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Near-Optimal Critical Sink
Routing Tree Constructions

Kenneth D. Boese, Member, IEEE, Andrew B. Kahng, Associate Member, IEEE,
Bernard A. McCoy, Member, IEEE, and Gabriel Robins, Member, IEEE

Abstract-We present critical-sink routing tree (CSRT) con-
structions which exploit available critical-path information to
yield high-performance routing trees. Our CS-Steiner and "global
slack removal" algorithms together modify traditional Steiner
tree constructions to optimize signal delay at identified critical
sinks. We further propose an iterative Elmore routing tree (ERT)
construction which optimizes Elmore delay directly, as opposed
to heuristically abstracting linear or Elmore delay as in previous
approaches. Extensive timing simulations on industry IC and
MCM interconnect parameters show that our methods yield
trees that significantly improve (by averages of up to 67%) over
minimum Steiner routings in terms of delays to identified critical
sinks. ERT's also serve as generic high-performance routing trees
when no critical sink is specified: for 8-sink nets in standard
IC (MCM) technology, we improve average sink delay by 19%
(62%) and maximum sink delay by 22 % (52%) over the minimum
Steiner routing. These approaches provide simple, basic advances
over existing performance-driven routing tree constructions. Our
results are complemented by a detailed analysis of the accuracy
and fidelity of the Elmore delay approximation; we also exactly
assess the suboptimality of our heuristic tree constructions. In
achieving the latter result, we develop a new characterization of
Elmore-optimal routing trees, as well as a decomposition theorem
for optimal Steiner trees, which are of independent interest.

I. INTRODUCTIONDUE to the scaling of VLSI technology, interconnection
Delay has become a dominant concern in the design of
complex, high-performance circuits [13], [34]. Performance-
driven layout design has thus become an active area of research
over the past several years. In this paper, we develop a
new critical-sink problem formulation and new solutions for
performance-driven routing tree design.

For a given signal net, the typical goal of performance-
driven routing is to minimize average or maximum source-
sink delay. Much early work implicitly equates optimal rout-
ing with minimum-cost Steiner routing. For example, [14]
used static timing analysis to yield net priorities, so that
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the highest-priority nets may be routed by minimum Steiner
trees, leaving lower-priority nets to subsequently encounter
blockages. References [21], [28] have given approaches which
are tuned to building-block layout and allow prescribed upper
bounds on individual source-sink delays; the former work also
incorporates a hierarchy-based net ordering. For minimum
Steiner tree routing, the 1-Steiner method [22] is the best-
performing heuristic, and we therefore use it as a basis for
comparison below.1

Reference [9] proposed a heuristic which simultaneously
considered both the cost (total edge length) and the radius
(longest source-sink path length) of the routing tree. A more
general formulation was given in [10], wherein a parameter
E guides the tradeoff between cost and radius minimization;
the same authors in [10] proposed the "provably good" BRBC
(bounded-radius, bounded-cost) algorithm, which affords both
cost and radius simultaneously within constant factors of
optimal. The BRBC method and works of [3], [23] all achieve
a smooth cost-radius tradeoff via the same basic idea: 1) make
a depth-first traversal of the minimum spanning tree over
the signal net, and 2) if the accumulated path length from
the source to some sink becomes too large, modify the tree
to reduce that particular source-sink path length. The cost-
radius tradeoff may also be viewed as one between competing
minimum spanning tree (MST) (or minimum-cost Steiner
tree) and shortest-path tree (SPT) constructions. Using this
perspective, [1] recently proposed the AHHK algorithm, which
achieves a direct MST-SPT tradeoff. Finally, [11] proposed
the use of rectilinear Steiner arborescences [30], or A-trees;
these are essentially minimum-cost SPT's with Steiner points
allowed. The delay performance of the AHHK algorithm is
superior to that of the BRBC or A-tree constructions [1], and
thus below we use AHHK as another basis of comparison
with our new methods.

A. Motivations for Critical-Sink Routing

In performance-driven layout for cell-based designs, timing-
critical paths are determined by static timing analysis, and
modules in these paths are then placed close together (see,
e.g., [13], [18], [20], [26], [27], [34]). The static timing
analysis thus iteratively drives changes within both the module
placement and the global routing phases. Our contribution
stems from carefully considering routing tree constructions
within this overall performance-driven layout process.

IRecent studies by [4], using the optimal Steiner code of J. Salowe, show
that 1-Steiner is within 0.25% of optimal on average.
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In general, existing performance-driven placement algo-
rithms may be classified as either net-oriented or path-
oriented. Net-oriented placement typically uses centroid-
connected star cost [33], probabilistic estimates of Steiner tree
cost [20], minimum spanning tree cost [13] or the bounding
box serniperimeter [27] to estimate wire capacitance and signal
delay for a multi-terminal net. From this information, critical
timing paths between primary inputs and primary outputs
are computed, after which module placements are updated to
reduce these "net-based" objectives for signal nets along the
critical paths. By contrast, path-oriented placement considers
delay between the source and a particular critical sink of a
multi-terminal net. The critical sink is typically determined via
timing analysis using known module delays and estimated path
delays. For example, [26] used a linear delay approximation
so that their method updates the module placement to reduce
the rectilinear distance between sources and critical sinks.
Other path-oriented methodologies include those of [18], [35].

If a timing-critical path passes through a given net, the path-
oriented approach can provide an explicit bound on delay at
that net's critical sink. While the net-oriented approach may
arguably provide only implicit routing constraints, it is still
easy to identify critical sinks after the timing analysis has
been performed, or a priori by finding paths in the design that
contain more module delays. This reveals a "placement-routing
mismatch:" the performance-driven routing constructions re-
viewed above generally address net-specific objectives (min
cost, min radius, cost-radius tradeoffs, etc.) and do not exploit
the critical-path information that is available during itera-
tive performance-driven layout. As a consequence, designers
cannot realize the full benefit of high-quality timing-driven
module placements. With this in mind, our work develops new
high-performnance routing tree constructions which directly
exploit available critical-path timing information.

B. The Critical-Sink Routing Tree Problem

A signal net N consists of a set of pin locations
{nonl,...,nk} in the Manhattan plane, which are to be
connected by a routing tree T(N). We use no to denote the
source, with the ni (1 < i < k) denoting sinks. The cost of an
edge eij in T(N), denoted by dij, is the Manhattan distance
between the endpoints ni and nj of the edge. The cost of
the tree T( Y) is simply the sum of its edge costs. In a given
routing tree T(N), the signal delay between two terminals ni
and nj is denoted by t(ni, nj); the shorthand notation t(ni)
indicates the delay from the source to the sink ni. Finally, we
allow each ni to have an associated criticality, ai, reflecting
the timing information obtained during the performance-driven
placement phase. Our goal is to construct a routing tree T(N)
which minimizes the weighted sum of sink delays:

Critical-Sink Routing Tree (CSRT) Problem: Given a sig-
nal net N ={no,n.,. nk} c R2 with source no and
possibly varying sink criticalities ai > 0, i .1; ... sk,
construct a routing tree T(N) such that a=1 a. t(ni) is
minimized.

This CSRT problem formulation is quite general, and easily
captures traditional performance-driven routing tree objec-
tives: 1) average delay to all sinks is minimized by using

all aj = some positive constant, then taking the L1 sum of
the weighted delays; and 2) maximum delay to any sink is
minimized by using all a< = some positive constant, then
taking the L. sum of the weighted delays. In the discussion
below, we will concentrate on the simple yet realistic case
where exactly one critical sink, denoted by n,, has been
identified. In other words, we assume that a, > 0 and that
all other ai = 0. Our methods may be generalized to the case
where a small number of critical sinks is specified.

The remaining discussion is organized as follows: Section II
discusses the appropriate choice of a delay measure to guide
the routing tree design, and derives motivating observations
from analysis of the Elmore approximation for signal delay in
distributed RC trees. Section III then presents our two main
classes of CSRT algorithms. We first describe the CS-Steiner
method, which perturbs an existing Steiner tree construction
to account for the presence of identified critical sinks. We
then propose an efficient class of Elmore routing tree (ERT)
constructions which not only yield good CSRT solutions,
but are also the first methods to optimize Elmore delay
directly without any of the abstractions implicit in previous
routing objectives. Section III also describes the extension
of the ERT approach to net-dependent routing objectives.
Experimental results are presented in Section IV, where we
compare delays at critical sinks in our heuristic tree topologies
with analogous delays obtained using the best-performing
minimum Steiner tree heuristic [22] and the AHHK routing
[1]. Our methods prove extremely effective, obtaining up
to an average 69% reduction in signal delay to identified
critical sinks in 8-sink nets. The ERT approach also yields
generic high-performance routing trees when all sinks are
equally critical: for 9-pin nets in 1.2/i CMOS IC (MCM)
technology, we improve average sink delay by 19% (62%)
and maximum delay by 22% (52%) over the minimum Steiner
routing. We thus obtain a significant advance over the existing
performance-driven routing tree constructions in the literature,
including such recent works as [11, [10], [281. Our results
are complemented by a detailed analysis of the accuracy and
fidelity of the Elmore delay approximation, and we furthermore
provide exact assessments versus optimal for our heuristic tree
constructions. To determine the latter data, we have developed
a new theoretical characterization of Elmore-optimal routing
trees, as well as a decomposition theorem for (Elmore-)
optimal Steiner trees, which are of independent interest.

Il. ON DELAY APPROXIMATIONS

AND TREE DESIGN OBJECTIVES

For arbitrary signal nets N. the appropriate objective to
use in efficiently constructing "high-performance routing trees"
has not yet been established. In this section, we first consider
necessary qualities for a delay approximation that is to be used
in routing tree design. By studying both the relative accuracies
and the relative fidelities of linear, distributed RC, distributed
RCL, and SPICE-computed delay approximations, we demon-
strate that the Elmore distributed RC delay approximation is
of surprisingly high fidelity with respect to SPTCE3e2. From
Elmore's simple fornula (i.e., the first moment of the impulse
response in a distributed RC tree), we then develop revealing
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TABLE I
TECHNOLOGY PARAMETERS FOR THREE CMOS IC TECHNOLOGIES AND ONE MCM TECHNOLOGY. PARASIrICS AND SPICE SIMULATION DEcKS FOR

THE IC 1 AND IC2 TECHNOLOGIES ARE PROVIDED BY MOSIS; IC3 PARASITiCS ARE COURTESY OF MCNC. THE DRIVER RESISTANCES
(RD) AND SINK LOADING CAPACITANCES ARE DERIVED FOR MINIMUM SIZE TRANSISTORS. NOTE THAT INDUCTANCE VALUES FOR IC1-IC3
ARE SET TO 1 X 10-5 fH/pm (EFFECTIVELY ZERO) BECAUSE THEY WERE NOT PROVIDED BY MOSIS/MCNC, AND BECAUSE A NONZERO

INDUCTANCE Is REQUIRED BY THE TWO-POLE SIMULATOR (SEE FOOTNOTE 4). MCM INTERCONNECT PARAsmcs ARE CouRTESY OF PROFESSOR W.
W. M. DAI OF THE UNIVERSITY OF CALIFORNIA, SANTA CRUZ, A.ND CORRESPOND TO DATA PROVIDED BY AT&T MICROELECTRONICS DIVISION

Name iC1 l W2 [ 03M
Technology 2.0 pim CMOS | 1.2 pm CMOS I 0.5 pm CMOS | MCM i

rd 164.0 S 2 212.1 S 270.0 Q 250 0 S
unit wire resistance 0.033 Cl/pm 0.073 Cl/pm 0.112 Cl/pm 0.008 0/pm

unit wire capacitance 0.234 fF/pm 0.083 fF/lm 0.039 fF/ptm 0.06 fF/pm
unit wire inductance Ix10-

5 
fH/pm Ixl-,fH1f /pm 1x1OsfH/fPm 380 fIf/pm

loading capacitance 5.7 fF 7.06 fF 1.0 fF 1000 fF
resistance ratio (x 1Opm) 0.0050 0.0029 0.0024 0.0031

chip size lXl CM2 l x JCM2 IXI CM2 10x10 cm'

intuitions regarding the "correct' objective for critical-sink
routing tree design.

A. Accuracy and Fidelity of Delay Approximations

Ideally, a routing algorithm will compute and optimize
signal delays according to a detailed circuit simulation, such
as that provided by SPICE. Since the computation times
required by SPICE are prohibitive for routing tree construction,
simpler delay approximations must be used. For example, the
traditional minimum-cost Steiner tree objective, in addition to
minimizing wiring area, corresponds to a lumped-capacitance
model (i.e., signal delay is proportional to total tree capaci-
tance, which is proportional to tree cost). In [9], [10], [341,
the linear delay approximation is used; sink delays are thus
proportional to source-sink path lengths, and a minimum-
radius criterion is obtained.

Such simple delay approximations are known to be in-
accurate as technology scales, e.g., smaller wire geometries
imply that resistive effects of the interconnect become more
dominant, particularly in relation to driver on-resistance (see
the discussion below of "resistance ratio" effects, and note
the four technology characterizations in Table I). Furthermore,
greater system speeds and layout areas may expose inductive
effects on delay. Given these considerations, distributed RC
delay approximations (e.g., that of Elmore [15]) or distributed
RCL delay approximations (e.g., the "Two-Pole" simulator
of [38]) are of interest, since they are more accurate than
linear or lumped-capacitance approximations while requiring
less computation time than SPICE.

