
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

Filling Algorithms and Analyses
for Layout Density Control

Andrew B. Kahng, Gabriel Robins, Member, IEEE, Anish Singh, and Alexander Zelikovsky

Abstract-In very deep-submicron very large scale integration
(VLSI), manufacturing steps involving chemical-mechanical pol-
ishing (CMP) have varying effects on device and interconnect
features, depending on local characteristics of the layout. To
reduce manufacturing variation due to CMP and to improve
performance predictability and yield, the layout must be made
uniform with respect to certain density criteria, by inserting "fill"
geometries into the layout. To date, only foundries and special
mask data processing tools perform layout post-processing for
density control. In the future, better convergence of performance
verification flows will depend on such layout manipulations being
embedded within the layout synthesis (place-and-route) flow. In
this paper, we give the first realistic formulation of the filling
problem that arises in layout optimization for manufacturability.
Our formulation seeks to add features to a given process layer,
such that 1) feature area densities satisfy prescribed upper and
lower bounds in all windows of given size and 2) the maximum
variation of such densities over all possible window positions
in the layout is minimized. We present efficient algorithms for
density analysis, notably a multilevel approach that affords user-
tunable accuracy. We also develop exact solutions to the problem
of fill synthesis, based on a linear programming approach. These
include a linear programming (LP) formulation for the fixed-
dissection regime (where density bounds are imposed on a pre-
determined set of windows in the layout) and an LP formulation
that is automatically generated by our multilevel density analysis.
We briefly review criteria for fill pattern synthesis, and the paper
then concludes with computational results and directions for
future research.

Index Terms-Chemical-mechanical polishing (CMP), density
control, layout verification, manufacturability, metal fill, physical
design, yield enhancement.

I. INTRODUCTIONA S CMOS technology advances according to the Semi-
conductor Industry Association National Technology

Roadmap for Semiconductors [24] and moves into the 180-nm
generation and beyond, foundry amortization becomes a dom-
inant business concern, and manufacturing cost increasingly
drives design [17]. To maximize yield, process engineers
must achieve predictability and uniformity of manufactured

Manuscript received October 19, 1998. This work was supported by a grant
from Cadence Design Systems, Inc. The work of G. Robins was supported
by a Packard Foundation Fellowship and by a National Science Foundation
(NSF) Young Investigator Award MIP-9457412. This paper was recommended
by Associate Editor M. Wong.

A. B. Kahng is with the University of California, Los Angeles, Department
of Computer Science, Los Angeles, CA 90095-1596 USA.

G. Robins and A. Singh are with the Department of Computer Science,
University of Virginia, Charlottesville, VA 22903-2442 USA.

A. Zelikovsky is with the Department of Computer Science, Georgia State
University, Atlanta, GA 30303 USA.

Publisher Item Identifier S 0278-0070(99)02318-0.

device and interconnect attributes, e.g., dopant concentrations,
channel lengths, interconnect dimensions, contact shapes
and parasitics, and interlayer dielectric thicknesses. A total
variability budget for the design is distributed among such
attributes. In very deep submicron technologies, large process
windows and uniform manufacturing is difficult [5], [10],
[22], [15], [17], [7], and the manufacturing process has an
increasingly constraining effect on physical layout design
and verification. Many physical design methods have been
proposed to address various manufacturing issues such as
registration errors, photolithographic random effects, etc.; see
such works as [16], [7] for reviews.

In this paper, we address the problem of controlling the
manufacturing variation that is due to chemical-mechanical
polishing (CMP) [15], [19], [29]. CMP is the procedure by
which wafers are polished using a rotating pad and slurry to
achieve the planarized surfaces on which succeeding process-
ing steps can build. The key observations are as follows.

* The polishing environment involves large pad downforcel
and a significant variability due to pad wear. Hence,
control of polish depth (i.e., final thickness of the layer
being polished) is extremely difficult.

* The elasticity of the polishing pad compounds the vari-
ability problem. Notably, in oxide polishing of interlayer
dielectrics (oxide CMP), the pad conforms to local topog-
raphy and overpolishes empty oxide areas that have no
underlying metal features (a phenomenon called dishing);
on the other hand, areas with dense underlying metal
features are underpolished.

* A large fraction of the die's variability budget is used
up by the oxide thickness variation [8], [26]. Interlayer
dielectric thickness variation of 4000 angstroms is com-
mon, and this can severely affect estimates of electrical
performance [13], [26], [27].

* The problem of CMP variation is rapidly worsening
today, as industry moves to shallow-trench isolation
(STI) sub-0.25-ji processes, where CMP is used to
planarize glass [6], [18], [25]. For such processes, as
well as for new inlaid-metal (e.g., damascene copper)
processes [4], CMP variation must be even more tightly
controlled.

Recent work in the field of statistical metrology shows that
fundamentally, CMP variation is controlled if the local feature
density is controlled [20], [28]. Fig. 1 illustrates the local

'Typical polish downforces in oxide CMP range from 4 to 10 lb/in
2

,
depending on slurry/oxidizer concentration and process considerations. For
200-mm substrates, this results in a total wafer downforce of up to 500 lb [4].

0278 0070/99$10.00 o 1999 IEEE

445

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

cu

-4

:2

-o
7C

Fig. 1. Relationship between oxide thickness and local feature density.

dependency of oxide thickness on feature density, which is
roughly monotone. By reducing the variation of local feature
density over the die, the variation of oxide thickness can be
reduced.

The definition of "local" is determined by the length scale
at which feature density impacts oxide thickness, and cor-
responds to the "window size" within which feature density
must be controlled. For oxide CMP, this length scale has been
estimated to be on the order of 1-3 mm, depending on CMP
pad material, slurry composition, etc. [9], [20], [28].

To minimize the impact of CMP variation on device yield,
foundries have imposed density rules for features on active
and metal layers, typically starting with mature 0.35-ji process
generations. The purpose of the density rules is, of course, to
make the layout more uniform. Many process layers, including
diffusion and thin-ox, can have associated density rules. As
examples, in 0.35 gtm and below, one major foundry requires
overall feature area density on diffusion layers to be between
0.25 and 0.40, and overall density on any metal layer to be
between 0.40 and 0.70; another major foundry requires overall
metal layer area density to be at least 0.35. Density rules
and layout post-processing approaches may differ in various
contexts (e.g., ASIC versus high-end microprocessor design)
due to tradeoffs between device performance and predictability
[1], [30].

To satisfy density rules, a post-processing step adds fill ge-
ometries into the original layout. Traditionally, only foundries
or specialized mask data processing tools have performed the
post-processing of layouts needed to achieve this uniformity.
Today, with more customer-owned tool flows, and with the
need for early and accurate performance verification, physical
verification tools at the back end of the IC design flow are
becoming aware of density-driven layout rules.2

We observe that the state of the art in density control for
CMP leaves much to be desired.

* Many foundry density rules still constrain only the aver-
age overall feature density on a given layer; the issue of
local variation in feature density is ignored.

* Current approaches to analysis of layout density do not
actually find the true extremal window densities in the

2
Note that without an accurate estimate of the filling that will be added

later at the foundry, all RC extraction, delay calculation, timing, noise,
and reliability analyses done during physical design performance verification
may be highly suspect. The Appendix presents analyses showing the extent
to which metal filling can affect the results of capacitance extraction and
performance analysis. A broken design flow could result if the effects of
filling are not properly modeled in earlier design stages.

446

layout. Rather, they find the extremal window densities
over a fixed set of window positions using the "fixed
r-dissection" approach that we discuss below. This can
result in substantial error.
Current methods for inserting fill geometries into the
layout do not actually minimize the maximum variation
in layout density between windows of the layout. Rather,
simple Boolean layer processing techniques are applied to
insert fill patterns into any empty region that is sufficiently
large.

These weaknesses can perhaps be attributed to the genealogy
of today's software tools for density control. Such tools are
typically evolved from physical verification tools and mask
processing tools, where the mindset is chiefly concerned with
verification rather than data modification, with local rules
rather than global rules, and with Boolean rules rather than
context-dependent rules. By contrast, our work addresses all
of the above weaknesses: 1) our formulation of the filling
problem seeks to minimize density variation over all possible
windows, 2) we develop a multilevel density analysis approach
that is more accurate and faster than the "fixed-dissection"
approach, and 3) we develop a linear programming approach
that considers and optimizes globally the amounts of fill to be
added into each region of the layout.

Notation and Problem Formulation
The following notation and definitions are used.

* The input is a layout consisting of rectangular geometries,
with all sides having length a multiple of c (the minimum
feature width or spacing).3 The value of c is typically 25
to 50 times the manufacturing unit.

* n - side of the layout region. If the layout region is the
entire die, n might typically be about 50 000 c. Note
that c does not imply that n/c is "the size of the grid":
the only grid that is guaranteed is the manufacturing grid,
which is typically 25 to 50 times smaller than c.

* w - fixed window size. The window is the moving square
area over which the layout density rules apply. A typical
window size would be w = 10 000 - c.

* k - the complexity of the original layout, i.e., the total
number of rectangles in the input.

* U - area (or perimeter) density upper bound.4 expressed
as a real number 0 < U < 1. Each w x w region of the
layout must contain total area of features <U- w2 .

3Without loss of generality, we will assume that rectilinear geometries have
been fractured into, say, horizontally maximal rectangles. It is also possible
to generalize these analyses and algorithms from rectangles to trapezoids.
Standard industry tools, such as Cadence Dracula, will fracture geometries
into horizontal trapezoids [3].

4
1t turns out that most of the results and algorithms of this paper easily

apply to either the area density or perimeter density regimes. Thus, we will
generically indicate both the area and perimeter density upper bounds with
U, and lower bounds with L. In practice, the maximum density is attained
in memory cores, and the bound U is set with respect to this maximum
density. To our understanding, no foundry yet imposes both area density and
perimeter density bounds simultaneously on a given layer [30]. However,
such simultaneous constraints may be required in the future (e.g., for reverse-
active area masks), and we analyze fill pattern synthesis for such a situation
in Section IV.

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

* L - area (or perimeter) density lower bound, expressed
as a real number 0 < L < U < 1. Each w x w region of
the layout must contain total area of features >L- w 2

.

* B - buffer distance. Fill geometries cannot be introduced
within distance B of any layout feature.

* slack(W) - slack of a given w x w window W, i.e.,
the maximum amount of fill area that can be introduced
into W.5

* An extremal-density window is a window with either
maximum density or minimum density over all windows
in the layout. If an algorithm applies to either maximum-
density or minimum-density analysis, we generically refer
to extremal-density analysis.

