grading Scheme

- Attendance
- Homeworks
- Readings
- Midterm
- Final
- Extra credit

$$
\text { Total: } \quad 110 \%+
$$

Best strategy:

- Solve lots of problems!
- Do lots of readings / EC!
- "Ninety percent of success is just showing up." - Woody Allen

Cheating Policy

- Cheating / plagiarism is strictly prohibited
- Serious penalties for violators
- Please review the UVa Honor Code
- Examples of Cheating / plagiarism:
- Copying of solutions from others / Web
- Sharing of solutions with ot 1 /SWeb
- Cutting-and-pasting fror other people
- Copying article/book/m pvie review from pe ple / Web
- Other people / Web sol ing entir problems ff r you
- Providing other people λ Veb with verbatim olutions
- Submitting answers that yo don't under and!
- This list is not exhaustive!

Midway through the exam, Allen pulls out a bigger brain.

- We have automated cheating / plagiarism detection tools!
- We encourage collaborations / brainstorming
- Lets keep it positive (and not play "gotcha")

Contact Information

Professor Gabriel Robins
Office: 406 Rice Hall
Phone: (434) 982-2207
Email: robins@cs.virginia.edu
Web: www.cs.virginia.edu/robins www.cs.virginia.edu/robins/theo

Course Readings www.cs.virginia.edu/robins/CS_readings.html

Goal: broad exposure to lots of cool ideas \& technologies!

- Required: total of at least 36 items over the semester
- Diversity: minimums in each of 3 categories:

1. Minimum of 15 videos
2. Minimum of 15 papers / Web sites
3. Minimum of 6 books

- More than 36 total is even better! (extra credit)
- Some required items in each category
- Remaining "elective" items should be a diverse mix
- Email all submissions to: homework.cs3102@gmail.com

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

- Required videos:
- Last Lecture, Randy Pausch, 2007

	*
eve	

Required Reading

- "Scale of the Universe", Cary and Michael Huang, 2012

Giant Earthworm

$10^{0.0}$
$\cdot 10^{-24}$ to 10^{26} meters $\Rightarrow 50$ orders of magnitude!

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

- More required videos:
- Claude Shannon - Father of the Information Age, UCTV
- The Pattern Behind Self-Deception, Michael Shermer, 2010

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

- Required articles:
- Decoding an Ancient Computer, Freeth, 2009
- Alan Turing's Forgotten Ideas, Copeland and Proudfoot, 1999
- You and Your Research, Richard Hamming, 1986
- Who Can Name the Bigger Number, Scott Aaronson, 1999

Antikythera computer, 200BC

Alan Turing

Richard Hamming

Scott Aaronson

"BENEDICT CUMBERBATCH IS OUTSTANDING"

"THE BEST BRITISH FILM OF THE YEAR"人权
"AN INSTANT CLASSIC" *****
"A SUPERB THRILLER" $\star \star \star \star$

$t \star t * t t+t$

| M
I A \square

N G A M E

Basic Concepts and Notation

A set is formally an undefined term, but intuitively it is a (possibly empty) collection of arbitrary objects. A set is usually denoted by curly braces and some (optional) restrictions. Examples of sets are $\{1,2,3\}$, $\{$ hi, there $\}$, and $\{\mathrm{k} \mid \mathrm{k}$ is a perfect square $\}$. The symbol \in denotes set membership, while the symbol \notin denotes set non-membership; for example, $7 \in\{p \mid p$ prime $\}$ states that 7 is a prime number, while $q \notin\{0,2,4,6, \ldots\}$ states that q is not an even number. Some common sets are denoted by special notation:

The natural numbers:	$\mathbb{N}=\{1,2,3, \ldots\}$
The integers:	$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
The rational numbers:	$\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}$
The real numbers:	$\mathbb{R}=\{x \mid x$ is a real number $\}$
The empty set:	$\varnothing=\{ \}$

Discrete Math Review Slides

Required Readings

www.cs.virginia.edu/robins/CS_readings.html

- Required books:
- "How to Solve It", Polya, 1957
- "Infinity and the Mind", Rucker, 1995
- "Godel, Escher, Bach", Hofstadter, 1979
- "The Demon-Haunted World", Sagan, 2009
- "What If", Munroe, 2014

SERIOUS SCIENTIFIC answers to Absurd Hypothetical Questions

what if?