Elmore delay in an RC tree [15], [32], [36] is defined as
follows: Given routing tree T(N) rooted at the source no, let
e, denote the edge from node v to its parent in T(N). The
resistance and capacitance of edge e, are denoted by re, and
c,,, respectively. Let T, denote the subtree of T rooted at
v, and let c. denote the sink capacitance of v (c, = 0 if v
is a Steiner node). We use Cv to denote the tree capacitance
of T_, namely the Sum of sink and edge capacitances in T_.
Using this notation, the Elmore delay along edge ev is equal
to re, (-E + C,,). Let rd denote the output driver resistance at
the net's source. Then Elmore delay tED(ni) at sink ni is

tED(ni) = rdC,5 + E e r (Ceq + Cr) (1)
eEtpath(no ,nj )

Although Elmore delay has a compact definition and can be
quickly computed 2 it does not capture all of the factors that
account for delay. For example, the Two-Pole distributed RCL
simulator [38] considers inductive effects; according to [5],
[38], its moment-based methodology is intermediate between
SPICE and Elmore delay in both accuracy and computational
efficiency.

Accuracy: In choosing a delay simulator, one traditionally
measures accuracy, which may vary with the circuit tech-
nology and the specifics of a net (for instance, the number
of pins it contains, or the size of its bounding box). Tables
II and III indicate the accuracy of the linear, Elmore and
Two-Pole models for each of the interconnect technologies
described in Table I. For each of the three estimators, the
tables give the average ratio of SPICE delay to the estimated
delay, and also show the consistency of this ratio in terms of its
standard deviation.3 In Table II, delay is calculated for a single
random "critical" sink; in Table III, delay is measured as the
maximum delay at any sink in the net. For each net size, the
results are averaged over 100 random nets with pin locations
chosen from a uniform distribution over the routing area;
each net is connected using the minimum cost spanning tree
(MST) construction. We use MST's rather than random tree

2
Elmore delay can be evaluated at all sinks in 0(k) time, as noted in [32].

The calculation uses two depth-first traversals: I) to compute the delay along
each edge and 2) to sun] up the delays along each source-sink path.

l 3Ur SPICE3e2 delay modeling uses constant unit resistance and capaci-
tance values. The root of the routing tree is driven by a resistor connected
to the source. For the Two-Pole and SPICE simulators, every interconnect
segment is broken into uniform segments, each at most 1/100th the length of
the layout dimension, connected in series. To model sink loads, we use pure
capacitive loads derived using minimum-size transistors. For all simulators,
we have used the 50% rise time delay critenon, and we have measured both
average sink delay and maximum sink delay. For the Two-Pole and SPICE
simulators we have used time steps of 0.005 ns for the IC technologies and
0.05 us for MCM.

We have found our results to be qualitatively independent of methodological
choices (e.g., 50% rise time instead of 90% rise time as a delay criterion).
However, many reasonable alternative simulation methodologies were possi-
ble. For instance, Elmore delay does not intrinsically correspond to any delay
time tit is simply the first moment of an impulse response), but can be said to
correspond to a 63% delay criterion since RC/2 is the coefficient of 5 in the
system transfer function H(s) of a distributed RC line. On the other hand,
the nature of the Two-Pole approximation makes it more suited to a 90%
rise time criterion [38]. Other inconsistencies: while SPICE can model active
devices as loads, the Two-Pole simulator can only handle "equivalent" sink
capacitances; while SPICE and Two-Pole can model series inductance (for
MCM interconnect), Elmore delay is solely a distributed RC model-indeed,
the list of incomparable variables seems endless.
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FABLE II
ACCURACY OF THE LINEAR, ELMORE AND TwO-POLE ESTIMATORS FOR

CRITICAL SINK DELAY. THIS TABLE GIVES I-HE AVERAIIE AND STANDARD
DEvLATION OF THE RATIOS BETWEEN SPICE3E2 DELAY AND ESTIMATED

DELAY AT A SINGLE RANDOM CRITICAL SINK, AVERAGED OVER 100
RANDOM NEFS. ALL NETS ARF CONNECTED USING MST CONSTRUCTIONS.

STANDARD DEVIATIONS ARE REPORTED AS A PERCENT OF THE AVERAGE.
LINEAR DELAY IS DEFINED AS THE SOURCE/SINK PATHLENGTH; BECAUSE

THIS IS A DISTANCE RATHER THAN A TIME, WE Do NOT REPORT A
SPICE/LINEAR "RATIO.' HOWEvER, WE CAN REPORT THE STANDARD

DEVIATION OF THIS QUOTIENT, SINCE IT Is INDEPENDENT OF UNITS

TABLE III
ACCURACY OF THE LINEAR, ELMORE AND Two-POLE ESTIMATORS FOR

MAXIMUM SINK DELAY. SEE TABLE II FOR EXPLANATORY NOTES

topologies so that our comparisons will be for relatively good
(albeit not necessarily optimal) routing solutions. (Observe that
for a 7-pin net, finding the optimal-delay routing solution by
exhaustive enumeration using SPICE is not computationally
feasible.)

In all cases, the ratio of SPICE to Linear Delay has
the largest standard deviation; this inaccuracy in the linear
approximation is not surprising. It is also reasonable to expect
poor "accuracy" of the Elmore and Two-Pole approximations
with respect to SPICE, if only due to the somewhat ill-
defined state of delay modeling and analysis noted in Footnote
3. Indeed, based on the average ratio of SPICE to Elmore

Accuracy of Linear, Elmore and Two-Pole Delay Estimates
for T1ritical Rink Delav

IN =4 INI =7
Delay Ratio average std dev average std v

ICI SPICE/Linearf 28.4% - 32.7%
SPICE/Elmore 0.72 13.5% 0.69 15.4%
SPICE/2-Pole 127 13.5% 1.23 15.4%
2-Pole/Elmrore 0.568 0.5% 0.566 0.2%

IC2 SPICE/lineart - 33.9% - 38.8%
SPICE/Elmore 0.74 16 1% 0.70 17.8%
SPICE/2-Pole 1.30 15.9% 1.23 17.8%
2-Pole/Elmore 0.572 0.9% 0.568 0.5%

IC3 SPICE/Iineart - 34.9% - 40.3%
SPICE/Elmore 0.78 16.0% 0.72 17.8%
SPICE/2-Pole 1.36 15.7% 1.27 17.9%
2-Pole/Elmore 0.574 1.4% 0.571 0.8%

MCM SPICE/Lineart 57.1% - 61.6%
SPICE/Elmore 0.69 20.5% 0.65 25.1%
SPICE/2-Pole 1.20 20.8% 1.14 25.2%
2-Pole/Elmore 0.568 1.0% 0.566 0.4%

-

Accuracy of Linear, Elmore and Two-Pole Delay Estimates
for Maximum Sink Delay

I~I-~=4 INI =7
Delay Ratio average std dev average std dev

IC1 SPICE/Linear - 11.0% - 11.4%
SPICE/Elmore 0.79 1.9% 0.79 1.7%
SPICE/2-Pole 1.39 1.7% 1.39 1.7%
2-Pole/Elmore 0.568 0 3% 0.567 0.2%

IC2 SPICE/Linear - 1.% 12.9%
SPICE/Elmore 0.83 4.1% 0.81 2.6%
SPICE/2-Pole 1.44 3 6% 1.42 2.4%
2-Pole/Elmore 0.572 0.8% 0.568 0.4%

ICO SPICE/Linear 1% 13.6%
SPICE/Elmore 0.87 6.0% 0 83 3.6%
SPICE/2-Pole 1.51 5.1% 1.46 3.4%
2-Pole/Elmore 0.574 1.3% 0.569 0.4%

MCM SPICE/Linear - 25.8% - 23.3%
SPICE/Elmore 0.79 2.3% 0.79 2.0%
SPICE/2-Pole 1.39 2.1% 1.39 1.9%
2-Pole/Elmore 0.568 1.0% 0.566 0.4%

delay or to the Two-Pole simulator, neither estimator seems
particularly accurate: each is generally at least 20% away from
SPICE on average at the critical sink.4 Interestingly, Table
III shows the ratio between SPICE and both the Two-Pole
and Elmore estimators to be very consistent when measuring
maximum sink delay, with standard deviations within 4% for
all technologies on seven-pin nets. Thus, precomputed "cor-
rection factors" would seemingly compensate for the observed
inaccuracy of these estimators. However, for delay at a random
critical sink, the standard deviation of the accuracy ratio
is consistently above 15%. This lesser consistency perhaps
indicates that the traditional net-based performance objective
is more "forgiving" of errors in the delay estimate than newer
path-based delay objectives.5

Fidelity: A key observation is that precise accuracy is not
really required of delay estimates used to construct routing
trees. In practice, we only require that an estimator have a
high degree of fidelity, i.e, an optimal or near-optilrlal Solution
according to the estimator should also be nearly optimal
according to actual delay. To this end, we have defined a
measure of fidelity vis-a-vis an exhaustive enumeration of
all possible routing solutions: we first rank all spanning tree
topologies6 by the given delay model, then rank the topologies
again by SPICE delay, and then find the average of the absolute
value of the difference between the two rankings for each
topology. This measure of fidelity corresponds to a standard
rank-ordering technique used in the social sciences [2]. We
have run simulations to estimate this measure of fidelity for
nets of size 4 and 5 using the linear and Elmore delay
estimators and each of the four interconnect technologies.7
(In this section, we show that the ratio between Elmore delay
and the Two-Pole estimator of [38] is very nearly constant. As
would therefore be expected, fidelity values for the Two-Pole
simulator are nearly identical to those for Elmore delay, and
we do not report them here.)

Tables IV and V show the fidelity to SPICE of the linear and
Elmore delay estimators; the delay criterion is the 50% delay
time to a given randomly-chosen critical sink in the net. We
report the average difference in ranking over all topologies;
the average rank difference for the topology which has lowest

4
Recall that we assigned a near-zero inductance value for the IC technolo-

gies, since inductance parameters were nIt available from MOSIS/MCNC,
and since the Two-Pole simulator requires a nonzero inductance. We found
that this does not change our results significantly. For example, if we increase
the IC I inductance parameter to 400 f HMy m the average Two-Pole/Elmore
ratio becomes 0.566 with a standard deviation of 0 51% Elmore delay is
independent of inductance since the first moment of the impulse response in
a distributed RCL tree has no L term.

5The small standard deviation of the accuracy values for maximum sink
delay seems in part due to the rough similarity of the maximum source-sink
distances over the examples studied. Note that, for example, with the MCM
technology and IN = 7, the average SPICE/Flmore ratio for a random sink
is 0.65, whereas for the sink with greatest delay (generally furthest from the
source) the ratio is 0.79. The critical-sink analvsis in some sense better reveals
this effect of sink distance from the source.

5
Therc are NIJNI-2 distinct spanning tree topologies for any given net

N [16]
7

Again, we use linear delay defined to be the source/sink pathlength. This
definition leads to numerous ties between topologies, and we break ties in
favor of trees with lower total wirelength. Tics also occur with SPICE-
comput-d delay because of the finite time step used; here we again break
ties according to tutal wirelength.
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TABLE IV
AVERAGE DIFFERENCE IN RANKINGS OF TOPOLOGIES IN TERMS OF 50% DELAY

TO A GIVEN RANDOM CRITICAL SINK N EACH NET. THE SAMPLE CONSISTS OF
50 RANDOM NETS OF EACH CARDINALITY, AND THE 50% RISE TIME DELAY
CRITERION WAS USED. THE TOTAL NUMBER OF TOPOLOGIES FOR EACH NET

IS 4(
4 2

) = 16 FOR INI = 4, AND5( 5  2
) = 125 FOR |N -- 5

Linear Elmore
vs SPICE vs SPICE

Topologies IN! -4 |N =5 NI = 4 |NI = 5
IC1 Best 2.30 16.3 0.54 5.9

5 Best 2.52 18.1 1.02 7.2
All 2.43 17.0 0.92 8.0

IC2 Best 2.52 19.4 0.58 6.4
5 Best 2.66 20.2 0.99 7.2
All 2.44 16.9 0.94 7.9

IC3 Best 2.60 19.8 0.58 5.6
5 Best 2.68 20.9 0.93 6.5
All 2.43 16.5 0.93 7 7

MCM Best 3.04 24.6 0.72 5.1
5 Best 2.81 24.4 0.89 4.7
All 2.33 15.7 0.89 7.1

TABLE V
AVERAGE DIFFERENCE IN RANKINGS OF TOPOLOGIES IN TERMS OF MAXIMUM

DELAY OVER ALL SINKS. THE SAMPLE CONSISTS OF 50 RANDOM NETS OF
EACH CARDINALITY, AND THE 50% RISE TIME DELAY CRITERION WAS USED

Linear Elmore
vs SPICE vs SPICE

Topologies JNI = 4 N! = 5 NI = 4 NI= 5
ICI Best 0.50 2.06 0.38 0.10

5 Bert 0.66 2.78 0.71 0.47
All 0.94 7.74 0.65 1.39

IC2 Best 0.40 2.26 0.16 0.20
5 Best 0.68 2.61 0.51 0.53
All 0.87 7.02 0.43 1.24

IC3 Best 0.64 2.40 0.48 0.20
5 Best 0.87 2.59 0.52 0.44
All 1.04 6.96 0.60 1.22

MCM Best 0.70 4.56 0.14 0.08
5 Best 0.71 3.15 0.11 0.22
All 1.02 7.01 0.16 0.86

delay according to the estimator; and the average difference for
the five topologies which have lowest delay according to the
estimator. Our results show that Elmore delay has surprisingly
high fidelity for the critical-sink delay criterion, and nearly
perfect fidelity for the maximum sink delay criterion. For
example, with 5-pin nets and IC3 technology parameters,
optimal critical-sink topologies under Elmore delay averaged
only 5.6 rank positions (out of 125) away from optimal
according to SPICE, while the best topology for maximum
Elmore delay averaged only 0.2 positions away from its
"proper" rank using SPICE. Reference [241 has similarly
established the fidelity of Elmore delay for circuit design: they
plotted Elmore- versus SPICE-computed delays for a suite of
209 different place/route solutions of the same ripple-carry
adder circuit, and also found a very high correlation between
the two delay measures.