Given the parameters above, we define the Filling Problem as
follows

6
:

The Filling Problem: Given a design rule-correct layout
geometry of k disjoint rectilinear rectangles in an n x n
layout region, minimum feature size c, window size
w < n, buffer distance B, and area (or perimeter)
density lower bound L and upper bound U, add fill
geometries to create a filled layout that satisfies the
following conditions:

1) circuit function and design rule-correctness are pre-
served;

2) no fill geometry is within distance B of any layout
feature;

3) no fill is added into any window that has density >U
in the original layout;

4) for any window that has density <U in the original
layout, the filled layout density is >L and <U; and

5) the minimum window density in the filled layout is
maximized.

Condition 5) corresponds to what we call the Min-Variation
Formulation, since it minimizes the difference between min-
imum and maximum window density in the filled layout.
Condition 3) implies that, without loss of generality, no
window in the original layout has density > U (otherwise, such
a window would have its contents fixed, so that it could not
be changed by the filling process).

Organization: Our paper is organized to reflect three major
functions in density control for CMP: 1) window density
analysis, 2) determining the optimal fill amount to be inserted
in various regions of the layout, and 3) actual insertion of the
appropriate fill pattern.

Section II describes several ways of finding extremal win-
dow density within the layout. We first describe the fixed-
dissection approach, where a dissection partitions the layout
into disjoint windows, and windows of only a finite number of
(overlapping) fixed dissections are taken into account. To our
understanding, this is the type of analysis afforded by today's

5
The value of slack (W) will depend on the maximum possible fill pattern

density. That is, total empty area outside the buffer distance B from any
feature should be scaled by the maximum possible fill density to yield the
slack of the window.

6Note that this is not merely a satisficing formulation where we seek only
a feasible solution, but rather an optimization formulation where we seek a
best solution, as dictated by the particular underlying VLSI technology.

physical verification tools. We give a tight analysis of the error
inherent in fixed-dissection extremal-density analysis, i.e., it
yields only an approximation of the global extremal window
density. We then describe and analyze an exact method for
finding the extremal global window density. Finally, we de-
velop a multilevel density analysis approach with user-tunable
accuracy; this method is more accurate, and faster, than the
fixed-dissection approach.

Section III gives new linear programming based methods
for determining the optimal fill area to be inserted in the layout.
We first address the fixed-dissection regime. We then incorpo-
rate results of the multilevel density analysis into a variant
LP formulation. Finally, an LP formulation is proposed which
minimizes an estimate of global window density variation.

Section IV describes several approaches to fill pattern syn-
thesis. For example, we note the possibilities of rectangle-
based and basket-weave patterns on given pitches, explore the
regime where both area and perimeter density bounds must
be satisfied, and suggest appropriate filling patterns for such
situations.

Section V describes implementation and computational ex-
perience, and Section VI concludes with directions for future
research.

II. EXTREMAL DENSITY ANALYSIS

We first develop algorithms for density analysis (with re-
spect to either area or perimeter). Given a fixed layout and
window size, we seek to determine a maximum-density and
a minimum-density window [i.e., the algorithms will return
extremal-density window(s)].7 The density analysis problem
is stated as follows:

Extremal-Density Window Analysis: Given a fixed
window size w and a set of k disjoint rectangles in an
n x n layout region, find an extremal-density w x w
window in the layout.

This section presents a series of algorithms for the extremal-
density window analysis problem. We first consider a fixed-
dissection approach when windows from several fixed dis-
sections of the layout are taken into account. To our un-
derstanding, this approximate method is the type of analysis
provided by commercial verification tools. Several algorithms
are then proposed for an optimal solution (i.e., over all
possible windows) of the extremal-density window analysis
problem.

A. Fixed-Dissection Density Analyses

In practice, feature density bounds are enforced only within
a fixed set of w x w windows corresponding to a dissection of
the layout region into (n/w)2 nonoverlapping w x w windows.
Since bounding the density in windows of a dissection can
incur error (i.e., other windows not in the dissection could
violate the density bound), a common practice is to enforce
density bounds in 772 dissections, where r determines the
"phase shift" w/ r by which the dissections are offset from

7
These density analysis methods can, if desired, report all violations of

density bounds in the layout within the same time complexity needed to report
a single extremal-density window.

447

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

y

windows

w
* lo

w/r

tile

n

X

Fig. 2. The layout is partitioned by r
2

(r = 4) distinct dissections, each
dissection having window size w x w, into ((nr)/(w)) x ((nr)/(w)) tiles.
Each w x w window (dark) consists of r

2
tiles. A pair of windows from

different dissections may overlap.

each other. In other words, density bounds are enforced only
for windows from the fixed r-dissection defined below.

Definition: A fixed r-dissection of the layout is the set
of w x w windows having bottom-left corners at points
(i (w/7), j ((w/7)), for i, j = 0,1, * *, v((n/w) -1), where
r is an integer divisor of w.

A fixed r-dissection divides the layout into (nr/w) x
(nr/w) tiles, each of size (w/r) x (w/r) (see Fig. 2). In other
words, each w x w window in a fixed r-dissection consists of
r2 nonoverlapping tiles. For instance, the bottom-left w x w-
window corresponds to an r x r grid of tiles whose origins
are at grid coordinates (i(w/7), j(w/7)), i,j = 0, ,7'; see
Fig. 2. In practice, a density upper bound for arbitrarily located
windows is sought by enforcing density upper bounds on all
windows in a fixed r-dissection.8

Unfortunately, it turns out that a fixed-dissection scheme for
small 7 cannot guarantee any nontrivial density bounds over
all w x w windows (as opposed to only the fixed tiles in the
dissection). For 7 = 1, even if the area density of each tile
in the fixed r-dissection is guaranteed to be at least 75%, a
completely empty w x w tile can exist. Conversely, if the area
density of each window in the fixed r-dissection is guaranteed
to be at most 25%, a completely full w x w window can exist.

On the other hand, the analysis of fixed r-dissections can
be done much faster than the analysis of all eligible w x w
windows. First, we initialize an array of (n/w) x (n/w)
counters associated with all of the fixed r-dissection windows,
and then for each rectangle R, we increment the counters of
the windows intersecting R by the area of the intersection. In
case of r > 1, the above procedure is repeated r2 times in
order to check all (r (n/w))2 windows.

8 To the best of our knowledge, commercial tools (Avant! Hercules, Mentor
Calibre, and Cadence Dracula/Vampire) provide only layout density checking
with respect to fixed r-dissections. E.g., the Cadence Dracula COVERAGE
command [3] allows checking of feature area density upper and lower bounds
in w x w windows that occur at a fixed offset from each other (e.g., an offset
of 100 pm with w = 500 pm corresponds to r = 5).

A

(v 1) 2 L+4(v 1) ia{
1'2 L + , 2)mlla,

+ nax{L -0.75, 0}

and the exact upper bound equals

(v + 1)2 U 4(-1) maxtU
7.2- 7.2

4

0.5, 0}

0.5,0}

mnax{U -0.25, 0}

Proof: Let the bottom-left corner of a w x w window W
have coordinates (a, b). Then W is covered by (r + 1)2 fixed
r-dissection tiles of size (w/7') x (w/7') which form a square
with diagonal corners (La/(w/r)j (wr), [b(w/r)j (w/r))
and ([(a + w)/(w/r)j(w/r), L(b + w)/(w/r)j(w/r)). In
general, all these (r + 1)2 tiles can be classified into three
groups: (r- 1)2 tiles which are completely covered by the
window W; 4(7'- 1) tiles which intersect the boundary of
W but do not contain the corners of W; and four tiles each
containing a corner of W; see Fig. 3(a). Separately compute
the contribution of each group to the lower bound on area
density of the window W. The first group contributes (r- 1)2

tiles with density at least L. If the area density L > 0.5, then
the second group contributes 4(r - 1) tiles with density at least
(L -0.5); and if L > 0.75, then the third group contributes
four tiles with density at least (L -0.75). The total of these
contributions yields the claimed lower bound on area density.

We now compute the upper bound on filled area in the
window W. Without loss of generality, we assume that each
fixed r-dissection tile is If-filled. Clearly, the filled area in
W cannot be more than the total filled area in all (r + 1)2

tiles; this is at most ((r + 1)2)/(r 2) * U. We then subtract the
filled area not covered by W that is possibly contained in tiles
from the second and third groups. If U > 0.5, each tile in

448

I

The rest of this subsection seeks ways in which density
bounds for arbitrarily located windows can be enforced by
density bounds on fixed r-dissection windows. We compare
two ways of applying simple local rules to windows having
bottom-left corners at points (i ' (w/r),j ' (w/r)), ij =

0, 1, * * *, (n/w) for some 7 > 1 such that (w/r) is an
integer. First, we consider what happens when the upper
and lower density bounds are enforced in each individual
(w/v) x (w/v) tile of the fixed r-dissection (Theorem 1),
and then we derive upper/lower bounds in the case when
we enforce density bounds for standard w x w windows
(Theorem 2). For example, if the area density is enforced to
be at least 25% (i.e., L = 0.25), then (for r = 5) the first
rule guarantees 16% area density while the standard method
can guarantee only 6%. The bounds from Theorems 1 and
2 can help to choose appropriate combinations of fixed r-
dissections and design rules corresponding to specified area
density lower/upper bounds.

Theorem 1: Suppose all (w/v) x (w/v) fixed r-dissection
tiles with bottom-left corners at points (i (W/0),j (W/0)),
ij = 0, 1 r((n/w)- 1), have area density at least L and
at most U. Then the exact lower bound on the area density of
any w x w windows equals

i I i i I

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

(a)

K1 R
MM

(b)

Fig. 3. Worst case analysis of two design rules when density bounds are
enforced (a) in all (wir) x (w/r)-sized tiles of a fixed r-dissection, and (b)
in all w x w-sized tiles with bottom-left corners at points (i (wlr), j (wir)),
i, i = 0,1, , (n/w) (this corresponds to r

2
dissections into w x w-sized

windows). For the first rule (a) the window W with dashed boundary contains
(r - 1)2 tiles with thick boundary (the first group) and the highlighted area
(the second and third groups) can be completely or partially filled. For the
second rule (b) the window W with dashed boundary can contain a square
region R (the empty area in the center of W) that overlaps with any fixed
r-dissection w x w window F (square with thick boundary) having largest
intersection with W.

the second group contains area not covered by W with the
density at least I -0.5. If IT > 0.25, each of the four tiles
from the third group contains area not covered by W with the
area density at least U -0.25. We, thus, obtain the claimed
upper bound on area density.