RANDALL MUNROE read by wil wheaton - unabridged creator of xkcd

Required Readings

 www.cs.virginia.edu/robins/CS_readings.html- Remaining videos / articles / books are "electives"
- At least 2 submissions per week (due 11:59pm Mon)
- At most 2 submissions per day
- This policy is intended to help you avoid "cramming"
- "Cramming" is highly correlated with cheating!
- Length: 1-2 paragraphs per article / video 1-2 pages per book
- Books are worth more credit than articles / videos
- Additional readings beyond 36 are welcome! (extra credit)
- Email all submissions to: homework.cs3102@ gmail.com

Other "Elective" Readings

 www.cs.virginia.edu/robins/CS_readings.html- Theory and Algorithms:
- Who Can Name the Bigger Number, Scott Aaronson, 1999
- The Limits of Reason, Gregory Chaitin, Scientific American, March 2006, pp. 74-81.
- Breaking Intractability, Joseph Traub and Henryk Wozniakowski, Scientific American, January 1994, pp. 102-107.
- Confronting Science's Logical Limits, John Casti, Scientific American, October 1996, pp. 102-105.
- Go Forth and Replicate, Moshe Sipper and James Reggia, Scientific American, August 2001, pp. 34-43.
- The Science Behind Sudoku, Jean-Paul Delahaye, Scientific American, June 2006, pp. 80-87.
- The Traveler's Dilemma, Kaushik Basu, Scientific American, June 2007, pp. 90-95.

Other "Elective" Readings

 www.cs.virginia.edu/robins/CS_readings.html- Biological Computing:
- Computing with DNA, Leonard Adleman, Scientific American, August 1998, pp. 54-61.
- Bringing DNA Computing to Life, Ehud Shapiro and Yaakov Benenson, Scientific American, May 2006, pp. 44-51.
- Engineering Life: Building a FAB for Biology, David Baker et al., Scientific American, June 2006, pp. 44-51.
- Big Lab on a Tiny Chip, Charles Choi, Scientific American, October 2007, pp. 100-103.
- DNA Computers for Work and Play, Macdonald et al, Scientific American, November 2007, pp. 84-91.

Other "Elective" Readings

 www.cs.virginia.edu/robins/CS_readings.html- Quantum Computing:
- Quantum Mechanical Computers, Seth Lloyd, Scientific American, 1997, pp. 98-104.
- Quantum Computing with Molecules, Gershenfeld and Chuang, Scientific American, June 1998, pp. 66-71.
- Black Hole Computers, Seth Lloyd and Jack Ng, Scientific American, November 2004, pp. 52-61.
- Computing with Quantum Knots, Graham Collins, Scientific American, April 2006, pp. 56-63.
- The Limits of Quantum Computers, Scott Aaronson, Scientific American, March 2008, pp. 62-69.
- Quantum Computing with Ions, Monroe and Wineland, Scientific American, August 2008, pp. 64-71.

Other "Elective" Readings

 www.cs.virginia.edu/robins/CS_readings.html- History of Computing:
- The Origins of Computing, Campbell-Kelly, Scientific American, September 2009, pp. 62-69.
- Ada and the First Computer, Eugene Kim and Betty Toole, Scientific American, April 1999, pp. 76-81.
- Security and Privacy:
- Malware Goes Mobile, Mikko Hypponen, Scientific American, November 2006, pp. 70-77.
- RFID Powder, Tim Hornyak, Scientific American, February 2008, pp. 68-71.
- Can Phishing be Foiled, Lorrie Cranor, Scientific American, December 2008, pp. 104-110.

Other "Elective" Readings www.cs.virginia.edu/robins/CS_readings.html

- Future of Computing:
- Microprocessors in 2020, David Patterson, Scientific American, September 1995, pp. 62-67.
- Computing Without Clocks, Ivan Sutherland and Jo Ebergen, Scientific American, August 2002, pp. 62-69.
- Making Silicon Lase, Bahram Jalali, Scientific American, February 2007, pp. 58-65.
- A Robot in Every Home, Bill Gates, Scientific Am, January 2007, pp. 58-65.
- Ballbots, Ralph Hollis, Scientific American, October 2006, pp. 72-77.
- Dependable Software by Design, Daniel Jackson, Scientific American, June 2006, pp. 68-75.
- Not Tonight Dear - I Have to Reboot, Charles Choi, Scientific American, March 2008, pp. 94-97.
- Self-Powered Nanotech, Zhong Lin Wang, Scientific American, January 2008, pp. 82-87.