Table VI shows the average increase in SPICE delay from
optimal for the 20 top-ranking topologies. i.e.. the 20 lowest
SPICE delays for INI = 5. For IC2, the average distance of
6.4 rank positions for the optimal critical sink Elmore topology
implies an expected difference of approximately 1.6% in actual
SPICE-computed delay (i.e., halfway between the seventh
and eighth best topologies); for IC3 a distance of 5.6 rank
positions implies approximately 0.7% delay suboptimality; and

TABLE VI
AVERAGE SPICE DELAY RATIOS FOR THE Top 20 TOPOLOGIES RANKED

ACCORDING TO SPICE FOR | -v| = 5. VALUES ARE AVERAGED OVER 50 RANDOM
NETS AND NORMALIZED TO THE AVERAGE DELAY OF THE BEST TOPOLOGY. ALSO

INCLUDED Is THE AVERAGE RATIO FOR THE WORST TOPOLOGY (RANK 125)

ICI IC2 IC3 MCM
Rank CS Max CS Max CS Max CS Max

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.006 1.049 1.003 1.046 1.002 1.050 1.001 1.044
3 1 011 1.087 1.005 1.088 1.005 1.089 1.001 1.108
4 1.014 1.120 1.006 1.128 1.006 1.133 1.002 1.189
5 1.016 1.154 1.007 1.153 1.006 1.158 1.003 1.250
6 1.017 1.180 1.007 1.184 1.006 1.191 1.004 1,297
7 1026 1.201 1012 1.215 1.007 1.221 1.005 1.363
8 1.040 1.227 1.021 1.243 1.014 1.247 1.005 1 .419
9 1.074 1.253 1.046 1.273 1.036 1.279 1.014 1.474

10 1.160 1.282 1.138 1.311 1.120 1.322 1.047 1.531
11 1.180 1.306 1.155 1.336 1.134 1.345 1.049 1.594
12 1.224 1 .330 1 207 1.371 1.182 1.380 1.058 1,652
13 1.246 1.353 1.218 1.399 1.191 1.417 1.060 1 713
14 1.288 1.387 1.254 1.436 1.225 1.449 1.064 1.763
15 1.306 1.417 1.269 1.468 1.233 1.483 1.066 1.831
16 1.327 1.436 1.309 1.495 1.283 1.515 1.103 1.886
17 1.351 .491 1L344 1.572 1.326 1.595 1.427 1.987
18 1.380 1.517 1.376 1.600 1.354 1.629 1.431 2.039
19 1.417 1.554 1.427 1.641 1.413 1.672 1.475 2.079
20 1.445 1.574 1.466 1.667 1.456 1.697 1.686 2.142

125 8.04 5.46 10.36 6.51 10.81 6.83 18.34 10.41

TABLE VII
AVERAGE SPICE SuBOpriMALITY OF ELMORE DELAY AS

MEASURED BY THE RATIO BETWEEN THE AVERAGE SPICE DELAYS
OF iHE ELMORE -OtmAL AND SPICE-OPTIMAL TOPOLOGIES

Critical Sink Delay Maximum Sink Delay
Technology NI = 4 IN = 5 5NI-

IC 1,L029 1.099 1.009 1.001
IC2 1.039 1.096 1.005 1.002
1C3 1.038 1.078 1.013 1.002

MCM 1.019 1.031 1.001 1.001

for MCM a difference of 5.1 rank positions implies 0.4% delay
suboptimality. For maximum sink delay, Table VI implies
approximate suboptimality ranging between 0.6% for MCM
and 2.4% for IC3.

A more direct measure of the suboptimality of Elmore
delay is to compare SPICE delays of the Elmore-optimal
and SPICE-optimal topologies. Table VII shows averages
of this measure of suboptimality for both the critical sink
and the maximum delay criteria. For critical sink delay and
NI = 5, the average SPICE suboptimality of the Elmore-
optimal topology is between 3.1% for MCM and 9.9% for
ICI. Moreover, the Elmore-optimal topologies are closer to
SPICE-optimal for the IC3 and MCM technologies, which
have lower resistance ratios. We believe that the estimates of
Elmore suboptimality for critical-sink delay in Table VII are
larger than those inferred above from Tables IV-VI, due to the
convexity of the relationship between SPICE rank and average
SPICE delay (Table VI). For maximum delay, Table VII
indicates that minimizing Elmore delay very nearly minimizes
SPICE delay, with suboptimality of between 0.1% and 0.2%
for the optimal Elmore topology. Thus, while the accuracy
of Elmore delay has many dependencies on technology and
is particularly weak for critical-sink delay, we find that the
fidelity of Elmore delay is strong for both the critical-sink and
maximum sink delay criteria.
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1 -te C 0 P no0

1 Sterner aPT Opt

(a) (b) (c)

CS-Steiner Algorithm
Input: signal net N; source no E N; identified critical sink n, g If
Output: heuristic CSRT solution T
1 Construct heuristic minimum-cost tree To over N - n,.
2. Form T by adding a direct conitectiou from n, to To,

i.e., such that the noins path in T is monotone,

(d)

Fig. 1. (a)-(c) OptimalSteinertree (cost 2.0 cII, l(n,) = 3.34 is); minimuri
cost shortest-paths tree (cost 2.5 cm, t(n,) = 2.26 us); and optimal-delay tree
(cost 2.2 cm, t(no) = 1.67 ns) for the same sink set. Coordinates shown are
in mm, and the 1.2p 1C2 technology parameters (Table I) were used with
the two-pole simulator and 90% rise time delay criterion. (d) two distinct
minimum-cost SPT sotlttions For a set of three sinks.

B. Inttitions front Elmore Delay

Because of its fidelity to SPICE-computed delay, Elmore
delay is a good performance objective for constructing high-
performance routing trees. Furthermore, the simplicity of the
Elmore delay formula (1) allows us to intuit heuristics which
effectively minimize delay.

Since r, and ce. are usually proportional to the length of
edge e,, we see that tED(n,) has a quadratic relationship to
the length of the no-is path, suggesting a min-radius criterion.
However, the Cj term implies that Elmore delay is also linear
in the total edge length of the tree which lies outside the no-
ni path, suggesting a min-cost criterion. The relative size of
the driver resistance rd heavily influences the optimal routing
topology: if rd is large, the optimal routing tree (ORT) is a
minimum cost tree; as rd decreases, the ORT tends to resemble
a "star` topology. The size of rd relative to unit wire resistance
is a "resistance ratio" [5] that captures the technology vis-
a-vis routing tree design. Values of the resistance ratio are
larger for current-generation CMOS, but tend to decrease in
MCM substrate and some submicron CMOS IC interconnects
(Table I).

In Fig. 1, we show a signal net N with identified critical sink
nc, along with three routing trees (a) the 1-Steiner tree, (b)

a minimum-cost sPFT, and (c) the optimal CSRT with respect
to critical sink nc. Based on this example, the example of
Fig. l(d), and (1), we make the following observations:

The minimum cost solution Fig. l(a) has large delay to
the critical sink nc due to the long source-sink path.

* However, requiring a monotone path to every sink, as in
the SPT Fig l(b) or a Steiner arborescence [I1], [30], can
result in large tree capacitance which again leads to large
delay at nc.

*The optimal CSRT construction Fig. l(c) illustrates the
dependence of routing topology on the choice of critical
sink, and reflects both the minimum-cost and the SPT
solutions.

* Finally, (1) implies that the number of Steiner points
in the no-n, path should be minimized, and the Steiner
points "shifted" toward n0 (i.e., branches off of the nu-
ns path should occur as close to the source as possible).
Fig. l(d) shows two trees which are both shortest-path
trees and minimum Steiner trees, yet the rightmost tree
has less signal delay at n,.

Fig. 2. The CS-Steiner heuristic.

Ill. TwO CLASSES OF CSRT HEURISTICS

A. The CS-Steiner Approach

Given the observations above, we may characterize the op-
timal CSRT solution in Fig. 1(c) as one which minimizes total
tree cost, subject to the pathfrom no to n, being monotone (i.e.,
of minimum possible length). This simultaneous consideration
of radius and cost parameters recalls the motivations in [1],
[9], [10], but here the tradeoff is formulated with respect to
the critical sink n,. We thus obtain our CS-Steiner heuristic
for the CSRT problem (Fig. 2).

The idea behind CS-Steiner is simple: construct a minimum-
cost Steiner routing tree as usual, then "fix" the tree to reflect
an identified critical sink. Since the algorithm template is quite
general, we have examined a number of CS-Steiner variants.
All of our variants use the 1-Steiner heuristic of [22] to
construct the initial tree To in Line 1. Section IV reports results
for the following three variants:8

HO: The direct connection in Line 2 consists of a single
wire from n, to no.
Hi: The direct connection in Line 2 consists of the shortest
possible wire that can join n, to To. subject to the monotone
path constraint.
HBest: Accomplish Line 2 by trying all shortest connections
from n, to edges in To, as well as from n, to no; perform
timing analysis on each of these routing trees, and return
the tree with lowest delay at no.

The time complexity of these variants is dominated by the
construction of To in Line 1 (or possibly by the simulator
calls in HBest).

We enhance the CS-Steiner construction via an efficient
Global Slack Removal (GSR) postprocessing algorithm. GSR
[6] is similar to the method developed independently in [8],
which also removes "U's" from interconnections. However,
the objective of GSR is not to reduce tree cost (which is
already effectively minimized by the I-Steiner algorithm) but
rather to maximize the monotonicity of all source-sink paths
and reduce Elmore delay to all sinks. GSR accomplishes this

gW- also studied two additional variants. Variant H2 modifies Line I of
CS-Steiner so that the initial heuristic tree To is constructed over the entire net
IV. H2 then deletes the edge which lies directly above n, when we root TO at
no, and rejoins (the component containing) no to (the component containing)
ito using a shortest possible wire frots n-, as iil variant HIl. Variant H3
performs Lines I and 2 simultaneously by executing the 1-Steiner algorithm
subject to a "maintaining monotone feasibility" constraint. In other words,
we iteratively choose a Steiner point which mlnirmizes the sita of the tree
cost and the cost of any needed direct connection from n. to no. The direct
connection from n, requires that there exist a monotone path through the
"bounding boxes" of the edges in the path to no. Intuitively, this favors
initial choice of Steiner nodes along some monotone path from new and n,.
since such nodes xvill most rapidly reduce the marginal cost of adding the
direct 7C-no connection. The H2 and HI variants yielded delays that were
inferior to those of HO, Hi, and Hiest.
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without increasing overall tree cost. For expository reasons,
we defer formal description of GSR, along with its proofs of
correctness, to Appendix A.

B. Elmore Routing Trees

From the discussion of Section II-B, we see that current
routing objectives such as minimum tree cost, bounded tree
radius, or] prescribed cost-radius balance have often been
motivated by the Elmore model. However, such objectives
are abstractions: they do not directly optimize Elmore delay.
Thus, the effectiveness of a given objective often depends on
the prevailing technology, on the particular distribution of sink
locations for a given signal net, and on the user's ability to find
the parameter value (e.g., c in the BRBC algorithm [10], or c
in the AHHK algorithm [1]) which will yield a good solution
for the particular input.

In this subsection, we depart from the abstraction inher-
ent in "minimum cost" or "bounded radius" objectives, and
propose a new greedy Elmore routing tree (ERT) approach
which optimizes Elmore delay directly as the routing tree is
constructed. The ERT approach is efficient, since Elmore delay
at all nodes of a routing tree can be evaluated in linear time
(see Footnote 2). Based on the performance results in Section
IV for both critical-sink and "generic" performance-driven
routing formulations, we believe that the ERT approach, which
we have embodied as the ERT, SERT, and SERT-C algorithms
described below, offers a basic new tool for VLSI routing.

The basic ERT approach is embodied in our Elmore routing
tree (ERT) algorithm9 for spanning trees (Fig. 3), which is
analogous to Prim's minimum spanning tree construction [29]:
starting with a trivial tree containing only the source, we
iteratively find a pin ni in the tree and a sink nj outside the
tree so that adding edge (ni, nj) yields a tree with minimum
Elmore delay. The construction terminates when the entire net
is spanned by the growing tree.10 Note that greedy approach
of the ERT algorithm can be generalized to any delay model
by applying the appropriate estimator in Line 3 of Fig. 3.

We apply the ERT approach to Steiner routing by allowing
the new pin to connect to an edge (or the source) of the existing
tree, possibly inducing a Steiner node on this edge at the point
that is closest to the new pin. In this way, the number of ways
a pin outside the current tree can be added at each iteration
is at most the number of edges in the current tree plus one

9 Note that "ERT approach" refers to our basic concept of optimizing Elmore
delay directly via a greedy heuristic. In contrast, the "ERT algorithm" is simply
one of many possible implementations of the ERT approach: specifcally, it
is a greedy spanning tree construction.