To prove that the upper and lower bounds are tight we need
to present an instance for which these bounds hold. It is easy

to check that this happens when the bottom-left corner of W
is at the center of a fixed-dissection tile. H

Theorem 2: Suppose all w x w-sized windows with
bottom-left corners at points (i - (w/r), j - (w/r)), for
ij = 0, I.... -,((n/w)- 1), have area density at least L
and at most (T. Then any w x w window has density at least
L -(1/r) + 1/(4r-

2
) and at most U + (1/r) -1/(4r-

2), and

these bounds are tight.
Proof: Let the bottom-left corner of a w x w window W

have coordinates (a, b). The four fixed r-dissection w x w
windows with the bottom-left corners in the four corners
of the (w/r) x (w/r) tile containing (a, b) have the largest
overlap with W. At least one of these four windows, say
F, and the window W overlap by a square with size at
least ((7 -(1/2))/(7)) .w 2 [see Fig. 3(b)]. The upper density
constraint implies that the total empty area inside F is at least
(1 U) . w2. Therefore, even if the region F -W of the total

area (1 -((r -1/2)/r)) * w 2 is empty, the window W must
still contain an empty area of size

(1 U). W2 (I ((-1/2)/(v))2) .W2

(U (1 1)) W2

Therefore, even if the rest of the window W is completely
filled, the total filled area cannot be more than

W2) (-(T+ (I-)) . W2 U +
I'

1 2)w

The proof of the lower bound is similar.

The worst case occurs when the bottom-left corner of the
: w window W is at the center of a (w/r) x (w/r)-tile. Then the

empty region R of area (U + 1 -(1- (1/2r)2) w2 can be
placed in the center of W, and the rest of W can be filled. This

F way, all of the four fixed r-dissection windows with the largest
overlap with W have the common region R. On the other
hand, any fixed r-dissection w x w window which has smaller
intersection with W can have a larger empty part outside of
W [see Fig. 3(b)]. 0

B. Optimal Extremal-Density Window Analysis

This subsection is devoted to optimal extremal density
analysis, i.e., covering all possible w x w windows in the layout
region. We first present a density analysis algorithm with time
complexity 0(n 2) that is strictly a function of the layout size.
We then develop a different algorithm with time complexity
0(k 2) that is strictly a function of the number of rectangles.
Finally, we propose an algorithm with even faster expected
runtime. Note that the 0(n 2) and 0(k 2) time complexities
are incomparable, since 19 can sometimes be much smaller
than n2 (e.g., k 100 and n 104) and at other times much
larger (e.g., k 10' and n 104). Therefore, the choice
of algorithm for density analysis would depend on the exact
values of n and k, with overall time complexity of the "hybrid"
approach being 0(min(k2 , n2)).

1) ALGI-O(n2) Density Analysis: A simple algorithm
for density analysis has time complexity 0(n 2).

a) Initialize an n * n boolean array B to all 0's, and then
put l's in array positions corresponding to areas in the
layout that are covered by the k rectangles. This takes
time 0(n 2).

b) Create another n -n array S and initialize each S [i j] to
be equal to the number of l's appearing in the southwest
quadrant of array B with respect to coordinate [i j]
(i.e., S[ij] counts the number of 1's in the subarray
B[1 ... i, 1... j]). This can be done by scanning B
one row at a time from left to right, maintaining a
running sum of the l's encountered on all the rows,

and storing all these partial sums into the array S. All
this preprocessing requires a total of 0(n 2) time.

c) After this preprocessing phase, the density of an
arbitrary-size w x h rectangle with its bottom-left corner
located at an arbitrary position (ij) can be found in
constant time, as follows:

density(w x h rectangle at (ij))

=S[i+wj+h] -S[i+wj] -S[ijj+h]+S[inj].

This formula uses the principle of inclusion-exclusion:
the fourth term is added in the formula above since it is
implicitly subtracted twice by the middle two terms. The
technique is analogous to efficient range tally queries in
computational geometry [21].

The density of all 0(n 2) windows of fixed size w x w can
be determined in 0(1) time per window, i.e., a total of 0(n 2)

time.

2) Properties of Extremal-Density Windows: To obtain an
algorithm with time complexity that is strictly a function of

449

z�z �1�z_M�

Z�:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

XI ME+

(a) (b)

Fig. 4. (a) A layout and (b) its corresponding Hanan grid.

k (as opposed to a function of n), we first prove a result that
is analogous to Hanan's Theorem for the rectilinear Steiner
minimal tree problem [12]. The Hanan grid over a given layout
is formed by creating vertical and horizontal lines that pass
through all the sides of all the rectangles (Fig. 4).9

Theorem 3: Given a layout of k rectilinearly-oriented rect-
angles in the n x n grid and a fixed window size w, there
exists a w x w maximum-density window having at least one
of its corners at a vertex of the Hanan grid.

Proof: If neither the left nor right edge of a maximum-
density window W touches the boundary of any of the k
rectangles, then we can continuously slide W horizontally
either to the left or to the right without decreasing its density,
until it touches one of the rectangles on either its left or right
side (see Fig. 5). Similarly, if neither the top nor the bottom
edge of W touches the boundary of any of the rectangles, then
W can be slid vertically either up or down until it touches one
of the rectangles with either its top or bottom edge, without
decreasing W's density.

Note that the same arguments hold even if some of the rect-
angles intersect W's boundary before the sliding operations
commence. Since we assumed that W was a maximum-density
window, W must remain a maximum-density window after
these two sliding operations have been performed. It follows
that there exists a maximum-density window (i.e., W in its
new position after the two sliding operations) that abuts one
or more rectangles of the layout on two of its adjacent sides.
Thus, there exists a maximum-density window with one of its
corners coinciding with a Hanan grid point. E

Theorem 3 actually establishes a stronger result than coin-
ciding a vertex of the maximum window with a Hanan grid
point: it shows that there always exists a maximum-density
window that touches rectangles of the layout with at least two
of its sides (these sides might touch the same layout rectangle).
This observation helps us to design an efficient algorithm
for density analysis, since it limits the feasible locations of
a maximum-density window (i.e., as abutting either one or
two of the layout rectangles). The argument used to prove
Theorem 3 can also be used to establish an analogous result
for minimum-density windows.

Corollary 4: Given a layout of k rectilinearly-oriented rect-
angles in the n x n grid and a fixed window size w, there exists

9Here and elsewhere in what follows we state the results for maximum-
density windows, explaining the extensions to minimum-density windows only
if there is a possibility of confusion.

450

a w x w window with extremal area density that abuts layout
rectangles with at least two of its sides.

Notice that a type of geometric symmetry/duality exists
here, in that layout rectangles abut the interior of maximum-
density windows, and abut the exterior of minimum-density
windows. Finally, a similar argument establishes analogous
results for windows having maximum or minimum perimeter
density.

Corollary 5: Given a layout of k rectilinearly-oriented rect-
angles in the n x n grid and a fixed window size w, there exists
a w x w window with extremal perimeter density that abuts
layout rectangles with at least two of its sides.

3) ALG2-O(k2) Density Analysis: Recall that Theorem 3
establishes that an extremal-density window must touch rect-
angles of the layout with at least two of its sides. Since
there are only 0(k) sides of rectangles, the extremal density
analysis can be achieved by 1) defining a window for each of
these 0(k) rectangle sides and 2) computing in 0(k) time the
window's intersections with all rectangles as it slides along
the rectangle side. A careful implementation of this scheme
yields an algorithm with overall worst case time complexity
of 0(k 2) as follows (see Fig. 7).

We preprocess the rectangles by sorting all left and right
edges of the k rectangles by their x coordinates into a single
sorted list L (having up to 2k elements), within 0(klogk)
time. In the main loop [line (2) in Fig. 7], for each "pivot"
rectangle R, we create a w x w window W that abuts R on
the top and right [i.e., so that their top-right corners coincide;
see Fig. 6(a)]. We then compute the density of W in 0(k)
time by intersecting W with all k rectangles of the layout
[line (3) in Fig. 7].

In the inner loop (4), we slide the window W horizontally to
the right [Fig. 6(a)-(f)] until it leaves R, updating the density
of W each time its left or right edge intersects an edge in
the list L. Note that the perimeter and area density of the
window W increase or decrease monotonically between such
intersection events. 10 We update the value of area density, or
the two values of perimeter density, for W in constant time per
intersection event by keeping track of the total "cross section"
length of the current intersections between the rectangles and
the left and right edges of W. We add new intersections that
enter the window W as it advances horizontally, and we
subtract from the total the areas of rectangles that exit the
window W on the left during the sliding process. Finally, we
repeat lines three through five of algorithm ALG2 (Fig. 7) for
all other 0(1) starting orientations of W with respect to the
pivot rectangle R [Fig. 6(g)-(i)]. The overall time complexity
of this algorithm is dominated by the 0(k) scans which require
0(k) time each, to a total of 0(k 2) time.

4) ALG3-Fast Expected Time Density Analysis:
Charging 0(k) time for each scan in the ALG2 analysis is
pessimistic, since each sliding window is expected to intersect
only a small fraction of the total number of rectangles

'0The area density is a continuous function and all its minima or maxima
occur only at such intersections. The perimeter density has discontinuities
when a window edge crosses a vertical feature edge. Therefore, at such
intersection events we maintain both possible values of perimeter density
(i.e., with and without the vertical feature edge).

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

[Ei Ell
E -0~

(a)

I

(b)

FI

LI

(c)

Fig. 5. A maximum-density window may be slid (a) horizontally until it touches one of the rectangles: (b) the window may then be slid vertically until it touches
one of the rectangles. After the sliding operations have been performed, (c) the window will abut one or more rectangles of the layout on two adjacent sides.

El I

(a)

E-

(b)

F I

(d)

(g)

EF

P
(c)

(e)

(h)

z
(i)

Fig. 6. (a) ALG2 starts a window abutting a pivot rectangle and (b) slides the window to the right, stopping at each edge that intersects its perimeter,
until the pivot abuts the opposite side of the window, (f) on the outside. (g) (i) Other combinations of the pivot-window orientations are then explored.
This process is repeated for every rectangle, using each as a pivot in turn.

(the window size is typically small compared with the
overall layout area). For each pivot rectangle, it would be
advantageous to scan through only the few rectangles that
actually intersect its associated sliding window (as opposed
to scanning all k rectangles).

We implement this speedup via a new fixed-dissection

preprocessing step, modifying the algorithm from Fig. 7. The
layout area is first partitioned into (n/w) x (n/w) squares
of size w x w each. Then, for each such square we create

a list of rectangles intersecting it; doing this for all squares
requires a single pass through all rectangles. The main loop
of the algorithm checks the rectangle intersections for a given
w x w query window W by examining four lists of rectangles
(corresponding to the four squares that together cover W).