Other "Elective" Readings www.cs.virginia.edu/robins/CS_readings.html

- The Web:
- The Semantic Web in Action, Lee Feigenbaum et al., Scientific American, December 2007, pp. 90-97.
- Web Science Emerges, Nigel Shadbolt and Tim Berners-Lee, Scientific American, October 2008, pp. 76-81.
- The Wikipedia Computer Science Portal:
- Theory of computation and Automata theory
- Formal languages and grammars
- Chomsky hierarchy and the Complexity Zoo
- Regular, context-free \&Turing-decidable languages
- Finite \& pushdown automata; Turing machines
- Computational complexity
- List of data structures and algorithms

Other "Elective" Readings

 www.cs.virginia.edu/robins/CS_readings.html- The Wikipedia Math Portal:
- Problem solving
- List of Mathematical lists
- Sets and Infinity
- Discrete mathematics
- Proof techniques and list of proofs
- Information theory \& randomness
- Game theory
- Mathematica's "Math World"

Email all submissions to: homework.cs3102@gmail.com

The Problem with Wikipedia:

WIkiFRIENDS:
I REALIY LIKED THAT MOVIE.

ME TOO.

Good Advice

- Ask questions ASAP
- Solve problems ASAP
- Work in study groups
- Do not fall behind
- "Cramming" won't work
- Do lots of extra credit
- Attend every lecture
- Visit class Website often
- Solve lots of problems

Goal: Become a more effective problem solver!

Email all submissions to: homework.cs3102@gmail.com

Problem: Can 5 test tubes be spun simultaneously in a 12 -hole centrifuge in a balanced way?

- What does "balanced" mean?
- Why are 3 test tubes balanced?
- symmetry.
- Can you merge solutions?
- Superposition.
-Linearity! $f(\mathrm{x}+\mathrm{y})=f(\mathrm{x})+f(\mathrm{y})$
- Can you spin 7 test tubes?
- Complementarity!

- Empirical testing...

Problem: $1+2+3+4+\ldots+100=$?

Proof: ndactign...

$$
\begin{aligned}
& =(100 * 101) / 2 \\
& =5050
\end{aligned}
$$

$1+2+3+\ldots+99+100$
$100+99+98+\ldots+2+1$
$101+101+101+\ldots+101+101=100 * 101$

Drawbacks of Induction

- You must a priori know the formula / result
- Easy to make mistakes in inductive proof
- Mostly "mechanical" - ignores intuitions
- Tedious to construct
- Difficult to check
- Hard to understand
- Not very convincing
- Generalizations not obvious

- Does not "shed light on truth"
- Obfuscates connections

Conclusion: only use induction as a last resort! (i.e., rarely)

Problem: $(1 / 4)+(1 / 4)^{2}+(1 / 4)^{3}+(1 / 4)^{4}+\ldots=$?

$$
\sum_{i=1}^{\infty} \frac{1}{4^{i}}=\text { ? }
$$

Extra Credit:
Find a short, geometric, induction-free proof.

Problem: $(1 / 4)+(1 / 4)^{2}+(1 / 4)^{3}+(1 / 4)^{4}+\ldots=$?
Find a short, geometric, induction-free proof.

$$
\sum_{i=1}^{\infty} \frac{1}{4^{i}}=\frac{1}{3}
$$

Problem: $(1 / 8)+(1 / 8)^{2}+(1 / 8)^{3}+(1 / 8)^{4}+\ldots=$?

$$
\sum_{i=1}^{\infty} \frac{1}{8^{i}}=\text { ? }
$$

Extra Credit:

Find a short, geometric, induction-free proof.

Problem: $(1 / 8)+(1 / 8)^{2}+(1 / 8)^{3}+(1 / 8)^{4}+\ldots=$?
Find a short, geometric, induction-free proof.

$$
\sum_{i=1}^{\infty} \frac{1}{8^{i}}=\frac{1}{7}
$$

Problem: $1^{3}+2^{3}+3^{3}+4^{3}+\ldots+n^{3}=$?