10Our approach should be distinguished from the method of [281, wherein
A* heuristic search and the actual Elmore delay formula are used in a
performance-driven routing tree construction. Like our method, [28] grows a
routing tree over a net N starting from the source no; they perform A* search
of a routing graph (e.g., in building-block design) to find the Elmore delay-
optimal Steiner connection from the existing tree to a new sink. However,
the choi-e f this new singk is forced: the algorithm always adds the sink that
is closest (by Manhattan distance) to the existing tree, and thus falls into the
standard pitfall of ignoring the underlying delay criterion. The effect of this
difference is apparent in the ERT ordering of added nodes in Fig. 4. Indeed,
the method of [281 can yield Elmore delays substantially larger than those of
ERT: given a very tall, "hairpin"-like version of Fig. I(a) with many sinks
very closely spaced along the entire hairpin path, [28] forces the sinks to be
added into the tree according to the path order (starting from the source no
at the lower left), yielding an obviously poor solution.

ERT Algurithm
Irsput: signal net N with source . 5 i N

Output: routing tree I over N
1. T = (V, E) = ({no}, 0)
2. While IVI < IN Ido
3 Find a e V and D ¢ V hich minimize the manimum Elmore delay

from no to any rink in the tree (V U {v), E U {(u, v))
4, V =V U I}
5. E - EU {(n v))
6 Output resulting spinning tree T = (V, E)

Fig. 3. The ERT Algorithm: Direct incorporation of the Elmore delay
formula into a heuristic routing tree construction.

(i.e., a connection to the source). Note that the orientation of
each "L-shaped" edge remains flexible until a Steiner node is
placed on it.

*For generic performance-driven routing, our Steiner El-
more routing tree (SERT) algorithm iteratively finds u V
V, (v, v') c E, so that connecting u to the closest point on
edge (v, v') minimizes the maximum source-sink Elmore
delay in the resulting tree.

*To address critical-sink routing, our Steiner Elmore rout-
ing tree with identified critical sink (SERT-C) algorithm
begins with a tree containing the single edge (no, n,)
in Line 1 of Fig. 3, then continues as in the SERT
algorithm, except that we minimize tED('nt) rather than
the maximum delay to all sinks.

While CS-Steiner began with a minimum-cost Steiner tree
and heuristically perturbed it to improve t(n,), SERT-C uses
the opposite approach of starting with the required n0-na con-
nection and growing the routing tree while keeping tPD(nc)
as small as possible. Again, we note that SERT-C offers a
consistent, direct incorporation of Elmore delay within its
construction, in contrast to heuristics whose objectives or
strategies are only motivated by Elmore delay and whose solu-
tion quality may therefore be more sensitive to the technology,
the input instance, and the choice of parameters.

Time complexities for our ERT variants are analyzed as
follows.

Observation 1: The SERT-C algorithm can be implemented
in 0(k2 log k) time.

Proof: The effect on delay tED(nC) of inserting a new
edge (u, w) into T arises only in the C, terms in (1), and
is an additive constant no matter when (u, w) is added into
the tree. Initially, we compute the best connection from each
noncritical sink to the tree containing only edge (no, n,). For
each new sink added, at most three new edges will be inserted
into the tree. In constant time, we can calculate the effects of
connections from a given sink outside T to thcse three new
edges (all previously computed effects remain unchanged and
need not be recomputed). We can insert the new delay effects
into a priority queue for each u , V in O(log k) time and also
retrieve the current minimum-cost connection for v in 0(log k)
time. Thus, each pass through the while loop of Fig. 3 can
be accomplished in O(k log k) time, giving an overall time
complexity of O(k2 log k). [1

Observation 2: The ERT spanning tree algorithm can be
implemented in 0(k 3 ) time, assuming constant unit wire
resistance, unit wire capacitance, and sink capacitances.

Proof: The result follows from a simple observation: If
a new tree edge incident to sink u E V (Line 3 of Fig. 3)
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TABLE VIII
Two-PoLE SIMULATION RhsuLrs CompAwNO, CS STEINER TRFF-s wrrH

I -STEINER HEURISTIC TREES. EACH ENTRY CORRESPONDS TO AN AVERAGE
OVER DELAY COMPUTATIONS FOR RANDOM CRITICAL SINKs IN EACH OF 100

DIFFERENT RANDOM SIGNAL NETS. 1-STEINER RESULTS ARE REPoFrED IN THE
PHYSICAL UNITS (rs OR cm) WHILE OTHER RESULTS ARE REPORTED BY THEIR
PERCtNET DIFFERENCE FROM THE I -STEINER RESULTS. NOTE THAT 1-STEINER AND

1-STELNER + GSR ALWAYS PRODUCED NEARLY IDENTICAL AVERAGE COSTS

I || ICl IC2 |

I 1t l | 5 T N lV3 =9 |NI=5 I Nj=9
--lStein 0.549 us 0.848 as 0.331 ns 0.520 ns

Critical lStein+-G-SR -2.2% -3.6% -3.0% 86.6%
Sink HO+GSR -2.0% -17 6% -12.4% -30.0%

Delay E1+GSR -4.0% -11.7% -6.6% -17.3%
HBest+GSR -7.1% -18.3% -13.3% -27.9%

1Stein 1.48 cm 2.18 cm 1.48 cm 2.18 cm
Ave WL H0+GSR +29% +22% +29% +22%

H1+GSR +4% o6% +4% +0%
RBest+GSR +79' +11% +10% +12%

IC3 | MCM l

IN = 5 1 16) =9 {INI = 5 M INI = 9

Stein 0.218 ns 0.342 ns 2.31 as 4.09 ns
Critical 1Stei-+GSR -3 2% -5 0% -4.8% -7.3%

Sink HO+GSR -15.1% -33.6% -45.0% -66.7%
Delay 1H+GSR -7.8% 19.0% -14.3% -33.5%

HBest+GSR -15.6% 30.7% -40.7% -66.0%

stein 1.48 c5n 518 cm 14 8 ccm 21.8 cm
Ave WL HO+GSR +29% +22% +29% +22%

H1+GSR +4% +6% +4% +6%
HBest+GSR 11% +12% +22% +21%

minimizes the maximum Elmore delay maxi tED(ni), it must

connect u to the sink v / V that is closest to us. Thus, at each
pass through the while loop, we simply compute the shortest
"outside connection" for each node in V, i.e., every possible s,
in 0(k 2 ) time. We then add each of the 0(k) shortest outside
connections to T in turn. Evaluating the Elmore delays at all
sinks in each of the resulting trees requires 0(k) time per tree.
Hence, each pass through the while loop requires 0(k2 ) time,
and this yields the 0(k 3 ) complexity result.1

"

In practice, the complexity of the ERT algorithm will be
transparent to the user, since k is typically small (e.g., our
runtinmes for the problem sizes discussed here are 0.01 s on
Sun SPARCI hardware: see also Footnote 18). We know
of no implementation of the SERT algorithm that is faster
than 0(k 4 ). Intuitively, the difficulty is that 1) in Line 3 we
must always consider 0(k 2 ) Steiner connections, and 2) the
connection which minimizes maxi tED(ni) in Line 3 may not
be the best one from the "perspective" of any individual sink in
N or edge in T. Thus, we currently have a rather interesting
situation where the CSRT problem formulation leads to an
algorithm (SERT-C) that enjoys nearly quadratic speedup over
the generic Steiner computation (SERT).

IV. EXPERIMENTAL RESULTS

A. CS Steiner Trees

We implemented each of the CS-Steiner variants HO, HI
and HBest. along with the 1-Steiner algorithm [22], using C
on a Sun SPARC1 ELC workstation, and ran these algorithms

"Again, we note the fundamental difference between the ERT approach
and the method of [281: while [28] must add the single sink that is closest
to the existing tree, the ERT algorithm identfies both a new sink and its
connection such [hat Elmore delay is minimized.

on random 4- and 8-sink inputs.12 We also applied our GSR
post-processing algorithm (denoted as +GSR) to 1-Steiner and
each of the CS-Steiner variants. Our inputs correspond to the
four distinct technologies described in Table I.

Table VIII gives delay and tree cost (WL) results and
comparisons. The delays at all sink nodes correspond to 50%
rise times estimated using the Two-Pole simulator [37], [38].
Each entry in Table VIII represents an average taken over
every sink node in 50 random point sets. We emphasize that
the I-Steiner algorithm (or the BRBC, AHHK, etc. methods),
being net-oriented, will return the same tree for a given sink set
no matter which sink happens to be critical; the delays at the
sinks ni are in some sense "generic." In contrast, each of the
three CS-Steiner variants can return a different tree for each
choice of critical sink in the same net. Thus, for each variant
we report the delay at ni in the specific tree corresponding to
identification of ni as the critical sink.

Variants HO and HBest significantly reduce delay to the crit-
ical sink, particularly in larger nets and for MCM interconnect
technology where output driver and wire resistances are low.
In other words, the simple strategy of connecting the critical
node via a path with low branching factor is very successful
for these cases. Of course, this strategy will produce larger
routing cost.13

B. Elmore Routing Trees

We constructed Elmore routing trees for the same sets of
random inputs used in the CS-Steiner experiments. Delay sim-
ulation results, again obtained using the Two-Pole simulator,
are presented in the upper parts of Table IX. For comparison,
the table includes data for the minimum spanning tree and
AHHK tree [1] constructions.

Our results show that even as generic net-dependent routers,
the ERT methods we propose are highly effective, beyond
their relative efficiency and ease of implementation. For nets
with nine sinks, the spanning tree ERT construction reduces
critical sink delay versus the MST construction by 16%,
26%, and 30% in the respective IC technologies and by 67%
in the MCM technology. ERT also improves upon AHHK
for most of the technologies, with reductions of 0% (ICl),
4% (IC2), 6% (IC3), and 46% (MCM). 'These results are
particularly impressive because our AHHK data follows the
experimental methodology in [1], which generates output trees
for 21 different values of the c parameter and then chooses the
best tree found for each signal net instance.'

12
Results for 16-sink inputs have been reported in preliminary form, e.g.,

[6]. while such arge inputs magnify the effect of our new methods, in practice
most signal nets will be within the size range that we now discuss.

1
5 

Highly "star-like" topologies can possibly introduce other difficulties such
as crossing wires, nodes with degree > 4, and capacitive coupling effects;
these are not modeled by either SPICE or the Two-Pole simulator. Note that
Hsest uses calls to the Two-Pole simulator in its delay analysis for candidate
connections; see the definition of HBest in Section III-A.

" According to [11, AHHK already achieves strong improvements over such
other recent methods as shallow-light routing [10] or Steiner arboresceuces
[11] when measured by the same Two-Pole simulation methodology. However,
it should also be noted that delay reductions in practice will probably not
attain exactly these magnitudes, partly because our modeling methodology
cannot capture all of the device characteristics and delay effects related to the
geometric embedding of our topologies.
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TABLE IX
Two-POLE SIMULATION RESULTS FOR ELMORE ROUTING TREE

VARIANTS. SPANNING ERT CONSTRUCTIONS ARE COMPARED WITH

MST AND AHHK; STEINER SERT AND SERT-C CONSTRUCTION ARE

COMPARED WITH I-STEINER. ALL CHOICES OF CRITICAL SINK ARE
RANDOM, AND ALL RESULTS ARE AVERAGED OVER 100 RANDOM

NETS. MST AND I-STEINER RESULTS ARE REPORTED IN THE PHYSICAL
UNITS (ns OR Cm) WHIl E OTHER RESULTS ARE REPORTED AS PERCENT

DIFFERENCES FROM CORRESPONDING MST OR I-STEINER RESULTS

ICi IC2 I

lIV-=5 [ IN-=9 INI=5 INI=9
MST 0.645 ns 0.984 In 0.395 ns 0.609 ns

Crit. AHHK -9.6% -16.3% -13.7% -23.0%
Sink ERT -12.1% -16.3% -19.6% -25.9%

Delay IStein 0.549 ns 0.848 ns 0.331 ns 0.520 nXs
SERT -3.3% -11.6% -7.9% -19.4%

SERT C 5.3% -15.3% -13.0% -26.5%
MST 0.758 ns 1.213 ns 0.485 ns0.792 ns

Max AHHK -12.4% -19.5% -16.5% -25.3%
Delay ERtT -14.5% -21.0% -21.4% -30.1%

iStein 0.627 ns 1.028 ns 0.393 ns 0.664 ns
SERT -4.5% -14.7% -8.1% -22.0%

SERT-C -3.0% -8.6% -3.8% -10.8%
MST 1.64 cm 2.43 cm 1.64 cm 2.43 cm

AHHK +16% +9% +16% +9%
Ave WL ERT +10% +15% -+18% +25%

IStein 1.48 cm 2.18 cm 1.48 cm 2.18 cm
SERT +6% +9% +11% +18%

SERT-C +6% +6% +15% +11%

I IC3 MCM
I INI = 5 INI=9 INIJ = 5 |V = 9|

MST 0.262 ns 0.403 ns 2.82 ns 4.80 ns
Crit. AHHK -11.5% -25.1% -22.3% -39.2%
Sink ERT -21.8% -29.8% -52.8% -67.1%

Delay IStein 0218 ns 0.342 ns 2.31 ns 4.09 ns
SERT -9.2% -21.9% -41.6% -61.6%

SERT C -16.1% -30.7% -43.3% -66.0%
MST 0.326 ns 0.533 ns 3.86 ns 7.05 ns

Max AIIHK -17.8% -27.0% -24.1% -36.8%
Delay ERT -23.6% -33.2% -45.6% -60.1%

IStein 0.262 ns 0.444 ns 3.06 ns 5.92 ns
SERT -9.2% -24.1% -30.1% -51.9%

SERT C -4.6% -10.8% -14.1% -15.4%

MST 1.64 cm 2.43 cm 16.4 cm 24.3 cm
AHHK +16% +9% +4% 1.07

Ave WL ERT +19% +27% +61% 2.15
lStein 1.48 cm 2.18 cm 14.8 cm 21.8 cm
SERT +13% +22% +66% +127%

. SERT-C +16% +14% +28% +22%

The Steiner ERT variant also performs well as a generic
high-performance router. For 9-pin nets, SERT improves criti-
cal sink delay versus the 1-Steiner routing by 19% and 62% for
the IC2 and MCM technologies, respectively. The percentage
reductions in maximum delay are somewhat greater for the IC
technologies, but somewhat smaller for MCM interconnects.
It should be noted that for the MCM technology, the ERT and
SERT constructions tend to be star-like, producing tree costs
significantly higher than those of the 1-Steiner construction.
In practice, when delay is not an overriding concern, the user
may recapture wirelength by simulating a larger output driver
resistance.