Theorem 6: Given k nonoverlapping rectangles with posi-
tions uniformly distributed in the n x n grid, the algorithm
in Fig. 7 finds the maximum-density w x w window in time
0(k E), after applying a fixed-dissection preprocessing phase

451

Mf

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

ALG2: 0(k2) Density Analysis
nput: n x n ayout wit rectangles

Output: all extremal-density w x w windows
(1) Sort all the left and right edges of all k rectangles by

x coordinates into a sorted list L
(2) For each "pivot" rectangle R do
(3) Find the density of a w x w window W

that abuts R on the top and right
4) While W intersects R do
5) Slide W to the right to the next point of intersection

with one of the edges on the list L
Record changes in density

6 Repeat lines (3)-(5) for all other starting orientations for W
utput all extrema1-density windows

Fig. 7. ALG2: 0(k2) density analysis.

with runtime 0(k E+ (n/w)2 +(n/w)2 -E log((n/w)2 E)),

where E is the expected number of rectangles that intersect

an arbitrary w x w window.

Proof: Let E be the expected number of rectangles

that intersect an arbitrary w x w window, under a uniform

random distribution model. Although we will use E as an

indeterminate variable here, the actual value of E (as a

function of k, w, and n) will be determined later in Theorem

7 below.

To prove the present theorem, we follow the same overall

strategy as in the 0(k 2) algorithm described in Section II-

B3: for each of the k rectangles, we slide a w x w window

W over the pivot rectangle and compute the intersections of

the various rectangles with that sliding window. These sliding

phases can be performed in time linear in the number of

intersecting rectangles, assuming that we can compute this

set efficiently. The time for each one of these 0(k) scanning

phases is therefore dominated by the time to obtain and scan a

sorted list of the left and right coordinates of the E rectangles

that are expected to intersect each sliding window; as we will

see below, this can be accomplished within time O(E) per

window, given appropriate preprocessing.

The remaining issue here is how to efficiently find all

rectangles that intersect a given fixed-size window as it slides

over a pivot rectangle. This is accomplished as follows.

1) Partition the layout area into (n/w) x (n/w) squares of

size w x w each, and create and initialize an (n/w) x

(n/w) array corresponding to this tiling.

2) Iterate over all rectangles and mark all the tiles that

intersect with each rectangle, thus creating for each tile

a list of rectangles that intersect it. Then, sort these

lists and put into each array position a pointer to the

sorted list containing all rectangles that intersect with

the corresponding tile. The sum S of the lengths of

all these lists is equal to the number of tiles (n/w)2

times the expected number E of rectangles that intersect

each tile, so S = (n/w)2 E. The time to create the

preprocessed data structure is therefore the sum of the

array creation time plus the total time to sort all the lists,
which brings the total to 0((n/w) 2 + S log S). The total

space required by this data structure is O((n/w)2 + S).

3) Given the preprocessing above, we can find all rectan-

gles that intersect a given w x (2w) query window as

follows. First, find all the tiles that intersect the query

window: there can be at most six of these. Then, merge

the corresponding <6 (presorted) rectangle lists into a
single sorted list of rectangles that intersects the query
window. The size of each of the sublists is O(E), and
there are 0(1) of them, so the overall work involved in
this step is O(E).

The overall time complexity of the algorithm is therefore the
preprocessing time of 0((n/w)

2 +(n/w)2 -E-log((n/w)2 -E))

plus the time to process each of the 0(k) pivots and its
associated list of intersected rectangles, i.e., 0(k E), where E
is the expected number of rectangles that intersect an arbitrary
w x w window. H

We call this improved-preprocessing algorithm ALG3, and
now show that the expected number of rectangles that intersect
a given fixed-size window is indeed quite small. We define a
"random rectangle" as a rectangle uniquely determined by a
pair of opposite corners chosen independently at random from

a uniform distribution.
Theorem 7: Given k random pairwise-disjoint rectangles

distributed uniformly in the n x n layout region, the expected
number E of rectangles that intersect a given w x w window
is bounded by E < 3k- ((W 2)/(n 2)) + 3.

Proof: Consider the following two types of rectangles
that can intersect a given window:

1) Rectangles having at least one of their corners contained
inside the window; and

2) Rectangles having none of their corners contained inside
the window (yet who still intersect it).

In order to simplify the probabilistic analysis which follows,
we allow overlaps to occur among the rectangles. Note that
this can only increase the expected number of rectangles that
intersect a window, because if the nonoverlap constraint is
enforced, rectangles which intersect a window preclude some
other rectangles from intersecting it due to the nonoverlap re-
quirement, thereby reducing the expected number of rectangles
that may intersect a given window. We analyze separately the
expected number of rectangles of each type.

Type 1: Rectangles having at least one of their corners
contained inside the window. The probability that a type-1
random rectangle" will have at least one of its corners inside
a fixed w x w window is equal to one minus the probability
that neither of the rectangle's two opposite corners are inside
the window, i.e., 1 -((n2 w 2)/(n 2)) 2 = 2 ((W2)/(n2))_

w4/n4 < 2 * (w 2)/(n2). Thus, the expected number of type-1
rectangles that intersect a window is E1 < 2k- (w 2)/(n 2).

Next, we account for type-2 rectangles, i.e., those having
none of their corners contained inside the window, yet whose
area still intersects the window's area. There are three subcases
here:

Type 2a: Rectangles of type 2 where one of the rectangle's
edges intersect the perimeter of the window (with the other
edge being entirely outside the window's area). Rectangles of
this type can occur at most twice per window, on opposite
edges (by applying the nonoverlapping constraint to such
rectangles). Thus, the expected number of type-2a rectangles
that intersect a window is E20 < 2.

11 Recall that a "random rectangle" has two of its opposite comers uniformly
and independently distributed in the layout region.

452

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

Type 2b: Rectangles of type 2 where two of the rectangle's
edges intersect the perimeter of the window. Rectangles of
this type have an occurrence probability less than (w/n)2 ,

since both opposite corners of the rectangle in question must
independently fall inside the strip of size w x n containing the
window. Note that this is actually an over-estimate, since this
probability includes rectangles inside the w x n strip but strictly
outside the window itself; however, this is not a problem since
this over-estimate still upper-bounds the actual expectation for
case 2b. Thus, the expected number of type-2b rectangles that
intersect a window is E2b < k * (w/n)2 .

Type 2c: Rectangles of type 2 that completely contain the
window. Rectangles of this type can occur at most once per
window (since by applying the nonoverlapping constraint, such
a rectangle will preclude any other rectangles from intersecting
the window). Thus, the expected number of type-2c rectangles
that intersect a window is E2Ž < 1.

Thus, the expected number E of rectangles intersecting a
window of size w x w is upper-bounded by the sum of the
expectations for case 1, 2a, 2b, and 2c:

W2 ~ (W)2
E < E1 + E2. + E2, + E2Ž < 2k - + 2 + k*n 2 n

3k* 2 +- 3 o(k §)

In real layouts where rectangles are disjoint, even fewer
intersections are likely than indicated by the bound above,
since some intersections will preclude other intersections by
delimiting large areas that no other rectangles may occupy. By
the previous two theorems, substituting E = 0(k * (w/n)2)
into the overall time complexity of 0((n/w)

2 + (n/w)
2

_E

log((n/w) 2 E) + k E) yields:

Corollary 8: Given k rectangles in the n x n layout region,
the maximum-density width-w window can be found in time
0((n/w) 2 + klogk + kI2 * (w/n)2').

Because a window cannot contain more than 0(w 2) rectan-
gles, the expected time complexity of ALG3 is also bounded
by 0((n/w)2 + klogk + k W

2
). The same algorithm and

expected time bounds will hold for finding minimum-density
windows, as well as for the extremal-perimeter density criteria.

C. Multilevel Density Analysis

The algorithms described in the previous two subsections
have two drawbacks: 1) the fast analysis in the fixed-dissection
regime may significantly underestimate the maximum density
among all w x w-windows in the worst case (Theorem 1), while
2) the optimal density analysis is too slow when the number
of rectangles is large (Corollary 8). We now develop a new
multilevel approach that attempts to overcome both drawbacks
simultaneously. It is based on the following simple fact (see
Fig. 8).

Lemma 9: Given a fixed r-dissection, any arbitrary w x w
window will contain some shrunk w(1 -/r) x w(1 -/r)
window of the fixed r-dissection, and will be contained in
some bloated w(1 + i/r) x w(l + i/r) window of the fixed
r-dissection.

fixed dissection
window

floating window W

shrunk fixed
dissection window

. N
bloated fixed
dissection window

I-
tile

Fig. 8. An arbitrary floating u' x u'-window W always contains a shrunk
(r - 1) x (r - 1)-window of a fixed r-dissection, and is always covered
by a bloated (r + 1) x (r + 1)-window of the fixed r-dissection. In
the figure, a standard r x r fixed-dissection window is shown with thick
border. A floating window is shown in light gray. The white window is the
bloated fixed-dissection window and the dark gray window is the shrunk
fixed-dissection window.

We suggest the following ideas.

* Lemma 9 suggests that the possible error of the fixed-
dissection approximation can be estimated more accu-
rately than in Theorem 1. Our first idea is that if we
find the area of not only standard windows (i.e., fixed
r-dissection windows consisting of r x r tiles) but also
bloated windows (i.e., fixed r-dissection windows con-
sisting of (r + 1) x (r + 1) tiles), then the maximum area
of a floating window (i.e., arbitrary w x w-window) can
be bounded by the maximum area of a bloated window
(see Fig. 8).

* Our second idea is to use zooming to make fixed-
dissection density analysis for any given r = r0 even
faster. The main points of this approach are: 1) starting
with one fixed r-dissection (r = 1), omit all tiles which
do not belong to any bloated window that can possibly
contain high-density floating windows, and 2) recursively
subdivide the remaining tiles into four subtiles (i.e.,
multiply 7 by two) until the necessary 7 = ro is reached.

* Our third idea is that the recursive subdivision may be
continued until the number of rectangles left in tiles
is sufficiently small to run the optimal density analy-
sis algorithm ALG3. Alternatively, the subdivision can
be terminated at the moment when some user-defined
accuracy, say 2%, is reached.

The algorithm shown in Fig. 9 is a formal implementation
of the above ideas. We use c > 0 to denote the user-defined
accuracy that is required in finding the maximum window
density. The lists TILES and WINDOWS are byproducts of
the analysis, which will be used in Section III-B below to
find the optimal amounts of fill geometries to add into the
corresponding tiles.