Extra Credit:
 find a short, geometric, induction-free proof.

[^0]
Problem: Prove that $\sqrt{2}$ is irrational.

Extra Credit: find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Einstein discovers that time is actually money.

Problem: Prove that there are an infinity of primes.

Extra Credit: Find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

I HAVE

Problem: True or false: there arbitrary long blocks of consecutive composite integers.

Extra Credit: find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Problem: Are the complex numbers closed under exponentiation ? E.g., what is the value of i ?

Problem: Does exponentiation preserve irrationality? i.e., are there two irrational numbers x and y such that x^{y} is rational?

Extra Credit: find a short, induction-free proof.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Problem: Solve the following equation for X :

where the stack of exponentiated x's extends forever.

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

"Mr. Osborne, may I be excused? My brain is full."

Problem: For the given infinite ladder of resistors of resistance R each, what is the resistance measured between points x and y ?

- What approaches fail?
- What techniques work and why?
- Lessons and generalizations

Historical Perspectives

Historical Perspectives

- Knowing the "big picture" is empowering
- Science and mathematics builds heavily on past
- Often the simplest ideas are the most subtle
- Most fundamental progress was done by a few
- We learn much by observing the best minds
- Research benefits from seeing connections
- The field of computer science has many "parents"
- We get inspired and motivated by excellence
- The giants can show us what is possible to achieve
- It is fun to know these things!

"Standing on the Shoulders of Giants"

- Aristotle, Euclid, Archimedes, Eratosthenes
- Abu Ali al-Hasan ibn al-Haytham
- Fibonacci, Descartes, Fermat, Pascal
- Newton, Euler, Gauss, Hamilton
- Boole, De Morgan
- Babbage, Ada Lovelace
- Venn, Carroll

"Standing on the Shoulders of Giants"

- Cantor, Hilbert, Russell
- Hardy, Ramanujan, Ramsey
- Gödel, Church, Turing
- von Neumann, Shannon
- Kleene, Chomsky
- Hoare, McCarthy, Erdos
- Knuth, Backus, Dijkstra Many others...

Bertrand Russell (1872-1970)

Gauss Newton Cauchy Poincare Riemann Cantor Cayley Hamilto Eisenstein Pascal Abel Hilbert Klein Leibniz Descartesal(E/F);

Galois

$$
\mathrm{E}_{\mathrm{H}}=\{\mathrm{x} \in \mathrm{E} \mid \phi(\mathrm{x})=\mathrm{x} \forall \phi \in \mathrm{H}\}
$$ Mobius Jacob Jacob Johann Daniel Dirichle Fermat Pythagoras Laplace

$E_{H}=\{x \in E \mid \phi(x)=x \forall \phi \in H\}$
$\mathrm{f}^{\prime}(c)(b-a)=f(b)-f(a)$

$$
\begin{aligned}
& \mathrm{u}_{u}=\mathrm{c}^{2} u_{x x} ; 0<x<1 \\
& u(0, t)=0=u(1, t)
\end{aligned}
$$

$$
\frac{\partial^{2} u}{}+\frac{\partial^{2} u}{}+\partial^{2} u=0
$$ Lagran Kronec Jacobi Bolyai

Lobatcl Noethe Germain Euclid Legend

Bernoulli ker

Archimedes $+b)^{n}=a^{n}+n a^{-1-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\frac{n(n-1)(n-2)}{3!} a^{n-3} b^{3}+$.
Euler
$(p / q)(q / p)=-1^{(p-1)(q-1) / 4}$
$n a^{n-1} b+\frac{n(n-1) a^{n-2} b^{2}}{2!}+\frac{n(n-1)(n-2) a^{n-3} b^{3}+.}{3!}$

$$
\begin{aligned}
& f_{b}^{a} f(x) d x=F(b)-F(a) ; \quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
& \frac{d F(x)}{d x}=f(x) \\
& F(s)=s^{-2}
\end{aligned}
$$