Finally, even more significant reductions in delay can be
achieved when a critical sink has been identified per the
original CSRT formulation. The SERT-C algorithm improves
over the SERT results by an additional reduction in delay at the

6 .3

.9

(a)

6 3

-1 4
. 5 I1

.9

(c)

-7

6 2

.4

.9

(b)

.7
a9

6 3

2

(d)

(e) (f)

Fig. 4. Example of the progressive SERT Steiner tree construction for a
9-terminal net using IC2 parameters. The source pin is labeled 1, and sinks
are numbered in order of distance from the source.

critical sink of 5%, 7%, and 6% for the three IC technologies,
and 8% for MCM. Identification of a critical sink has clear
advantages in terms of tree cost, particularly for MCM routing:
the SERT-C trees have much less cost than the SERT outputs,
while still improving the delay to the critical sink. Since
maximum sink delays still decrease, it is likely that overall
skew in the routing tree will be reduced even when we treat
the critical-sink formulation. Finally, we note that the SERT-
C router produces very similar delays and costs compared
to the HBest and HO variants of CS-Steiner discussed in the
previous subsection. However, SERT-C is more practical than
HBest or HO since it runs in O(k2 log k) time (versus the
0(k3) complexity of the best practical implementation of the
1-Steiner heuristic that is called by HBest and HO), and it does
not require any simulator calls as does HBest.

Figs. 4 and 5 illustrate the SERT and SERT-C algorithms
for a 9-pin signal net using the IC2 technology parameters.
Fig. 4 shows the progressive growth of the SERT construction.
Fig. 5 contains the trees produced by SERT-C for the various
choices of critical node. The tree constructed when n, is node

I
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L97

(a) (b)

(c) (d)

17
4

5

.2

(e) (t)

Fig. 5. SERT C ree construlctions for a single 9-pin lnet, showing variation
of solution with choice of critical sink n,. (a) Node 2 (or 4) critical. (b) Node
3 (or 7) critical (also I-Steiner tree). (c) Node 5 critical. (d) Node 6 critical.
(e) Node 8 critical (also Steiner ERT). (f) Node 9 critical.

3 or node 7 is also the 1 Steiner tree, and the tree constructed
when n. is node 8 is the same as the generic SERT result.

C. Elmore-Optimality of Spanning Tree Constructions

We have seen that the ERT constructions yield greatly im-
proved signal delay when compared to previous methods. An
obvious question is whether we still need to seek methods that
better minimize Elmore delay. Thus, we have implemented
a branch-and-bound algorithm which finds optimal generic
routing trees according to Elmore delay. Starting with a trivial
tree containing only the source pin, we incrementally add one
edge at a time to the growing tree and evaluate the maximum
sink delay. If this value cxcuccds the snaxirulns sink delay ill
any complete candidate tree seen so far, we prune the search
and backtrack to select a different edge at the previous step. A
recursive implementation of this Branch-and-Bound Optimal
Routing Tree (BBORT) search is shown in Fig. 6. BBORT
attempts to add sinks in all possible orders, but avoids testing
any topology more than once by requiring that sinks be added
in the order of a breadth-first traversal of the tree (if two sinks
are connected to the same parent node, then the sink with
smaller index must be added to the tree first). It is easy to
verify that according to this convention, any tree topology will
imply a unique ordering of the sinks. Consequently, although
BBORT tries all possible orderings of sinks, it calculates delay

BBOJU Algorithm
Input: signal net N with source no C N
Output: optimal-delay tree Tut over N
1 T (Va) =({no},0)
2. t1, = ro

3. Call Add-dges(T)
4. Output Tpt
Procedure Add-Edges(Tree: T = (V, E))
5. While there exist v G V and u O V such that

N = (vtU{aJ,otu (,v)±) is a new tree topology Do
6. Compute tree delay 6(T')
7. If i(T5

) < tmoi Then
8. If IT'j = NI Then Topt = T'm; t 0j = t(2)

9. Else Call Add-Edges(T)

Fig. 6. Branch and Bound Optimal Routing Tree (BBORT) algorithm (re
cursive implementation).

TABLE X
ELMORE DELAYS ANDI WIRELEINGTITS OF VARIOUS CONSTRUCTIONS USING IC I,

IC2, IC3, AND MCM PARAMETERS. SIMULATIONS WERE RUN ON 200
RANDOM NFTS FOR EACH NFT SIZE. TRFE COST Is NORMALIZED TO

MST COST AND DELAYS AE NORMALIZED TO ORT DELAY.
STANDARD ERRORS FOR ERT DELAY AuE SHowN IN PARENTHESES

ORT

(Std Err)
SPT
MST

too IC2
IN = N = 7 ANI = 5 ANY - 7

delay cost delay cost delay cst delay cost
1.0 1.103 1.0 1133 1.0 1.140 1.0 1.17

1.007 1.104 1.017 1.142 1.010 .159 1.322 1.215
0015) (.0021) (.0017) (.0022)

1.085 1.290 1.130 1.395 1.058 1.2l0 1.096 1.395
1 169 10 1.282 120 1.272 1 1 1.451 1,0

IC3 MIM
INI-5 INI=7 IJ=5 Arl 7

delay cost delay cost delay cost delay cost
ORT 1.0 146 1.0 1.190 1.0 1.432 1.0 1.547
ERT 1011 1.172 1.027 1 202 1.009 -1.585 1.024 -.892

(Std Err) (.0018) (.0025) (.001) (. 0008)
S1T 1.054 1.29U 1.091 1.395 1.089 1.290 1.160 1.395
MST 1.311 1.0 1.499 1.0 1.894 1.0 2.457 1.0

at most once for each tree topology. In Fig. 6, lines 7 through 9
comprise the core of the branch-and-bound methodology used:
if the delay in the current tree T' is greater than or equal to
tmin (the current best-known delay for a complete tree), then
procedure Add-Edges terminates and the algorithm backtracks.
Otherwise, if T' is a complete tree, then tmifl is set to the delay
of T', or if T' is a partial tree, then Add-Edges recursively
adds more edges to T'.

To track all of the above simulation results, we have
run BBORT trials on random sets of 200 nets for each
of several net sizes. Our inputs are evaluated using the
same four sets of technology parameters discussed previously.
Table X compares Elmore delays of the BBORT and ERT
constructions, as well as of the minimum spanning tree (MST)
and shortest path tree (SPT) constructions, for each of the four
technologies.' 5 Delay for each tree is norldalized to the ORT
delay of the same net. Tree costs are similarly normalized to
the MST cost of each net.

In Table X, we see that ERT's over seven pins in the IC1
technology have an average maximum Elmore delay only 1.7%
greater than optimal, while MST' s have average Elnoore delay
28.2% greater than optimal. For smaller nets, ERT's are even
better: for nets with five pins, ERT delays are only 0.7%
above optimal on average, while MST's are 16.9% above

1f5T.ie SPT construction is the tree which mininmizes cost subject to each
source/sink path having minimum length, i.e., it is a Steiner arborescence, or
A-tree [11], [30].
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optimal. Our confidence in the average difference computed
between ERT's and ORT's is very high. For instance, the 1.7%
difference obtained for 7 pins has a standard error 16 of 0.21%,
indicating a 95% confidence interval between 1.3% and 2.1%
(i.e., an interval of within two times the standard error of the
average).

Technology IC3 gives our worst results in terms of the
optimality of ERT's. For the IC3 parameters and 7-pin nets,
ERT gives an average value within 2.7% of ORT with a 95%
confidence interval of between 2.2% and 3.2%. For MCM
parameters, the Elmore-based ERT constructions are also very
close to optimal: on average, they are within 2.4% of ORT
delay for 7-pin nets. Finally, our tables compare the delays
of the SPT construction with those of the ERT and MST
solutions; the SPT outperforms the MST, but not the ERT,
in terms of Elmore delay.

D. Elmore-Optimality of Steiner Tree Constructions

We have shown that our spanning tree constructions are
nearly optimal when we optimize the maximum Elmore delay
over all sinks in the net. Because Steiner constructions give
lower delay values than spanning trees in general, we close
this section with a similar comparison for our SERT-C and
SERT Steiner constructions. At first, this comparison appears
very complicated because there are infinitely many possible
locations for Steiner nodes. Indeed, while it is well-known
that the result of [17] restricts the choice of Steiner nodes in
a minimum-cost Steiner tree to at most k . (k + 1) points, no
such characterization has been established for a Steiner tree
with optimal Elmore delay. In Appendix B, we present new
theoretical results which restrict the choice of Steiner nodes
in Elmore-optimal trees to exactly the same finite "Hanan
grid" that contains the Steiner nodes of minimum-cost trees.
This allows a finite algorithm which determines optimal trees
with respect to any given linear combination of Elmore delays
to critical sinks. We also present an entirely new "peeling
decomposition" of any optimal Elmore delay Steiner tree into
a sequence of subtrees, each of which adds a sink by a "closest
connection" to some edge in the previous tree.

When the driver resistance rd is very large, the optimal
Elmore delay tree is a minimum-cost Steiner tree (1), [5]. As
a consequence, our results extend very naturally to the well-
studied problem of minimum-cost Steiner tree construction,
and the restriction of Elmore-optimal Steiner nodes to the
Hanan grid both generalizes and extends Hanan's original
results. (As Hanan did for minimum-cost Steiner trees, we
prove that every Steiner node in an Elmore-optimal tree is
connected to one sink by a horizontal segment of edges, and
to another sink by a vertical segment of edges. However, our
techniques (Lemmas B 1-B4 in Appendix B) are much more
powerful in order to address the optimality of the Steiner tree

16As used here, the term standard error is defined as follows: For a random
variable X, let X i Z' Xi be an estimator for the expected value of X.
The standard error of X is an estimate of its standard deviation over multiple
sample sets, and is equal to the standard deviation of X divided by V/.
Because delays are recorded as ratios to the ORT delay, the standard error
of the average difference between ERT and ORT delays is equivalent to the
standard error of average ERT delay.

TABLE XI
EMPIRICAL STUDY OF AVERAGF SUBOPrTsALITY OF THE SERT C HEURISTIC IN

TERMS OF ELMORE DELAY, UsiNm ICI, IC2, IC3, AND MCM
PARKAIETERS. SIMULATIONS WERE RUN ON 200 RANDoM NETS FOR

EACH NET SizE. DELAY Is NORMALIZED 1O BB-SORT-C DELAY A-ND

TREE COST Is NORMALIZED TO 1-STEINER COST. STANDARD ERRORS

FOR AVERAGE SERT-C DELAYS ARE SHOWN IN PARENTHESES

MI CC2
- N) L 7 NJ=5 yNJ= 7

delay cost delay cost delay Cost elay cost

SORT-C 1.0 1.111 1.0 1.112 1.0 1.161 1.0 1.158
SERT-C 1 042 1.046 1.083 1.047 1.049 1.120 1-114 1.106
(Std Err) (.004) (.006) (.006) (.009)
1-Steiner 1 117 1.0 1.200 1.0 1.228 1.0 1 362 1.0

.C3 MCM
1N==2 NI 7 NJ=5 =I7c7

delay cost delay cost delay cost delay' ca
SORT-C 10 1.175 1.0 1.165 1.0 1.290 1.0 1.262
SERT-C 1.046 1 140 1.112 1.112 1.000 1.296 1.001 1.256
(Std Err) (.006) (.010) (000) (.0001)
I-Steiner 1.275 1.0 1.429 1-0 1.455 1.0 1634 10

with respect to Elmore delay.) Our peeling decomposition and
its extension to minimum-cost Steiner trees are of independent
interest since they provide both a new characterization of, and
a new means of generating, such trees.