Since any floating w x w-window W is contained in some
bloated window, the filled area in W ranges between Max
(maximum w x w-window filled area found so far) and

I 1 I 1 -

I

453

V_

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

Multi-Level Density Analysis Algoritflm
Input: n x n layout and accuracy e > 0
Output: maximum area density of w x w window with accuracy c
(1) make a list ActiveTiles of all w/r x w/r-tiles
(2 Accuracy = oo, r = 1
(3 While Accuracy > 1 + 2E do

(a find all rectangles in w/r x w/r-tiles from ActiveTiles
(b) find area of each standard window consisting of tiles from ActiveTiles and

add such window to the list WINDOWS
c) Max = maximum area of standard window with tiles from ActiveTiles
d) BloatMax = maximum area of bloated window with tiles from ActiveTiles

(e) For each tile T from ActiveTiles which do not belong to any bloated window
of area more than Max do

if Accuracy > 1 + e, then put T in TILES
remove T from ActiveTiles

(f) replace in ActiveTiles each tile with four of its subtiles
g) Accuracy = BloatMaxlMax, r = 2r

(4) Move all tiles from ActiveTiles to TILES
(5) Output maximum window density = (Max + BloatMax)/(2 W2)

Eig. 9. Multilevel density analysis algorithm.

BloatMax (maximum bloated window filled area found so far).
The algorithm terminates when the relative gap between Max
and BloatMax is at most 2 c, and then outputs the middle of
the range (Max, BloatMax).

The runtime of multilevel density analysis depends on e.
At each iteration of the main loop (3) the difference in area
between the bloated and standard window is reduced by half.
The loop (3) tenninates when the original area difference 3w2

decreases to 2c after t iterations, i.e.

3w2

2c.

Thus, the maximum number of iterations T can be estimated as

T = log2 (1.5w 2 . '-1) = O(log (w/6)).

This formula implies a worst case runtime of
O(((n/w) log (w/C))

2
). In practice, the layout is unevenly

filled and the majority of tiles are dropped in early iterations
of the main loop (3). This explains the excellent performance
of multilevel density analysis for actual VLSI layouts (see
Section V-B).12

Ill. COMPUTING THE OPTIMAL FILL AMOUNT

To solve the Filling Problem, it is necessary to compute
the proper fill amount that should be added in each particular
tile. In the next subsection, we develop an optimal linear
program solution for the fixed-dissection regime. Then, two
modifications of the LP formulation are described in the
following subsections. The first modification is applied to the
output of multilevel density analysis; the second modification
uses window area bounds from Lemma 9 to minimize an
estimate of the maximum deviation among arbitrary (floating)
windows.

'2 The multilevel analysis can also be applied in finding minimum window
density. By Lemma 9, the minimum layout area in shrunk windows (i.e.,
fixed r-dissection windows consisting of (r - 1) x (r - 1) tiles) is a lower
bound for the layout area in an arbitrary w x w window. Therefore, the
multilevel algorithm can be easy modified to find minimum window density
with user-defined accuracy.

A. Minimizing Density Variation in the
Fixed-Dissection Regime

This subsection develops exact solutions to the Filling
Problem in the fixed-dissection regime. Recall that Theorem 2
indicates that if r = 10 and all windows of a fixed r-dissection
have feature area density at most 75% (i.e., U = 0.75), then
the density of any w x w window in the layout is at most 85%.
Theorem 2 thus allows us to consider the Filling Problem for
only a fixed r-dissection of the layout, i.e., we will analyze
density with respect to each w x w-window W that covers
exactly r2 tiles. Desired accuracy of the result is achieved by
increasing r.

For any given tile T = Tij, i, j = l, (nr/w), denote
the total feature area inside T as area(T). We define the slack
of T, slack(T), as the maximum fill amount that can be
introduced using a given fill pattern into T without violating
the density upper bound U in any window containing T. In
other words, the total layout feature area inside T can be
increased up to any value between area(T) and area(T) +
slack(T), using fill geometries. The slack of T is determined
by the total area of metal features inside T and its neighbor
tiles. The slack of a window W is the sum of the slacks of the
tiles that form W (efficient algorithms for slack computation
are discussed in Section III-A2 below). Using the concept of
slack, the Filling Problem for the fixed-dissection regime can
be formulated as follows.

The Filling Problem for a Fixed r-Dissection: Suppose
we are given a fixed r-dissection of the layout into tiles of
size (w/r) x (w/r), as well as an area(T) and slack(T) for
each tile in the dissection. Then, for each tile Tij, the total fill
pattern area Pij = p(Tij) to be added to Tii must satisfy

0 < Pij < slack(Tij)

and

(1)S Pij < max{ U W2 area(W), 0}
Tj EW

for any fixed dissection w x w-window W.
Then, the Min-Variation Formulation seeks to maximize

the minimum window density

maximize (min(area(Tij) + Pij)

454

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

1) A Linear Programming Approach: consider the linear
program:

Maximize M
subject to:

Pij > O i= , 1

Pij < pattern * slack(Tij), i, j

i+r-1 j+i1-

i t Pst
S=i t=j

(2)

nr
1***- -1

(3)

< aij (Uw 2 -areaij),

me',j = 1,_ ,-
w

i+r-1j+r-1

M < areaij + E E Ast,
8=i t=j

%j 1 ... ,-nr
W

r + 1 (4)

r +1 (5)

where

i+r-1 j+r-1

areaij = E E area(T t)
S=i t~j

is the area of the (i, j)-th window, and aij = 0 if areaij > U
w2 and aij = 1 otherwise. The pattern-dependent coefficient
pattern denotes the maximum pattern area which can be
embedded in an empty unit square.

The constraints (2) imply that features can only be added,
and cannot be deleted from any tile. The slack constraints (3)
are computed for each tile. If a tile Tij is originally overfilled,
then we set slack(Tij) = 0. From the linear programming
solution, the values of Pij indicate the fill amount to be inserted
in each tile Tij. The constraint (4) says that no window can
have density more than U after filling unless it was overfilled
initially, i.e., such a window cannot increase its density. The
number of variables and the number of constraints in the
linear program are both 0((nr /W)

2
). In practice, even for

a large die and a user requirement of high accuracy, we
might have n = 15000, w = 3000, r = 10, which yields
a linear program of tractable size. Equation (5) implies that
the auxiliary variable M is the lower bound on all window
densities. The linear programming seeks to maximize M, thus
achieving the min-variation objective.

Solving the above LP formulation will give the optimal fill
amounts to be added to each tile in the fixed r-dissection, as
dictated by the min variation objective. However, as shown
in Fig. 3, the LP solution may distribute the fill unevenly
among the tiles of a given window. If this is unsatisfactory,
various simple fixes can be applied (e.g., partial prefilling of all
tiles, binary search on an upper bound of fill added into each
individual tile, etc.) so that the result is more balanced while
still being optimal. (Our current implementation sets an upper
bound Lt on the tile density in order to achieve a balanced
fill pattern.)

2) Slack Computation: This subsection discusses how to
efficiently compute slack values for the linear programming
formulation described in the previous subsection. To compute

S AX t

Fig. 10. Finding the total area of a union of possibly intersecting rectangles
using a sweep-line technique.

slack, i.e., to determine the total area of k possibly overlapping
rectangles, we adopt the "measure of union of rectangles"
sweep-line-based technique described in [21]. We begin by
sorting all the left and right edges of the k rectilinear rectangles
according to their x coordinates. Next, we sweep horizontally
across these 2k edges from left to right, while using a segment
tree [2] to keep track of the total length of the sweep line
intersected by any of the k rectangles (see Fig. 10).

The time complexity of the sorting step is ((k log k).
Insertions and deletions from the segment tree require 0(log k)
time each, and the total time to process all 2k segments is
therefore O(k log k). The total time complexity to determine
the area of the union of k possibly overlapping rectangles is
therefore 0(k log k).

A simple implementation which avoids the usage of segment
trees altogether can still have reasonably fast expected time
as follows. We still use the sweep line technique as before,
but rather than using a segment tree to store the intersected
rectangle, we instead use a simple linked list to store those
segments, and then apply the one-dimensional "measure of
union of intervals" technique of [14]. The time complexity of
this practical implementation is 0(k 2) in the worst case, and
the expected time is O(k 1) where I is the average length of
this list (i.e., the expected number of rectangles intersected by
the sweep line). For random uniform distributions, we would
expect I = O(k), thus, on average this method will run in
time 0(kVi) in practice.

B. Multilevel Computation of the Fill Amount

If the multilevel density analysis approach has been used,
we can use data obtained during that computation to com-
pute fill amounts. Recall that during the multilevel density
analysis, we keep track of active tiles (i.e., tiles which can
possibly belong to a maximum density window) and check
the area of some windows in order to update the maximum
window density if necessary. The multilevel computation of
fill amounts attempts to decrease the number of tiles and
windows, i.e., variables and constraints participating in the LP
formulation. Let = 2c 2lm- be the highest r reached in the
multilevel density analysis algorithm; this corresponds to the

455

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

user-defined accuracy parameter c. Instead of considering all
(wlrl..ax) x (w/rimax)-tiles and all w x w-windows consisting
of such tiles, we consider only tiles (w/2') x (w/2')-tiles,
I < lax, and windows consisting of such tiles which were
tried during the multilevel density analysis.

The multilevel fill amount computation is implemented as
follows. During multilevel density analysis, we save a tile in
TILES at the moment when the tile is deactivated (cannot
belong to a window of maximum density) or the size of the
tile becomes w/ri,,ax x w/r 1,,.. We also record the area and
slack of each such tile. On the other hand, each time when we
find the area of a w x w-window W, we put W in the list of
windows WINDOWS. In the LP formulation for multilevel fill
amount computation, for each window W from WINDOWS
there are two constraints: 1) the first constraint upper-bounds
the filled area (i.e., the area after fill geometries are added
to the original layout) of W, and 2) the second constraint
forces an auxiliary variable M to be less than or equal to the
filled area in W. Each filled window area is expressed as a
sum of filled tile areas. In addition, tile fill amount constraints
ensure that each tile fill amount is nonnegative, and at most
the corresponding tile slack xpattern.

C. Minimizing Density Variation of Arbitrary
(Floating) w x w-Windows

Finally, we suggest a third LP formulation that may better
reflect the quality of the fill amount computation. Again, this
is because the linear program for the fixed-dissection regime
will be susceptible to density deviations in floating windows.
Consider two different LP solutions in fixed-dissection regime
with different number of fixed dissections: the first has r72

dissections and the second has (2r)2 dissections. It is obvious
that the more dissections we take in account the better result
we should have. On the other hand, more dissections imply
more constraints in the LP and, therefore, worse (bigger)
deviation achieved (i.e., smaller value of target variable M).
A fair comparison of results with different number of fixed
dissections entails finding the floating deviation, i.e., the dif-
ference between the minimum and maximum floating window
density. However, since the number of floating windows is
too large, we suggest comparing worst case estimates of the
floating deviation, which can be derived from Lemma 9.