$($ abcdef $)=(a b)(a c)(a d)(a e)(a f)$
$(\mathrm{a} / \mathrm{p})=-1^{\mathrm{rp}(\mathrm{a})}$
$\int_{\gamma} f(z) d z=0$ $|\mathbf{a} \cdot \mathbf{b}| \leq|a||\mathbf{b}|$

Making philosophy accessible: Pop-up Plato

Historical Perspectives

Aristotle (384BC-322BC)

- Founded Western philosophy
- Student of Plato
- Taught Alexander the Great
- "Aristotelianism"
- Developed the "scientific method"
- One of the most influential people ever
- Wrote on physics, theatre, poetry, music, logic, rhetoric, politics, government, ethics, biology, zoology, morality, optics, science, aesthetics, psychology, metaphysics, ...
- Last person to know everything known in his own time!
"Almost every serious intellectual advance has had to begin with an attack on some Aristotelian doctrine." - Bertrand Russell

REPUBLOUF pumade駺忽

5 5 Cenio del Descubrimiento de Américo. 1492 -1992

"What I especially like about being a philosopher-scientist is that I don't have to get my hands dirty."

Historical Perspectives

Euclid (325BC-265BC)

- Founder of geometry \& the axiomatic method
- "Elements" - oldest and most impactful textbook
- Unified logic \& math
- Introduced rigor and

"Euclidean" geometry
- Influenced all other fields of science: Copernicus, Kepler, Galileo, Newton, Russell, Lincoln, Einstein \& many others

Imprinted at London by Ioln Daye.

Euclid's Straight-Edge and Compass Geometric Constructions

Euclid's Axioms

1: Any two points can be connected by exactly one straight line.

2: Any segment can be extended indefinitely into a straight line.

3: A circle exists for any given center and radius.
4: All right angles are equal to each other.
5: The parallel postulate: Given a line and a point off that line, there is exactly one line passing through the point, which does not intersect the first line.

The first 28 propositions of Euclid's Elements were proven without using the parallel postulate!

Theorem [Beltrami, 1868]: The parallel postulate is independent of the other axioms of Euclidean geometry.

The parallel postulate can be modified to yield non-Euclidean geometries!

Non-Euclidean Geometries

Hyperbolic geometry: Given a line and a point off that line, there are an infinity of lines passing through that point that do not intersect the first line.

- Sum of triangle angles is less than 180°
- Different triangles have different angle sum
- Triangles with same angles have same area
- There are no similar triangles
- Used in relativity theory

Non-Euclidean Geometries

Spherical / Elliptic geometry: Given a line and a point off that line, there are no lines passing through that point that do not intersect the first line.

- Lines are geodesics - "great circles"
- Sum of triangle angles is $>180^{\circ}$
- Not all triangles have same angle sum
- Figures can not scale up indefinitely
- Area does not scale as the square
- Volume does not scale as the cube
- The Pythagorean theorem fails
- Self-consistent, and complete

You buclidean
Panc Ceometry
sind
Arigomometry
(3)
IT (IISNII

Euclidean
and
Non-Euclidean Geometries

M. Helena Noronha

EUCLIDEAN AND NON-EUCIDIDEAN GEOMETRY AN ANALYTIC APPROACH Patrick J. Ryan

NON-EUCLIDEAN GEOMETRY

ROBERTO BONOLA

Undergraduate Texts in Mathematics
George E. Martin
The Foundations of Geometry and the Non-Euclidean Plane

(9) springer

Marcel Berger

A Panoramic
View of Riemannian Geometry

Mathematics and Its Applications

PRINCETOY LANDMARKS in MATHENATICS

Riemenniman Ceametry

RIEMANNIAN GEOMETRY

Founders of Non-Euclidean Geometry

János Bolyai (1802-1860)

Nikolai Ivanovich Lobachevsky (1792-1856)

Non-Euclidean Non-Orientable Surfaces

THE GEOMETRY OF EVERYDAY LIFE

TUNA SANDWICH

SNEAKER

Grandma

Problem: A man leaves his house and walks one mile south. He then walks one mile west and sees a Bear. Then he walks one mile north back to his house. What color was the bear?

Problem: Is the house location unique?

[^0]: "Yes, yes, I know that, Sidney ... everybody knows that! But look: Four wrongs squared, minus two wrongs to the fourth power, divided by this formula, do make a right."