Based on the results of Appendix B, we achieve a simple
modification to our BBORT method which finds an optimal
Steiner routing tree for any linear combination of Elmore
delays to critical sinks. Rather than considering connections
from each sink nj outside the current tree to each sink ni
inside the tree as in BBORT, the branch-and-bound method
for Steiner optimal routing trees with critical sinks (BB-SORT-
C) considers connections from nj to each edge created when
ni was added to the tree. In other words, each node ni already
contained in T is replaced as a possible connection point by
each of the edges created when ni was added to the tree
earlier. Again we use branch-and-bound pruning to reduce the
complexity of the search.1 7

Table XI compares Elmore delay for trees constructed
by the SERT-C algorithm with optimal Elmore delay trees
found by BB-SORT-C for each of the four technologies. The
size of nets used in the comparison is limited to nets with
six sinks (i.e., seven pins) because of the exponential time
complexity of BB-SORT-C. For nets with seven pins, our
results show that SERT-C achieves Elmore delay that is on
average within 11.1% of optimal for the IC] technology;
results for IC2, IC3, and MCM parameters are very similar.
The table also gives average tree costs for our constructions
and the standard error of our estimate for the ratio between
SERT-C and SORT-C delays."8 We see that the SERT-C
algorithm does not perform as well as the ERT algorithm in
terms of nearness to optimality for the types of delay measures
we have considered. Nevertheless, our results provide strong
guidance for future efforts in performance-driven routing:
even if future work improves the near-optimality of critical

"Because we consider connections to up to three edges for each sink in

the growing tree, our B1-SORT-C will introduce some redundancies in the
tree topologies: we check for possible redundancies and prune the search at

each redundant tree we find.
t
8Average running times for each 5-pin net (in seconds) are 0.006 (BB-

SORT-C), 0.0004 (SERT-C), 0.0014 (SERT). and 0.0012 (I-Steiner). Average
running times for 7-pin nets are 0.44 (BB-SORT-C), 0.0007 (SERT-C), 0.0055

(SERT), and 0.0035 (1-Steiner).
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sink routing constructions, Table XI shows that any future
improvement in Elmore delay will be at most from 8% to
12% for nets with up to seven pins.

V. CONCLUSION

We have addressed a critical-sink routing tree (CSRT)
formulation which arises when critical-path information be-
comes available during the timing-driven layout process. Two
new classes of CSRT constructions are proposed: 1) the CS-
Steiner method, which modifies a minimum Steiner tree to
accommodate an identified critical sink, and 2) the SERT-C
method, which begins with a connection from the source to
the critical sink and then grows a tree so as to minimize the
increase in Elmore delay to the critical sink. Each of these
algorithms is efficient, and offers very significant performance
improvements over existing performance-driven routing tree
constructions. We note that the greedy "Elmore routing tree"
(ERT) approach underlying the SERT-C algorithm seems
quite powerful. In particular, the approach encompasses a
"generic" SERT Steiner router which outperforms all previous
performance-driven routing algorithms in the literature. The
ERT approach is also the first to consistently, and directly,
optimize the Elmore delay formula itself, rather than an
objective which heuristically abstracts Elmore delay. Since
Elmore routing trees are efficiently computed, our approaches
may lead to basic new utilities that can be integrated within ex-
isting performance-driven global routing codes. Assessments
of the near-optimality of our Steiner constructions have led
to a new characterization of Elmore-optimal Steiner trees,
and to a new decomposition theorem for minimum-cost and
minimum-Elmore delay Steiner trees; both of these results are
of independent interest.

Which of our routing heuristics is most useful wilt depend
on the application. The CS-Steiner heuristics HO and 1Best
yield the smallest delay values for a single critical sink, but
have high time complexity which may make them impractical
for repeated wiring of large nets. Our SERT-C heuristic has
time complexity of only (k2 log k) and is readily extended
to the case of nets with multiple critical sinks (e.g., first apply
SERT with its min-max delay objective to the critical sinks,
then apply SERT-C with a weighted average delay objective
to connect the remaining sinks). The SERT heuristic can also
be applied before critical path information becomes available
(an alternative is the ERT spanning tree heuristic, which
has lower time complexity but does not introduce Steiner
nodes). For nets on noncritical paths, minimizing wire length
can take precedence over minimizing delay, hence traditional
minimum-cost Steiner heuristics such as I-Steiner [22] are
likely to be preferred.

Our heuristics which optimize Elmore delay directly are
near-optimal in terms of SPICE-computed delay: we show
that our methods give Elmore delay that is nearly optimal, and
we also showed that Elmore delay-optimal trees have nearly
optimal SPICE delay. For spanning trees with five pins, we
estimate that the optimal tree according to Elmore delay will
be between 3% and 10% above SPICE-optimal, depending on
the technology. Given that our SERT-C heuristic is between

V1 v
3

n.-.. .. 2

v2

V W V

V1 w1 t3-- n. -...,
'2

(b)(a)

Fig. 7. Removing a single "V" in the GSR algorithm.

V1  V4

V V

V2 V3

(a)

VI WI r- 4
.... nno ... 1 1 - w2

V2 V3

(b)

Fig. 8. Removing a single "U" in the GSR algorithm.

0% and 5% above optimal in terms of Elrmore delay for five-
pin nets, we estimate that the SPICE delay suboptimality of
our SERT-C heuristic ranges from 3% for MCM to about 12%
for 0.5 {rm and about 15% for 1.2 and 2.0 [til CMOS IC
technologies.

Current work addresses interesting extensions of the CS-
Steiner and ERT approaches to incorporate wiresizing, address
general-cell layout with arbitrary routing region costs, and
exploit the inherent parallelizability of our approaches. Similar
approaches may also apply to clock routing, although the
extension is nontrivial because of larger net sizes and the
addition of a minimum skew objective. Finally, we leave as
an open problem the reduction in time complexity of the ERT
constructions.

APPENDIX A
GLOBAL SLACK REMOVAL

Recall from Section III-A that global slack removal (GSR)
is an efficient post-processing enhancement to the CS-Steiner
approach. The worst-case complexity of GSR is 0(k 2), al-
though we believe the average-case complexity to be very
close to 0(k). GSR is a linear-time postprocessing enhance-
ment to the CS-Steiner approach. GSR shifts edges in the
1-Steiner output to maximize the monotonicity of all source-
sink paths without any increase in total tree cost or Elmore
delay to any sink. In what follows, we use the term 1-Steiner
tree to refer to any tree that can be output by the 1-Steiner
algorithm.

Definition: A V is a subpath of three consecutive nodes on
a root-leaf path in a routing tree such that the combined edge
cost along the subpath is greater than the distance between its
two end points [e.g., path VI-03 in Fig. 7(a)].

Definition: A U is a subpath of four consecutive nodes on a
root-leaf path with edge cost greater than the distance between
its end points [e.g., path V0-V4 in Fig. 8(a)].

Note that the nodes in a V or U can be either Steiner nodes
or pins. A V can be removed by introducing a Steiner node
which eliminates the overlap between the two adjacent edges,
as in Fig. 7(b). It is easy to see that, if a U (say V0V2V3V4)
does not contain any V's, then its middle edge (V2, 03) must
be either completely horizontal or vertical. Consequently, a U
containing no V's can be removed by moving the middle edge
and adding up to two new Steiner nodes as in Fig. 8(b).
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Fig. 9. Pseudo-code for the global slack removal (GSR) algorithm. Local
variables include a queue Q and nodes v and v'. We use children(v) to denote
the set nodes that are children of v when the tree is rooted at no; parent (v)
denotes the parent of v in the rooted tree. The subroutine Remove-V(v)
removes a V located at v as in Fig. 7 and Remove-U (v) removes a U
located at v as in Fig. 8.

Fig. 10. An example of a net with a source and five sinks for which
processing the U's in a bottom-up order returns a tree with one remaining U.

Fig. 9 describes the GSR algorithm for removing V's and

U's from any Steiner tree. We define a U (or V) to be

located at node v if v is the node in the U (or V) furthest
topologically from the source. Three clarifying points should

be noted. 1) GSR uses a "queue" Q which can be implemented

arbitrarily as long as each node in the tree is processed before

its children. In practice, a simple depth-first ordering suffices.

2) The procedure Remove-U is invoked only for U's not

containing any V's, and is executed as in Fig. 8. 3) All low-

degree Steiner nodes of degree <2 are clearly superfluous and

are removed, since more U's can be found if they are deleted

at the outset. Because U removal can introduce additional low-

degree Steiner nodes, they are again removed at the end of the

algorithm.

We now show that the tree returned by GSR dominates the

input tree in terms of total tree cost, path length from the

source to each sink, and Elmore delay at each sink. Let cost

(T) denote the cost of routing tree T.

Theorem Al: Given any tree T as input, GSR will return a

tree T' such that (i) cost(T") < cost(T); (ii) for each i > 0,

the no-ni path length in T' is less than or equal to the n 0 -n,

path length in T; and (iii) the Elmore delay tED (ni) at each ni

in T' is less than or equal to the Elmore delay tED(ni) in T.

(a) (b)

OR

(c)

Output: Steiner tree T with all U's removed
1. Remove all Steiner nodes of degree < 2 from T;
2. Q E {ne};
3. While Q t-0
4. t - Dequeue(Q);
5. For each node v' E children(v) do
B. Q '- Enqueue(v');
7. If there is a V located at a'
8. Call Remove-V(V')
9. If there is a U located at v'
10. Call Remove-U(v')
11. Call Clean-Up(v')
12. Remove all Steiner nodes of degree < 2 from T;

Subroutine Clean-Up(node: v')
Cl. If there is a V located at parent(v)
C2. Call Reemove-V(parent(v'))
C3. If there is a U located at v'
C4. Call RemoveXU(v')
C5. Call Clean-Up(v')
C6. Else
C7. If there is a U located at parent(V)
CS. Call Remove-U(parent(v'))
C9. Call Clean-Up(parent(V'))

GSR Algorithm
Input: Steiner tree T with source no

Fig. 11. The GSR algorithm with input (a) can produce either tree (b) or
tree (c), depending on the order in which the U's are processed.

Proof. 1) Removing a V reduces cost in the routing tree;
removing a U as in Fig. 8 leaves tree cost unchanged; and by
the triangle inequality the removal of a low-degree Steiner
point will either reduce cost or leave it unchanged. These are
the only operations on the tree by GSR.

2) Remove-V reduces the source-sink path length to V3

in the V and to all of its descendents; similarly, RemoveU
reduces the source-sink path length to node v4 in the U.
Other source-sink path lengths remain unchanged in either
procedure. Removing low-degree Steiner nodes does not affect
any source-sink path lengths.

3) Assuming constant technology parameters,19 removing a
U or a V can affect Elmore delay along a source-sink path
in only three ways: a) changing the length of the path; b)
changing tree capacitances along the path (i.e., increasing the
wirelength of branches off from the path); and c) shifting tree
capacitances along the path (changing where branches connect
to the path). Removing a V will reduce some path lengths,
reduce tree capacitances, and shift tree capacitances closer to
the source, thereby reducing Elmore delay to all pins in the
tree. Removing a U reduces path length to node V4 in Fig. 8
and shifts tree capacitance closer to the source for nodes v2 ,
V3, and V4. (For V3, the capacitance that met the n0-V3 path
at s3 now meets the path at wl and W2.) The only possible
effect of removing low-degree Steiner nodes is to reduce total
wirelength, which cannot increase delay to any sink. -1

The order in which U's are removed from the tree is
important. If the U's were processed in a bottom-up rather than
a top-down order, then new U's could be introduced and the
output tree might still contain U's, as in Fig. 10.20 Note also
that two different top-down orderings can produce different
outputs (although neither will contain any U's; see Fig. I1).

We now prove that GSR removes all V's and all U's
from any input tree, and that its worst-case time complexity
is quadratic. Note that we have constructed a class of nets
for which the 1-Steiner heuristic constructs a tree which GSR
processes in Q(k2 ) time [6]. GSR in practice, however, seems
to exhibit close to linear-time complexity, because multiple
calls to procedure Clean-Up occur for very few nodes.

Theorem A2 1) GSR returns a tree containing no V's and
no U's, and 2) GSR runs in 0(n 2) time in the worst case.

Proof. Since GSR checks for V's and U's at each node
in the tree. the output tree will contain a V or U only if GSR
creates one at a node that has already been traversed A new
V or U can be produced at a node v only if the no-v path

1
9

I.e., including unit wire resistance, unit wire capacitance, driver resis-
tance, and sink loading capacitances.

20By "bottom-up" we mean that each node is processed after all of its
children in the tree, while a "top-down" ordering implies that each node is
traversed before any of its children.
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ni W

ns,< ~5 '-> 4 4 T

Removev-U(ms) Remove U(rn)

Remove via2 i RemoveU(%5 )

Fig. 12. Example in which removing a U at n5 requires two subsequent
U-removals and a V-removal to complete the Clean-Up procedure.

length is increased (which is impossible by Theorem 1) or if
nodes are removed from the no-v path.

Removing a V at Line 8 in Fig. 9 will not introduce a new
V or U at V2 (in Fig. 7), because the n 0 -V2 path length is
unchanged and a new Steiner point w, is added to this path.
Removing a V will not introduce a V at v3 either, because
VW1 V3 is not a V. A U may remain at u3 after removing the
V, but this will be detected later at Line 9.

Removing a U at v 4 in Fig. 8 can only introduce a new
V or U at W2, v<, or one of their descendants, because all
other nodes have unchanged source-sink path lengths and no
fewer Steiner nodes on their source-sink paths. The subroutine
Clean-Up checks for V's and U's at w2 and V4 , and recursive
calls to Clean-Up will eventually terminate because a new V
or U can be introduced only by reducing the number of nodes
on the nO-V4 path.