Moreover, instead of comparing LP solutions according to
the above estimate of floating deviation, we suggest using such
an estimate as an objective in a new LP formulation. Specifi-
cally, we constrain the area of each bloated w(1+1/7) X w(1+

1/r)-window by the user-defined density upper bound U, and
we maximize the auxiliary variable M which is the lower
bound for the area of any w(1 1/r) x w(- 1/r)-window.
We refer to this LP formulation as the floating deviation LP.
The floating deviation LP formulation optimally decreases the
estimate of the density range between the maximum- and
minimum-density floating windows.

IV. SYNTHESIS OF FILLING PATTERNS

Given the layout geometry along with the parameters of the
Filling Problem, we apply the methods of previous sections

[I ll
WWE~IL

I I

IIM

B
EM
EM
EM
EM
M

'I

l'HI

He
LI

l

l

EsLEa
DEl lE
DEN M
BLIE
DEa ME
WED E

(a) (b)

Fig. 11. "Basket-weaving" of the fill pattern so that long conductors on
adjacent layers will have identical coupling to the fill. With the pattern in
(a), each vertical or horizontal crossover line will have the same overlap
capacitance to fill. On the other hand, with the fill pattern in (b) two cross
overs can have different coupling to fill.

to analyze density violations, and determine the necessary
amounts of fill to be added in each region of the layout.
We now discuss criteria for, and actual synthesis of, the fill
geometries added into the layout.

A. Uniform Coupling to Long Conductors

Fill patterns should be devised such that all long conductors
on adjacent layers have identical coupling capacitance to the
inserted fill.'3 There are several practical ways of achieving
this, of which one is to "basket-weave" the fill [30]. In other
words, the fill pattern should not consist of a regular grid
geometries, but instead have some internal offsets that "skew"
the pattern. Fig. 11 illustrates this concept.

B. Grounded Versus Floating Fill

Grounded fill can be required for predictable extracted
parasitic values. Structured-custom (microprocessor) designs
have strong requirements for predictability, due to aggressive
timing tolerances. For such designs, it is better to have larger,
but exactly known, coupling capacitances to grounded fill
geometries, rather than indeterminate capacitances to floating
fill. On the other hand, for ASIC designs where timing
is not being pushed too hard, designers seek the simplest
fill construction that meets feature density requirements. A
secondary reason for studying grounded-fill constructions is
that modern parasitic extraction tools do not handle floating
capacitors well. If fill synthesis should be performed ear-
lier so as to achieve an accurate performance verification
flow during the layout phase, it may be necessary to use
grounded fill.

We seek a grounded fill pattern that requires relatively few
edges to specify. For example, a metal fill pattern consisting
mostly of long parallel stripes is preferable to a checker-board
pattern, since the number of lines required to fully specify
the latter is considerably smaller than the former. Thus, we
propose a grounded metal fill pattern that spans the area to be
filled as follows. We start by striping the empty areas in the

13 Coupling to same-layer conductors is not a concern, because the buffer
distance B is usually quite large, on the order of 10 pm or more.

456

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

(a) (b) (c)

Fig. 12. (a) Given a layout, we create a grounded fill pattern by (b) first creating horizontal stripes, and then (c) spanning these stripes using a small
number of vertical lines.

(a) (b)

Fig. 13. Two patterns with maximum perimeter. (a) The pattern Pmin with minimum possible area and (b) the pattern Pmax with maximum area.

layout using horizontal lines [Fig. 12(b)]. Then, we span the
horizontal stripes using vertical lines [Fig. 12(c)]. The width
and pitch of the horizontal stripes, and the number of vertical
segments, can be easily determined in terms of the required
pattern density. Connections to an existing ground distribution
network can be made using standard special-net routers.14

C. Simultaneous Area and Perimeter Constraints

In this subsection we characterize combinations of area
and perimeter densities (D0 , D,) that can be simultaneously
satisfied by the same filling pattern. As discussed in Section I,
all fill geometries must satisfy minimum length and minimum
separation rules. In particular, no fill feature dimensions, nor
any distance between features, can be less than c. In practice,
the distance between filling geometries and nearest layout
feature is constrained to be greater than c' > c. However we
can still view regions eligible for filling as c-polyominoes, i.e.,
polyominoes [11] with sides a multiple of c that are distance
c' from the layout features. The fill pattern should also consist
of polyominoes in the c-grid, i.e., the minimum separation
rule implies that a pair of filled cells which share exactly one
corner should have one common filled neighboring cell.

First, we will describe filling patterns for a rectangular
region R which have maximum perimeter, and either the
minimum or maximum allowable area density. The pattern
P ..in with the minimum area density fills all cells which have
top-left corner coordinates (a+2ci, b+2cj), where (a, b) is one

14An interesting possibility arises if separate ground planes of metallization
are used in between signal layers (as in printed-circuit board construction),
in which case grounded fill patterns can look similar to floating fill patterns
(connections to ground are achieved by vias down to the adjacent layer).

of the corners of R [Fig. 13(a)]. This pattern has area slightly
more than (1/4) -area(R), because it fills approximately every
fourth cell of R. The pattern Pn..ax with maximum area density
fills R completely, leaving empty only cells with coordinates
(a+c+2ci, b+c+2cj); see Fig. 13(b). The area of this pattern
is slightly larger than (3/4) area(R) because it leaves empty
approximately every fourth cell of R.

Two more patterns are necessary for completing the de-
scription of all possible patterns. These are simply the empty
pattern Po with zero perimeter and area, and the completely-
filled pattern Pi having both perimeter and area equal to those
of R. In Fig. 14, the x-axis represents area and the y-axis
represents perimeter. The highlighted region with vertices P0 ,
Pmjin, Pmnax, and PI represents the combinations of area and
perimeter densities for which there exist filling patterns. Notice
that a square has the minimum perimeter with a given area. Let
S be the area of a maximum square which can be embedded in
R. Before the pattern area reaches S, the minimum perimeter
grows quadratically; past S, the minimum perimeter grows
linearly.

The algorithm for finding a pattern with a given area and
perimeter is straightforward: it starts with the minimum area
pattern that has the given perimeter, and sequentially adds
square cells with side c until the necessary area is achieved.

V. IMPLEMENTATION AND COMPUTATIONAL RESULTS

A. Implementation

Our current experimental testbed integrates GDSII Stream
input, conversion to CIF format, and internally developed
geometric processing engines. For density analysis, the user
specifies the parameters w, r, B, U, L, etc., and receives output

457

I

�1

�1

�1

I
- -

-
-

I-
I

7 R 11 11
El R R 11
F71 M R 171

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

'max

perimeter

perimeter o]
the region

P

S 0.75 I area density

Eig. 14. The x-axis represents the area and the y-axis represents the perimeter of the filling pattern. The highlighted region with vertices Po, Pmin,
Pnax, and P1 represents the combinations of area and perimeter for which there exist filling patterns. The pattern with the area S minimum perimeter
is the largest square which can be embedded in R. Before the pattern area reaches 5, the minimum perimeter grows quadratically: when the area
exceeds 5, the minimum perimeter grows linearly.

TABLE I
PARAMETERS OF THREE INDUSTRY TEST CASES

Industry Test Cases
Benchmark I A layout size Ik = rectangles un = window size

Li 1257000 49,50 6 31,250
L2 112,000 76,423 28,000
L3 112,000 133,201 28,000

indicating extremal window densities, average window den-
sity, and lists of violating windows. For density improvement,
the user specifies additional parameters such as the maximum
possible fill pattern density (used to compute available slacks
in each tile). The program outputs whether the density lower
bound L can be achieved (and if so, the maximum achievable
density lower bound L'), and the amounts of fill Pij that should
be introduced into each tile. Finally, for pattern insertion the
user specifies further parameters, including the type of fill
pattern desired (rectangular grid or basket-weave floating fill),
and a parametric specification of the pattern. The program
outputs the final layout, including the added fill geometries,
in CIF format.

B. Computational Experience

Our experiments have been run using three metal layers
extracted from industry standard-cell layouts. Benchmark Li
is the M2 layer from an 8131-cell design; Benchmark L2
is the M3 layer from a 20577-cell design; and Benchmark
L3 is the M2 layer from the same 20577-cell design. The
layout dimension, number of rectangles, and window size (w
always chosen to equal 1.5 mm) for each test case are shown
in Table I.

Table II reports the maximum window density found by
the multilevel density analysis with accuracy parameter c set
to either 2% or 3%. We report the maximum density of
a standard window, rather than the midpoint between the
maximum density standard and bloated windows, in order to
enable comparison with the fixed-dissection analysis results
below. CPU time corresponds to seconds on a 140-MHz Sun

TABLE II
MULTILEVEL DENSITY ANALYSIS RESULTS. WE REPORT THE MAXIMUM DENSITY

OF A STANDARD WINDOW, RATHER THAN THE MIDPOINT BETWEEN THE

MAXIMUM DENSITY STANDARD AND BLOATED WINDOWS, IN ORDER TO ENABLE

COMPARISON WITH THE EIXED-DISSECTION ANALYSIS RESULTS BELOW

Multilevel Density Analysis
Benchmark Accnrac Max Std Density CPU time

Li 2%T .2184 2.8
LI 3% .2184 2.8
L2 2% .1830 6.9
L2 3% .1829 3.8
L3 2%c .2925 7.1
L3 3% .2911 6.6

TABLE III
EIXED-DISSECTION DENSITY ANALYSIS RESULTS

Fixed-Dissection Density Analysis
Benchmark r Max Density NOP Time

LT I .2021 1.3
LI 4 .2125 2.9
Li 8 .2170 9.2

2 .1610 2 . 1
L2 4 .1791 4.5
L2 8 .1791 14.5

.288 3 -- 3.6
L3 4 .2895 8.0
L3 8 .2910 25.1

Ultra-i with 256-MB RAM. In practice, we find that the
multilevel analysis is preferable to the exact method of ALG3,
since the latter has runtimes on the order of tens of CPU
minutes for the same test cases (see [13] for ALG3 runtimes
on slightly variant layouts of the same standard-cell designs).
Table III shows the analogous results for the fixed-dissection
approach, which we understand to be used in industry. The two
tables show that large values of 77, and correspondingly large
runtimes, will be required for the fixed-dissection approach to
find the window densities that the multilevel analysis can find
in only a few seconds.

Finally, Table IV depicts the performance of our software
for LP generation and solution to obtain optimal fill amounts,
along with fill insertion into the output CIF file. The fixed-
dissection LP achieves lower bounds M on density that

P.inmaximum

.bii

0 0.25

458

KAING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

TABLE IV
EXPERIMENTAL RESULTS SHOWING CPU TIMES FOR THREE VARIANT LP APPROACHES TO

COMPUTING OPTIMAL FILL AMOuNTS: CPU TIMES FOR FILL GENERATION ARE ALSO SHOWN

Fixed-Dissection LP for Fill Amount and Fill Generation
Benchmark r LP generation LP solution 7 Fill CPU time Total CPU time

CPU time CPU time
LT 2 --- 4.3 0 71 2192 - - 3- 3 7.6
L1 4 4.0 0.4 .2192 3.2 7.6
L1 8 10.3 18.3 .2189 3.3 31.9
LW2 2 -2.8 - -(V 71816 5.2 8.0
L2 4 5.2 1.7 .1704 5.0 11.9
L2 8 15.8 41.5 .1631 5.2 62.5
L3 2 512 o0h .2640 8.3 13.5
L3 4 9.4 0.8 .2606 8.0 18.2
L3 8 27.2 24.4 .2553 8.1 59.7

Multilevel LP for Fill Amount and Fill Generation
Benchmark Tma geneLration LP solution Fill CPU time Total UPU time

CPU time CPU time
Li 4 2.8 0.4 .2192 4.2 7.4
LI 8 2.7 20.3 .2192 4.1 27.1
L2 4 3.1 5.9 .1834 6.8 15.8
L2 8 3.8 376.5 .1834 6.6 386.9
L3 4 9.4 1.0 .1761 9.6 20.0
L3 8 10.0 51.5 .1745 10.3 71.8

Floatin Deviation LP for Fill Amount and Fill Generation
Benchmark r generation LP solution M Fill CPU time Total CPU time

CPU time CPU time
LT_ 2 4. - - h- -054W 32 7.5
L1 4 4.0 0.4 .1218 3.3 7.7
L1 8 10.3 5.8 .1615 3.2 19.3
JL2_ 2 -2. - 0 047- - 5.2 8.0

L2 4 5.2 0.4 .0827 5.2 10.8
L2 8 15.8 43.8 .1037 5.3 64.9
W 2 5.2 0.0 70T 9.1 14.3

L3 4 9.4 0.8 .1451 10.0 20.2
L3 8 27.2 18.4 .1875 8.5 54.1

are reasonably close to the best possible values.' 5 Larger r
values may be used to reduce the potential variation from
uniform density. For the multilevel density analysis, LP and fill
generation, we observe somewhat lower values of M, and one
large runtime for the L2 benchmark with r = 8. The floating
deviation LP, which allows the user to bound the density
variation between minimum- and maximum-density floating
windows, shows steady improvement in solution quality with
increasing r, just as we expect. In practice, we believe that the
floating deviation LP is attractive for its control over arbitrary
windows; the multilevel LP is also attractive for its data flow
directly from multilevel density analysis.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have addressed an increasingly critical
problem in the interface between process, physical layout
design and performance verification. We have given the first
statement of the filling problem (with min-variation objective),
which arises in layout post-processing for CMP uniformity.
We have developed effective algorithms for density analysis as
well as for filling synthesis. Our current experimental testbed
integrates GDSII Stream input, conversion to CIF format, and
internally developed geometric processing engines. Runtimes
show that the proposed techniques are practically useful.

We are currently seeking more test cases and density rules
from industry to further refine the proposed approaches and

'5 In all reported experiments, we use U = maximum window density found
during multilevel density analysis. Experiments with larger values of U, e.g.,
U = 0.50, yield similar results.

implementations. 16 Ongoing work addresses such issues as
follows:

* developing even more efficient, general and provably-
good filling algorithms (e.g., for simultaneous perimeter-
and area-density-based criteria);

* finding improved heuristics or exact algorithms for the
min-variation formulation;

* maintaining knowledge of min/max density/perimeter
windows under dynamic feature insertion/deletion in
time o(n) or o(k);

* calibrating our proposed methods against data and density
control requirements from industry partners; and

* extending the present infrastructure to address, in a unified
way, requirements for both slotting (metal stress relief)
and filling at other length scales (microloading, isodense)
in combination with the current requirements.

APPENDIX

FILL IMPACT ON EXTRACTION

Table V shows capacitance extraction results obtained with
the Raphael 3-D field solver from TMA/Avant!, for an iso-
lated conductor 1) with or without fill insertion in empty
regions of adjacent layers, and 2) with or without same-layer

'
6

lnteresting test cases for filling will not simply be place-and-route test
cases: the vast majority of P&R instances are for cell-based implementation of
random (control or glue) logic. The majority of the chip (embedded memory
cores, high-performance datapaths, global clock and power distribution, analog
or mixed-signal blocks, etc.), is what makes the filling problem challenging,
but at the same time such layouts are not typically seen by a place-and-route
tool. As a result, test cases for the problem that we address are currently quite
difficult to obtain.

459

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

TABLE V
RAPHAEL 3-D FIELD SOLVER RESULTS FOR TOTAL CAPACITANCE EXTRACTION

OF A SINGLE VICTIM CONDUCTOR. THE CONDUCTOR ON LAYER i Is 20 x 1.
LINE-To-LINE SPACING IS 1, LINE WIDTH IS 1, LINE THICKNESS IS 1.5, AND

DIELECTRIC HEIGHT Is 1.5. METAL FILL FEATURES ON LAYERS i - 1 AND i + 1
ARE 10 x 1 WITH SIDE-TO-SIDE SPACING OF 1 AND END-TO-END SPACING

OF 4: SEE FIG. 15(b). THE DIELECTRIC PERMITvrITY WAS SET TO
BOTH 3.9 (FOR SiO2) AND 2.7 (CF. RECENT ANNOUNCEMENTS BY

SEMATECH [23] OF NEW Low-PERMIITvrITY DIELECTRIC TECHNOLOGIES).
LAYERS i - 2 AND i + 2 ARE SET TO BE 40 x 40 GROUND PLANES

Victim Layer Total Capacitance (10 '5 F)
Same layer-i Fill layers
neighbors? i 1, i + 1? e = 3.9 c = 2.7

N N 2.43 1.00 1.68 1.00
N Y 3.73 1.54 2.58 1.54
Y N 4.47 1.84- 3.09 1.84
Y Y 5.29(2.18 3.66 2.18)

TABLE VI
TMA/AvANT! RAPHAEL CAPACITANCE EXTRACTION RESULTS:
TOTAL CAPACITANCE FOR THE MIDDLE VICTIM CONDUCTOR B

Victim B Total Capacitance (10-F I)
Fill layer offset 1 geometry C = 3.9 c e = 2.7

N 10 X 1 3.776 1.00 2.614 1.00
N I 1 X 1 3.750(0.99) 2.596(0.99)
Y 10 X 1 3.777 1.00 2.615 1.00
Y 1 X 1 3.745 0.99- 2.593 0.99

TABLE VII
TMA/AvANT! RAPHAEL CAPACITANCE EXTRACTION RESULTS: TOTAL

CAPACITANCE FOR THE OUTSIDE VICTIM CONDUCTOR A OR C

Victim A, C Total Capacitance (10 -F)
Fill layer offset g eometry c . C = 2. 7

N 10 X 1 3.009 1.00 2.083 1.00
N 1 X 1 2.984(0.99) 2.066(0.99)
Y 10 X 1 3.004 1.00 2.080 l.a
Y 1 X 1 2.980(0.99j 2.063(0.99)

neighbor conductors.' 7 The simulation shows that ignoring
the possibility of metal fill can result in underestimation
of total line capacitance by more than 50%. This can in
turn lead to inaccurate RCX, delay calculation, and tim-
ing analysis results. We conclude that the presence or ab-
sence of fill geometries must be modeled during performance-
driven layout optimization. Such modeling must be efficient
and "transparent"; since there are many iterations through
the layout optimization loop, we must be careful with the
time complexity of fill insertion and the increases in data
volume.

Tables VI and VII give TMA/Avant! Raphael capacitance
extraction results for multilayer interconnect structures involv-
ing fill geometries, as follows.

* Three 20 x 1 victim conductors A, B, and C (with B in
the middle), with spacing 1 between them, are placed on a
victim layer i. All conductor thicknesses = 1.5; dielectric
height between layers = 1.5. Dielectric permittivity was
set at either 3.9 or 2.7.

* A 40 x 40 bottom ground plane is placed at layer i -2.
* Two types of fill geometry patterns were considered for

layer i -1 (see Fig. 15): a) 1 x 1 squares with (x, y)

17The use of the Raphael field solver correctly models floating geometries
according to the abilities of the tool. However, typical use of the capacitance
extraction in Raphael is for grounded features, and the tool may not be
optimized for accuracy on floating features.

.uEu..m...
um....u..M

MEEE...u..

(a)

11111llll(b

(b)

Fig. 15. The two fill patterns considered in Raphael simulations: (a) 1 x 1
squares separated by 1 unit and (b) 10 x 1 rectangles separated by 1 unit
horizontally and 4 units vertically. The fill pattern (b) was used for the
simulations reported in Table V.

origins of form (2i, 2j), i and j integers, resulting in

an overall pattern area density [for an infinite layout

region) of 0.25; see Fig. 15(a)], and b) 10 x 1 (tall and

thin) rectangles with (x, y) origins of form (4i, 14j) or

(4i -2, 14j -7), i and j integers, resulting in an overall
pattern area density (for an infinite layout region) of 0.357

[see Fig. 15(b)].

An offset is optionally introduced. When the fill geome-

tries are offset, they lie directly under the spaces between

the victim conductors. When there is no offset, the fill

geometries lie directly under the victim conductors.

Table VI shows that the total capacitance values for the

middle conductor (B) fluctuate by less than 1% over all four

combinations of fill pattern and offset. The critical factor is

that the fill is present in the first place. Similarly, Table VII

shows that the total capacitance values for each of the outside

conductors (A and C) also fluctuate by less than 1%. We

conclude that the filling can, subject to constraints involving

feature dependencies between layers, be viewed as a "single-

layer problem."'
8

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their valuable comments on the previous draft of this work.

They would also like to thank T. Laidig and K. Wampler of

MicroUnity Systems Engineering, Inc. for many illuminating

discussions and patient readings of early drafts during 1997.