Fig. 12 shows how Clean -Up can require several recursive
calls before terminating. However, for any node v', a call to
Remove U (v') will introduce a new V or U at v' or parent
(v') only if it reduces the number of nodes on the no-v' path.
Because any Steiner tree connecting k + 1 points can contain
at most 2k nodes in total, there are 0(k) nodes on the no-v'
path. Hence, at most 0(k) calls can be made to Clean-Up
for each node v' added to the queue in Line 6, and the total
number of calls to Clean-Up is 0(k 2 ). D1

APPENDix B
OPTIMAL STEINER ERT'S

For minimum-cost Steiner trees, the classic result of [17]
restricts the choice of Steiner nodes to at most INI - IN -

points (the "Hanan grid") and enables finite branch-and-bound
methods to determine optimal solutions. Here, we prove an
analogous result for trees minimizing any weighted average
of sink Elmore delays. Like Hanan, we show that any tree
containing a Steiner node which is not a vertex in the Hanan
grid can have its edges and Steiner nodes shifted to lie on
the Hanan grid. However, we do not shift edges in the same
way as Hanan (the edge shifts he uses can be suboptimal in
terms of Elmore delay). Indeed, the result of, e.g., Lemma
B11 below is obvious when minimizing tree cost, but requires
a fairly involved proof when minimizing Elmore delay. Our
development of the Hanan grid result becomes complete with
the proof of Lemma B4 below. In Lemma B5, we extend our
result to show that the branch-and-bound SORT-C method
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Fig. 13. Proof of Lemma Bl: Node a E 21" is connected to edge
(p~b) C T*\a at node x; either x = p = no or t = c, where c is
the closest connection between a and (p, b).

described in Section IV-D returns the optimal delay Steiner
tree. 2

1

A. Definitions

We assume that all delays are defined in terms of Elmore
delay. We seek to characterize the optimal Steiner tree over
N, denoted by T*, which minimizes the weighted sum of
sink -delays Ef ( * t(ni), with each (iy > 0. (The
case of some cri = 0 is effectively handled by setting these
cri to a small positive value.) We assume that T* contains no
Steiner nodes with degree < 3. For convenience, we normalize
time and distance so that unit wire resistance and unit wire
capacitance are both equal to one. We also consider a tree to
be defined as a set of nodes and edges, so that the notations
v E T for node v and e X T for edge e are well defined.
An edge that is completely vertical or horizontal is called a
straight edge; any other edge is called an L-shaped edge.

The closest connection between three nodes is the location
of the single Steiner node in a minimum-cost Steiner tree over
the three nodes. This location is unique and has coordinates
given by the medians of the x- and the y-coordinates of
the three nodes (if the minimum-cost Steiner tree is a chain,
then the closest connection is the middle node). The closest
connection between a node v and an edge e is the closest
connection between v and the two endpoints of e. Assume that
a Steiner tree T over N is rooted at no. We define T\v to be
the tree induced by removing node v and all of its descendants
from T, and then removing all degree-2 Steiner nodes from
the resulting tree. We say that node v E T is connected to an
edge e X T\v if its parent node in T is located on edge e If
parent(v) is located at the closest connection between v and
an edge e e T\v to which v is connected, then v is said to
make a closest connection to e in T.

B. Proof of Closest Connections in T*

Lemma B]: Let x be the parent of node a G T*, a + no.
Then either x = no, or else -T is located at the closest
connection between a and each edge in T*\a that is incident
to a in T*.

Proof: (See Fig. 13.) Let e = (pb) C Ta\a be an edge
to which a is connected at node x in T'. Let c be the location
of the closest connection between a and e. Assume that node
p has degree three (the proof is nearly identical if p has degree
four), and let q be p's parent and d be the other child of p
besides x. In our proof, we also assume that p # no and that

21 The following clarifications should be made about our results. First, we
allow the source pin no to have degree > 4, which is in general physically
impossible. but can be approximated by merging wires close to the source.
Second, the optimal delay Steiner trees will not always be planar, as this is
not required by our definition of an optimal-delay tree.
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p is the closest point to a on edge edge (q, p). The other cases
are handled easily by analogous proofs. 22

For convenience, we overload x, a, bc, and p to also
represent the respective path lengths from q to these nodes or
locations. Even though c is not necessarily a node in T*, we
use T,* to represent the subtree of T" below location c. Finally,
we use Ca, Cb, and Cc to represent the tree capacitance in
subtrees T,*, To*, and T,*, respectively.

It is easy to see that x < c, since otherwise moving x
forward to c will reduce or leave unchanged all subtree costs
(i.e., capacitance terms) and all path lengths (i.e., resistance
terms). We will show that delay function f is concave in
terms of x for 0 < . < c. Our proof invokes several facts
from elementary analysis: 1) any concave function defined
over a real interval will be minimized at one of the two end
points of the interval; 2) multiplying any concave function by
a positive constant also gives a concave function; 3) the sum
of two concave functions is also concave; and 4) any quadratic
function of xr with a negative coefficient for x 2 is concave in
terms of x.

Consider the contribution made by the edge (x, a) to Elmore
delay at various sinks nj e T'. First, consider the case of
nj C Ta. Delay t(nj) is the sum of four functions: fi =
delay from no to p; f2 = delay from p to x due to capacitance
in T*\b; f3 = delay from p to x due to capacitance in edge
(b, q) and Tb; and f4 = delay from x to nj. Simple application
of the Elmore formula for these four functions gives

fi =Ko+Ki(K2 +a--x)

f2 =x* (2+a-x£+C+c-x+Cc)

f 3 =x*(b- q+Cb) if•<q

f 3 =q*(b- q+C) if x>q

f4 = (a - () * ( x+ Ca)+ K3

(2)

(3)

(4)

(5)

(6)

where K 0, K1, K2 and K3 are constants. To be precise, Ko
is the sum of resistance/capacitance products along the nm-p

path; K, is the sum of resistances from no to p; K2 equals
the total capacitance in T.* minus the edge (x,a); and K3

is the delay from a to nj. Function fl is linear in z, while
f2 and f4 are quadratic in x. The equation for f2 + f4 has
a negative coefficient for £2, and so f2 + f4 is concave.
Function f3 is linear and increasing for x < q and remains
constant for x > q; thus, f3 is also concave in x. Consequently,
t(nj) = f, + f2 + f4 + f3 is concave in x.

If nj E T, then fl, f2, and f3 are identical to the case of
nj C T,. Function f4 equals (c- x) *(C2 + C,) +K2 , where
K2 is the delay from c to nj. Again, fi, f3, and f2 + f4 are
each concave in x, and so t(nj) is concave in x.

If nj E T'C or nj = q, we can express delay to nj in terms
of three functions fl, f2 and 13. The definitions of fl and f2
are the same as for nin G T,* and f3 gives the delay from

22
1f p = no, then a similar argument shows that f is concave between

p = u( and c, and will be minimized at one of these two points. If some
point on (q, p) is closer to a than p, then a similar proof shows concavity for
f over the interval between p and c. In this case, it is easy to show x 7L p
because connecting a to a closer point on (q, p) produces a lower value for
f than connecting it to p, and so xc must be located at c.

q2
n , n2

no q I n3

Fig. 14. Example of a routing tree T which cannot be constructed by
algorithm BB-SORT-C, but which satisfies the condition that each nonsource
node v C T makes a closest connection to each incident edge in T\L.

p to nj due to capacitance in T*\a. The equation for f, is
identical to that for nj c Ta, while f3 is a constant in terms
of x. Hence, fi and f3 are concave. For f2, we have

f 2 =x*(a-x+Cu) ifx<q

= q*(a-x+Ca) ifxr >q.

(7)

(8)

Any continuous, piece-wise differential function of a real
variable is concave as long as its first derivative is monotone
decreasing. It is clear that this property holds for f2, except
possibly at x = q. Let f2 be the derivative of f2. Then for
xs < q, f2(x) - a - 2x + Ca, and for x > q, f2(x) = -q.
Substituting q for x in these equations, we see that f2 is indeed
decreasing at x = q (because a > x). Consequently, f2 is
concave in x and so is i(nj).

Delay to any other sink in T* is linear (and thus concave)
in x. Therefore, because f is a nonnegative linear combination
of concave functions over the interval 0 < x < c, it is also
concave over this interval and will be minimized at x = 0 or
x = c. However, we assumed that a is connected to (p, b) and
so x $ q = 0. The only exception occurs if p has no parent,
i.e., p = no. Since e = (p, b) is an arbitrary edge in T*\a
to which a is connected, it must be that a makes a closest
connection to any edge it is connected to (unless a's parent is

no).
Straightforward corollaries of Lemma B1 include: 1) any

nonsource node in the optimal delay tree T* must have
degree < 4, and 2) the possible configurations of edges
incident to a Steiner node q E T* are restricted to the five
configurations shown in Fig. 22. Note that Lemma B1 by
itself is not sufficient to prove that BB-SORT-C will return
the optimal delay tree. For example, if T* connects a four-
pin net into an "H" with two degree-3 Steiner nodes q, and
q2 (see Fig. 14), then the parent of each nonsource node v
is connected by a closest connection to T"\v. However, T*
cannot be constructed by BB-SORT-C since the "H" cannot
be formed by adding the three sinks sequentially by closest
connections to the growing tree.

C. Hanan Grid Proof for Steiner Nodes in T*

We root any routing tree T at the source no and for any node
v e T define T, to be the subtree of T rooted at v. We define a
segment to be a contiguous set of straight edges in T which are
either all horizontal or all vertical; a maximal segment (MS) is
a segment not properly contained in any other segment. Let M
be an MS in T. The node in M closest to no on a source-sink
path containing M is called the entry point to M. A segment
containing all points in M to one side of a node v located on
M is a half segment with respect to v, and a half segment with
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n5 , .- '

P2I
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p q0 A
0

P qo

Far side of M

Fig. 15. Example of a miaximal segment M with entry point pa, one near
branch b5, and four far branches, including b2, Note that by definition, n3
forms a far branch with no edges. Also, edge (po, ni6 ) does nor form a far
branch off of M1 because pa iS not an entry point to the MS containing
(po, n6).

respect to the entry point of M is called a branch. A branch
b is called a branch off of MS M' if M' contains b's entry
point and is perpendicular to b. Note that any given segment,
M, will divide the plane into two half-planes. If M does not
contain ng, then the half-plane containing the edge between
M's entry point and its parent is called the near side of M
(because it is "nearer" to the source), and the other half-plane
is called the far side of M. (If M contains the source, the near
and far sides of M can be labeled arbitrarily.) Branches off
of -M that are located on its near (resp. far) side are called

near (resp. far) branches. In addition, a sink located on M is
defined to be afar branch off of M if none of its children are
located on the far side of M (i.e., it is not the entry point to a
larger far branch). For any segment S, we use Near(S) (resp.
Far(S)) to denote the set of near (resp. far) branches off of
the maximal segment containing S. Fig. 15 gives an example
of an MS M with endpoints Pi and P2, entry point po, and
four branches, including near branch bl, far branch b2 , and a
far branch consisting only of sink n3 .

Lemmas B2 and B3 establish some properties that must hold

for any maximal segment in T*. Lemma B4 then uses these

properties to show that each maximal segment in T' will have

a sink located on it. An immediate corollary of Lemma B4 is a
generalization of the classic result of Hanan [17] to the Elmore
delay objective. (Hanan's original theorem may be viewed as
a special case of this Corollary with the driver on-resistance
rd co.)

Lemma B2: In the optimal tree T* . let qo be the entry point
to a maximal segment M4 not containing no. Let S be any

segment contained in M and having qO as an endpoint. Then
Far(S)l > |Near(S).

Proof. By contradiction. Let S be the smallest segment
in M with q0 as an endpoint so that N\ear(S) > Far(S).
Then a portion of T* between no and q' looks like Fig. 16(a).
Label the branches bl,..., bj in order from entry point qo.
Fig. 16(b) shows how we can shift segment S topologically
toward the source; this effectively shifts wire from each near
branch to a far branch with is topologically closer to the source
(i.e., with a smaller label). Shifting S does not affect tree
cost,23 and source-sink path lengths will be unchanged to all

sinks except those connected to the tree through branches in
Near(S), which will have reduced source-sink path lengths.

23
Unless qo is an endpoint for the MS containing edge (p, qo), in which

case tree cost will decrease.

(a) (b)

Fig. 16. Proof of Leiama B2: Example (a) with 121ear(S) I Far (S) I for
a segment S between go and q3; (b) shows how S can be shifted to S' to
reduce delay to all sinks in TJ* and leave delay unchanged at all other sinks.

noo - .

M,

P2 '3 P4

p p3  pi-'2

° P q qO

(b)

P qo

(a)

Fig. 17. Proof of Leumma B3: (a) Example where
IArar(4)l = IFar(M)Ifor maximal segment M. M can be
shifted to M', as shown in (b), to reduce delay at all sinks in the subtree TL 0

Consequently, the shift will decrease delay to all sinks below
qo in T* and leave delay to all other sinks unchanged,
contradicting the optimality of T'. Li

We can now use Lemma B2 to show that if an MS M has
as many near branches as far branches, then it can be shifted
so as to reduce delay to some sinks and leave delay to others
unchanged. This is because shifting M toward the source will
not increase total wirelength and will decrease some source-
sink pathlengths and shift capacitance along some source-sink
paths closer to the source. Intuitively, this is the proof behind
our next lemma.

Lemmsa B3: In the optimal tree T%, let M be an MS not
containing no. Then JFar(M)J > Near(M)|.

Proof: By Lemma B2, IFar(M)I > INear(M)I. Sup-
pose that the exact equality IFar(M)J = Near(M)J holds.
Lemma B2 then implies that each endpoint of M has a near
branch incident to it as in Fig. 17(a) (otherwise, M4 would
contain a subsegment S with all but one endpoint of M and
having INear(S)l > lFar(S)1.) In Fig. 17(b), we show how
M can be shifted toward the source without increasing total
wirelength, while reducing source-sink pathlengths to nodes
on the near branches of M and shifting capacitance toward
the source for nodes on the far branches of ti. Consequently,
moving M will reduce delay to all sinks in T, and leave delay
to all other sinks unchanged (or reduced if the shift reduces
total wirelength), thereby contradicting the optimality of T El

Lemma B4: In the optimal tree T', any maximal segment
must contain either the source or a sink.