They would like to thank J. Rey of Cadence who has also been

generous with his time, and L. Camilletti and D. Boning for

enlightening discussions. They would like to thank H. Wang

for his assistance with the Raphael simulations; N. Gupta for

help with implementing the user interface; and T. Zhang and

Chris Helvig for their help with proofreading. Finally, they

would like to acknowledge software donation from Artwork

Conversions, Inc., and AVANT! Corporation.

REFERENCES

[1] R. Bek, C. C. Lin, and J. H. Liu, personal communication, Dec. 1997.

'8There are several notable conditions under which the single-layer as-
sumption is not quite correct. For example, poly fill geometry in regions with
underlying active diffusion can create spurious transistors, and such regions
must be marked as inviolate on the po1y layer. This is a simple preprocessing
step before slack calculation and fill insertion.

460

KAJING et al.: FILLING ALGORITHMS AND ANALYSES FOR LAYOUT DENSITY CONTROL

[2] J. L. Bentley, Algorithms for Klee's Rectangle Problems, unpublished,
1997.

[3] Dracula Standalone Verification Reference, Cadence Design Systems,
Inc., San Jose, CA, Nov. 1997.

[4] L. E. Camilletti, personal communication, Apr. 1998.
[5] L. E. Camilletti, "Implementation of CMP-based design rules and pat-

terning practices," in Proc. 1995 IEEEISEMI Advanced Semiconductor
ManuJacturing Conf], 1995, pp. 2-4.

[6] A. Chatterjee, I. Ali, K. Joyner, et al., "Integration of unit processes in
a shallow trench isolation module for a 0.25-pm complementary metal-
oxide semiconductor technology," J. Vacuum Sci. Technol. B, vol. 15,
pp. 1936 1942, 1997.

[7] V. K. R. Chiluvuri and I. Koren, "Layout-synthesis techniques for
yield enhancement," IEEE Trans. Semiconduct. ManuJact., vol. 8, pp.
178 187, 1995.

[8] R. R. Divecha, B. E. Stine, D. 0. Ouma, J. U. Yoon, D. S. Boning, J. E.
Chung, 0. S. Nakagawa, and S. Y. Oh, "Effect of fine-line density and
pitch on interconnect ILD thickness variation in oxide CMP process,"
in Proc. CMP-MIC, Santa Clara, Feb. 1997, p. 29.

[9] R. R. Divecha, B. E. Stine, D. 0. Ouma, J. U. Yoon, D. S. Boning, J. E.
Chung, 0. S. Nakagawa, and S. Y. Oh, "Effect of fine-line density and
pitch on interconnect ILD thickness variation in oxide CMP process,"
in Proc. CMP-MIC, Santa Clara, Feb. 1998.

[10] W. B. Glendinning and J. N. Helbert, Handbook of VLSI Microlithog-
raphy: Principles, Technology, and Applications, Noyes Publications,
1991.

[11] S. W. Golomb, Polyominoes. New York: Scribner, 1965.
[12] M. Hanan, "On Steiner's problem with rectilinear distance," SIAM J.

Appl. Math., vol. 14, pp. 255 265, 1966.
[13] A. B. Kahng, G. Robins, A. Singh, H. Wang, and A. Zelikovsky, "Filling

and slotting: Analysis and algorithms," in Proc. Int. Symp. Physical
Design, Monterey, CA, Apr. 1998, pp. 95 102.

[14] V. Klee, "Can the measure of U[ai, bi] be computed in less than
O(n log n) steps?," Amner. Math. Monthly, vol. 84, pp. 284 285,
1977.

[15] H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, C. Kaamta, C.
Koburger, W. Lange, M. Leach, and S. Luce, "Integration of chemical-
mechanical polishing into CMOS integrated circuit manufacturing,"
Thin Solid Films, vol. 220, pp. 1 7, 1992.

[16] W. Maly, "Computer-aided design for VLSI circuit manufacturability,"
in Proc. IEEE, 1990, vol. 78, pp. 356 392.

[17] W. Maly, "Moore's law and physical design of IC's," in Proc. Int. Symp.
Physical Design, special address, Monterey, CA, Apr. 1998.

[18] S. Nag and A. Chatterjee, "Shallow trench isolation for sub-0.25-pm
IC technologies," Solid State Technol., vol. 40, pp. 129 130, 132, 134,
136, 1997.

[19] G. Nanz and L. E. Camilletti, "Modeling of chemical-mechanical
polishing: A review," IEEE Trans. Semiconduct. ManuJact., vol. 8, pp.
382 389, 1995.

[20] S. Prasad, W. Loh, A. Kapoor, E. Chang, B. Stine, D. Boning, and
J. Chung, "Statistical metrology for characterizing CMP processes,"
Microelectron. Eng., vol. 33, pp. 231 240, 1997.

[21] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer-Verlag, 1985.

[22] P. Rai-Choudhury, Handbook of Microlithography, Micromnachining,
and Microjfabrication, Vol. 1: Microlithography. Bellingham, PA: SPIE
Opt. Eng., 1997.

[23] SEMATECH Demonstrates New Insulator For Faster Chips, [Business
Wire], Nov. 11, 1997.

[24] The National Technology Roadmapfor Semiconductors. San Jose, CA:
Semiconduct. Ind. Assoc., Dec. 1997.

[25] K. Smekalin, "CMP dishing effects in shallow trench isolation," Solid-
State Technol., vol. 40, pp. 187 194, 1997.

[26] B. E. Stine, D. S. Boning, J. E. Chung, and L. Camilletti, "The
physical and electrical effects of metal-fill patterning practices for oxide
chemical-mechanical polishing processes," IEEE Trans. Electron. Dev.,
vol. 45, pp. 665 679, 1998.

[27] B. E. Stine, V. Mehrotra, D. S. Boning, J. E. Chung, and D. J. Ciplickas,
"A simulation methodology for assessing the impact of spatial/pattern
dependent interconnect parameter variation on circuit performance," in
IEDM Tech. Dig., pp. 133 136, 1997.

[28] B. E. Stine, D. 0. Ouma, R. R. Divecha, D. S. Boning, J. E. Chung,
D. L. Hetherington, C. R. Harwood, 0. S. Nakagawa, and S.-Y. Oh,
"Rapid characterization and modeling of pattern-dependent variation in
chemical-mechanical polishing," IEEE Trans. Semiconduct. ManuJact.,
vol. 11, pp. 129 140, 1998.

[29] M. Tomozawa, "Oxide CMP mechanisms," Solid-State Technol., pp.
169 175, 1997.

[30] K. Wampler and T. Laidig, personal communication, Sept. 1997.

Andrew B. Kahng was born October 1963 in San
Diego, CA. He received the A.B. degree in ap-
plied mathematics (physics) from Harvard College,
Cambridge, MA. He received the M.S. and Ph.D.
degrees in computer science from the University of
California at San Diego

From June 1983 to June 1986, he was affili-
ated with Burroughs Corporation Micro Compo-
nents Group, San Diego, CA, where he worked

" m device physics, circuit simulation, and LAD tor
VLSI layout. He joined the computer science faculty

at UCLA in July 1989 and is currently Professor as well as Vice-Chair
for graduate studies. From April 1996 through September 1997, he was on
sabbatical leave and leave of absence from UCLA, as a Visiting Scientist
at Cadence Design Systems, Inc. San Jose, CA. He resumed his duties at
UCLA in fall 1997. His interests include VLSI physical layout design and
performance analysis, combinatorial and graph algorithms, and stochastic
global optimization.

Prof. Kahng has received NSF Research Initiation and Young Investigator
awards, and a DAC Best Paper award. He was the founding General Chair
of the 1997 ACM/IEEE International Symposium on Physical Design, and
defined the physical design roadmap as a member of the Design Tools and
Test working group for the 1997 renewal of the SIA National Technology
Roadmap for Semiconductors. He is currently a member of the EDA Council's
EDA 200X task force, and the Design Tools and Test working group for the
1999 SIA NTRS renewal.

Gabriel Robins (S'91 M'91) completed the Ph.D.
degree in computer science in 1992 at the University
of California at Los Angeles (UCLA), Los Angeles,
CA.

He is Associate Professor in the Department of
Computer Science at the University of Virginia,
Charlottesville. He is a member of the U.S. Army
Science Board and an alumni of the Defense Sci-
ence Study Group, an advisory panel to the U.S.
Department of Defense. He also served on panels of
the National Academy of Sciences and the National

Science Foundation. His primary area of research is VLSI CAD, with emphasis
on physical design. He co-authored a book on high-performance routing and
over 60 refereed papers.

Dr. Robins received a Packard Foundation Fellowship, a National Science
Foundation Young Investigator Award, a University Teaching Fellowship, an
All-University Outstanding Teaching Award, a Faculty Mentor Award, the
Walter N. Munster endowed chair, an IBM Fellowship, and a Distinguished
Teaching Award. He wrote a Distinguished Paper presented at the 1990 IEEE
International Conference on Computer-Aided Design. He also serves on the
technical program committees of several other leading conferences and on
the Editorial Board of the IEEE Book Series. He was General Chair of the
1996 ACM/SIGDA Physical Design Workshop, and a co-founder of the 1997
International Symposium on Physical Design. He is a member of ACM, SIAM,
MAA, SIGDA, and SIGACT

Anish Singh was born and raised in India. He
received the Bachelor of Engineering degree from
Delhi Institute of Technology, Delhi, India in 1996,
where he held a National Talent Search Scholarship.
He then moved to Virginia, and received the Masters
of Computer Science from the University of Vir-
ginia, Charlottesville, in 1998, under the supervision
of G. Robins.

He currently works for Hughes Network Sys-
tems, Germantown, MD. His interests include VLSI

physical design and computer networks

461

462 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 4, APRIL 1999

... . l . -t7 :... :.. It -D
Alexander CelIKOVSKy received rie All. anr x1.3.
degrees in mathematics from Kishinev University,
Kishinev, Moldavia, and in 1982 1995 was af-
filiated with the Institute of Mathematics at the
Moldova Academy of Science, Kishinev, Moldavia.
In April 1989, he received the Ph.D. degree in
computer science from the Institute of Mathematics
in Minsk, Belarus.

During 1995-1997, he was a Research Scientist
at the University of Virginia, Charlottesville, and
in 1007 1 R8R he na a ntdnctoIl scholar at the

University of California at Los Angeles (UCLA), Los Angeles, CA. Since
1999 he has been Assistant Professor of Computer Science at Georgia State
University, Atlanta. He is an author of more than 30 refereed publications. His
research interests include VLSI physical layout, discrete and approximation
algorithms, combinatorial optimization, and computational geometry.

Dr. Zelikovsky was awarded the Young Investigator award of the Moldova
Academy of Sciences and a Humboldt Fellowship (Germany).