Proof: (See Fig. 18.) Let M be a lowest maximal seg-
ment in T* which does not contain either the source or a sink,
i.e., every MS that is topologically below M contains a sink.
Let qo be the entry point to M and let po be the parent node of
qo in T*. Consider the possibility of shifting A4, either toward
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i * -en.
IPj

-

x1 1OX
1 0 2

Fig. 18. Proof of Lemma B4: Because the objective function f is concave in
r over the interval 0 < r C £2 r-X, f will be minimized when the maximal
segment M passes through either the gridline at xI or the gridline at £2.

the source or away from the source, without passing over any

node in T* which is not in M. Without loss of generality,

assume that M is a vertical segment with x-coordinate xo,

and with the near side of M having x < xo. Let x1 < x0 be

the closest value to x0 on the near side of M such that shifting

M to x = £I would cause M to intersect a node that is in T,*o
but not in M. Similarly, let X2 > x0 be the closest value to
1o on the far side of M such that shifting M to x = 22 would

cause M to intersect some node that is in T*, but not in M.

Let the variable r, 0 < r < Z2 - x, denote the position of

M between the x-coordinates x, and 12. We will show that

minimizing the delay function f implies that either r = 0 or

r = X2-X.

Let d = Far(M) - Near(M). Consider the delay to some
sink ni located along a near branch bi off of M which has

entry point qi. (In general, we let qj denote the entry point to
branch bj.) Delay t(n,) is quadratic in r only along the edge

(po, qo) and along the edge (qi, pi), where pi is the child of
qi on bi. To be precise, the delay due to (po, qo) is equal to
r * (r/2 - d * r + K), where K is some constant; the delay
due to (qi, pi) is equal to r * (r12 + K') + K", where K' and
K" are again constants. Therefore, the equation for t(ni) is

t(ni)=(1-d)*r2 +K*r +Ko (9)

where KI and K0 are constants. From Lemma B3, we know

that d > 1, implying that t(ni) is a concave function of r.
Similarly, delay to a sink nj along a far branch bj off of M

will be equal to

-d* r
2 

+ K'r + Kt (10)

where again Kg and Ko are constants; this too is a concave

function of r. Finally, delay to any sink whose source-sink

path does not contain an edge in M will be linear in r, and
thus also a concave function. Since any linear combination of
functions that are each concave on a given interval will also be
concave on that interval, f is concave in r and is minimized
at one of its extreme values, i.e., at r 0 0 or r = 12 -X1

Thus, M may be moved so that it contains a new node,
say pi. If pi is a sink, the lemma is proved. If Pi is a Steiner
node, then because it has degree > 2, there must be a vertical
MS incident to pi, and this vertical MS must contain a sink

M

no .. , . i .,n 0- -pi,---

I q

fl 0 0- -4*---

Po 0

I

I bi I
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since M is the lowest maximal segment not containing a sink.
Hence, if pi is a Steiner node, the shifted M will also contain
a sink. [L

A direct corollary of Lemma B4 is that all Steiner nodes
in the Elmore-optimal Steiner tree are contained in the Hanan
grid.

Corollary: Let X be the set of x-coordinates for all pins in
N, and let Y be the set of y-coordinates in N. Then if (X, y)
is the location of a Steiner node in T*, x C X and y C Y.

Thus, only a finite number of possible Steiner point locations
need to be considered. Hanan' s original theorem may be
viewed as a special case of this Corollary with the driver
on-resistance rd - 0.

D. Decomposition Theorem for T*

To prove that BB-SORT-C will return the optimal-delay
tree T*, we show that 7* can be constructed by starting with
a tree To containing only no, then adding a sequence of sinks
ni, 1 < i < k, each of which yields a tree Ti by making
a closest connection to some edge in the current tree Ti-I.
We show that such a sequence of trees exists by starting with
T* = Tk and i = k, then "peeling off' an ni at each iteration
such that ni is joined by a closest connection in 7i to some
edge in Ti-1 = Ti\ni.

At each step, we find an interior node q C Ti whose children
are all leaves. Each of these leaves must be a sink, because all
low-degree Steiner nodes (i.e., with degree < 3) are removed
from Ti+±\ni+±. We choose one of q's leaves to be the 7i
that is peeled off, and set Ti-1 = Ti\ni. The choice of which
leaf should be peeled is guided by the function Pin(q), which
specifies one of q's children that should not be peeled off from
q. Thus, when q is removed as a low-degree Steiner node, the
edge between q and its parent is replaced with an edge between
Pin (q) and q's parent. More formally, we define Pin (q) for
each node q E T* as follows: 1) if q is the source or a sink,
then Pin(q) = q; and 2) if q is a Steiner node, then Pin(q) is
chosen according to the template given in Fig. 19.

After Pin(q) has been assigned, we can apply the rules

described in Fig. 20 to peel off sinks, thus determining the
sequence in which sinks can be added to construct T*.
Note that node p in Line 3 of Fig. 20 must exist since T,

is finite and has no cycles. Fig. 21 gives an example of
the decomposition procedure applied to an eleven-pin net.
Sinks in the figure are labeled in reverse order of how
the decomposition procedure might peel them off from the
tree. (Other orders are possible because the decomposition
procedure is not completely deterministic.) Table XII shows

how Pin(g) was assigned for each Steiner node in Fig. 21.

We now show that the procedure of Fig. 20 gives a se-

quential decomposition of the optimal-delay tree T*, such that
each Ti is constructed by connecting sink ni to tree Ti- by
a closest connection to some edge in Ti-L.

Lemma B5: There exists a sequence of subtrees To =

{no}, Ti,T 2 .... ,Tk = T* such that for each i, 1 < i < k, 1)

there is a sink ni E T2 such that Ti-1 = T,\ni, and 2) either
ni is connected to no, or ni makes a closest connection in T,

to some edge in Ti-1.
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n1Input: Optimal delay tree T*
Steiner noder q E T' such that Pin(q) has been assigned
for each d! e T.,,w #q

Output: Pin(q)

1. p parent(q) in T'
2. If edge (p q) is a straight edge
3. Set Al to be the MS containing (p, q)
4. If edge (p. q) is L-shaped
5. Set c arbitrarily to be one of q's two children

/ (q has exactly two children, by Lemma BE) 'I
6. Else if Tj contains a sink on M
7. Set c to be a child of q on M
8. Else if p is the entry point to M
9. Set B to be the far branch of M at q

/* (such a B exists by Lemma B2) '/
10. Set c to be a child of q on B
11. Else if p has degree 4
12 Set c arbitrarily to be one of q's children
13. Else if there is a near (far) branch of M1f at p
14. If there is a far (near) branch B of M at q
15. Set c to be the child of q on B
16. Else Set c to be the child of q on M
17. Pin(q) = Pin(c)

Fig. 19. Criteria used to associate a sink Pin(q) with each Steiner node q in
the optimal-delay tree T7. The assignment determines which sink in T, will
remain in [he tree when q is removed from the current tree while "peeling
off' sinks from T*.

Fig. 20. Procedure to determine a sequence of sinks tl, . . , nk which can
be used to construct T7 by a sequence of closest connections from ni to
tree Ti-1.

Proof: Part I) of the Lemma is tue since the construction

of Fig. 20 removes exactly one sink during each pass through

Lines 3 to 9.
To show 2), let p be the parent of the node q at Line 3

in Fig. 20. The first case is when q is a sink or a degree-4
Steiner node in T1 [as in Fig. 22(e)]. In this case, edge (p, q)
will remain in tree Ti,- . If (p. q) is L-shaped, we must have
a connection as in Fig. 22(a), where the two children of q are
eventually replaced by sinks on the mnaximal segments with
entry point q (i.e., nl and n2 in the Fig. 22). Both of these
sinks have closest connections to (p q) at q. If (p, q) is a
straight edge, let M be the MS containing (p, q), and let a be
a child of q in T*. The sink Pin(a) is assigned in the Fig. 19
template such that the q-Pin(a) path in T' will contain only
edges in M, edges in branches off of AM, or edges in a sequence
of far branches off of branches of M. (For example, consider
the paths from q to sinks nf and n2 in Fig. 22(c)-(e).) Thus,
Pin(a) and p cannot be on the same side of a line that passes

a aa n1

no_ . bn n2 nO' ---

p

(a) (b)

an-.. n5 a- ... 
5  

-.
P P ca 5+ n 5

Ia a

(c) (d) le)

Fig. 22. Five possible topologies at any Steiner node q in T*. Each diagram
shows two sinks ns and n2 below node q in the tree, such that q is the closest
connection between nl, n 2 and q's parent p.

through q and is perpendicular to M. Consequently, tj will be
the closest connection between edge (p, q) and Pin(a).

The second case is when q is a degree-3 Steiner node in

Ti. Let a and bi be the children of q in T' such that Pin(a)
and Pin(b) are q's children in Ti. Without loss of generality,

we assume that Pin(q) = Pin(a) and ni = Pin(b). We must
show that q is located at the closest connection between nodes

p, Pin(a), and Pin(b). There are four possible configurations
for connections at q, as shown in parts Fig. 22 (a)-(d).

In Fig. 22(a), edge (p, q) is L-shaped and both Pin(a) and
Pin(b) (denoted by nr and n 2 in the figure) must be on
maximal segments with entry point q; it is easy to see that
q is the closest connection between p, Pirt(a), and Pin(b).

In Fig. 22(b)-(d), edge (p, q) is a straight edge. Let M be the

MS containing (p, q), and let M' be the MS perpendicular to

M with entry point q.

In Fig. 22(b), edge (q, a) is L-shapcd and edge (q, b) is
on the MS M'. By Lemma B4, M' must contain a sink,
which will be contained in subtree T b. Thus, Pin(h) (n2
in the figure) is located on M'. Node a is the entry point

Pin(q) Assignrnent Procedure

Fig. 21. Example of the order in which pins are "peeled" from an opti-
mal-delay Steiner tree T*, (Sinks ni are peeled fioar T7 in reverse order
of tIeir subscripts.)

TABLE XII
PNs AssiGNMENT TO STETNER NODES IN THE EXAMPLE OF

FIG. 21. LINE NumSERs REFER TO THE CORRESPONDING
LUE iN THE PiN ASSIGNMENT PROCEDURE OF FIG. 19

Pin Assignments for Example Tree
Steiner node q Pin(q) Reason for Assignr ent

on (no, qc) is L-sha pd (Line 4)
-q2 t2 ,t is on MS containing (q,, sa) (Line 6)
qX n4 nj is the entry point to MS contsinig (.a, so) (Line 8)

us far branch at ga and near brand at q4 (tine 15)
15 Pin(q6) a has degare 4 (Line 11)
s6 Pin(q,) far branch at gs and ao near branch as s (Line 5)
en7 far branch at 96 and near branch at q ,Lre 10)

T* Decomposition Procedure
Input: Optirmal delay tree T7
Output: Sequence of snka ria,.. .ib used lo eusstruct 72

using only closest connections of each ni to T7- a
1. i=k
2. Repeat until i == 0
3. Find a node a G Ti whose children are all leaves
4. If q == no set c to bh any child of no in T'
5. Else if q has degree 4
6. Set c to be the child of q in TV on the MS

containing edge (partenf(q), q)
7. Else Set c to be a child of 1 such that Pin(c) k Pin(q)
8. nr = Pin(c)
9 Ti- I T,\nj
10t i I-i
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for two perpendicular branches each containing sinks (by
Lemma B4); Pin(a) is chosen arbitrarily from one of
these branches (Line 3 in Fig. 19). In Fig. 22, either
Pin(a) = n1 or Pin(a) = n'; thus, it can be seen from the
figure that q is the closest connection between p, Pin(a),
and Pin(b).
In Fig. 22(c), M' is the union of two branches. One of
these branches contains a sink (by Lemma B4); without
loss of generality, let this be the branch containing edge
(q, a), with Pin(a) = ni in M'. Let B be the branch
containing edge (q, b). If Pin(b) is on B, then q will
be the closest connection between p, Pin(a) and Pin(b).
Otherwise, according to Lemma B2 we must have that
b is the entry point to a far branch off of M'. Hence, if
Pin(b) is not on B, the b-Pin(b) path in T' contains
only edges on far branches [by the criteria in Lines 8-10
in Fig. 19; see n 2 = Pin(b) in Fig. 22(c)]. Thus, Pin(b)
is contained in the upper-right quadrant relative to q in the
figure, and q is the closest connection between p, Pin(a),
and Pin(b).
Finally, consider the configuration in Fig. 22(d). Here,
MS M' is a branch of M containing node a and sink
Pin(a). Suppose that M' is a far branch; if Pin(b) is not
on MS M, then there must be a near branch off of M
somewhere below q in T' (otherwise, we could reduce
all delays by shifting the entire half segment of M below
q toward a). Let Bj be the near branch below q closest
to q. Either sink Pin(b) is on Bj, or the qj-Pin(b) path
in T* consists only of edges in By or far branches. In
either case, Pin(b) (= n 2 in the figure) is contained in the
lower-right quadrant relative to q. If M' is a near branch,
an analogous argument again shows that Pin(b) is in q's
lower-right quadrant. Thus, q is the closest connection
between p, Pin(a) and Pin(b). [

Except for redundancies and pruning of suboptimal trees,
BB-SORT-C searches over all possible ways to construct a
Steiner tree sequentially, such that each sink is added by a
closest connection to some edge in the current tree. Thus, we
have

Theorem B]: For any positive linear combination of sink
delays, f = k=1 rj-t(ni), ai > 0 Vi, algorithm BB-SORT-C
returns a Steiner tree T* which minimizes f.
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