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With semiconductor technology advancing toward deep submicron, leakage energy is of increasing
concern, especially for large on-chip array structures such as caches and branch predictors. Recent
work has suggested that larger, aggressive branch predictors can and should be used in order to
improve microprocessor performance. A further consideration is that more aggressive branch pre-
dictors, especially multiported predictors for multiple branch prediction, may be thermal hot spots,
thus further increasing leakage. Moreover, as the branch predictor holds state that is transient
and predictive, elements can be discarded without adverse effect. For these reasons, it is natural
to consider applying decay techniques—already shown to reduce leakage energy for caches—to
branch-prediction structures.

Due to the structural difference between caches and branch predictors, applying decay
techniques to branch predictors is not straightforward. This paper explores the strategies for
exploiting spatial and temporal locality to make decay effective for bimodal, gshare, and hybrid
predictors, as well as the branch target buffer (BTB). Furthermore, the predictive behavior of
branch predictors steers them towards decay based not on state-preserving, static storage cells,
but rather quasi-static, dynamic storage cells. This paper will examine the results of implementing
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decaying branch-predictor structures with dynamic—appropriately, decaying—cells rather than
the standard static SRAM cell.

Overall, this paper demonstrates that decay techniques can apply to more than just caches,
with the branch predictor and BTB as an example. We show decay can either be implemented at
the architectural level, or with a wholesale replacement of static storage cells with quasi-static
storage cells, which naturally implement decay. More importantly, decay techniques can be applied
and should be applied to other such transient and/or predictive structures.

Categories and Subject Descriptors: B.3.1 [Semiconductor Memories]:

General Terms: Design, Performance

Additional Key Words and Phrases: Energy aware computing

1. INTRODUCTION

Power and energy consumption are a major concern in general-purpose and
high-performance processors. Power dissipation can be separated into two
parts. Dynamic power dissipation is due to switching activity in the proces-
sors, and in ideal devices, is the only source of dissipation, as current only flows
during switching. Static or leakage power is consumed regardless of activity, es-
pecially through subthreshold leakage currents [Kesharvarzi et al. 1997] that
flow even when the transistor is nominally off.

As progress in fabrication processes has led to steady reductions in supply
voltages, threshold voltages are being lowered to the point where leakage has
become an important and growing fraction of total power dissipation in high-
performance CMOS CPUs. If it is not addressed through fabrication or circuit-
level changes, some forecasts predict as much as a fivefold increase in leakage
energy per technology generation [Semiconductor Industry Association 2001].
At such rates, the current leakage component, roughly 5% of total chip power
now, would balloon to 50% or more in just a few generations.

In response to this trend, researchers have proposed circuit- and
architecture-level mechanisms for managing leakage energy [Butts and Sohi
2000; Kaxiras et al. 2001; Yang et al. 2001; Flautner et al. 2002]. Using gated-
Vss techniques, Kaxiras et al. [2001] showed that turning cache lines off if they
have not been used in a long time can be effective in reducing leakage energy
with little performance impact. Li et al. [2004] examined several circuit-level
mechanisms for managing leakage control, showing that in cases such as fast
on-chip caches, non-state-preserving techniques such as gated-Vss are superior
to drowsy caches. After caches, branch predictors are among the largest and
most power-consuming array structures in current CPUs. Current predictors
and branch target buffers (BTBs) are 4–8 Kbytes in size, already the size of
a small cache. They dissipate 7–10% of the processor’s total dynamic power
dissipation [Parikh et al. 2002].

However, as pipelines grow deeper and the demand on the branch predictor
increases, the branch predictor may increase in size faster than caches, rais-
ing their contribution to the chip’s total energy budget. For example, in the
proposed Alpha EV8 [Seznec et al. 2002], the branch predictor was 352 Kbits
(44 Kbytes) in size, over 12 times that of the 21264. In addition, Jiménez et al.
[2000] pointed out that hierarchical predictors can avoid cycle-time constraints
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and that large second-level predictors can give substantial increases in predic-
tion accuracy, resulting in predictors that could be as large and have the same
substantial leakage as first-level caches. The increased popularity of tourna-
ment predictors would rapidly increase the size of the branch predictor as well.
As leakage-energy consumption increasingly becomes a concern with respect to
dynamic energy consumption, how to conserve leakage energy in a large array
structure such as the branch predictor becomes a significant and important
problem. Therefore, energy consumption problem in the branch predictor will
likely grow in importance in the future, especially with the increasing impor-
tance of leakage energy.

As decay techniques for caches have proven effective, branch predictors are
a natural next step. However, there are several important distinctions. First,
it is less obvious when a branch-predictor entry may be considered “dead” and
can therefore be turned off with little performance impact. Many branches may
map to the same predictor entry. Since this sharing is sometimes beneficial,
notions of cache conflicts and eviction do not translate directly into the branch
prediction world.

Second, a branch-predictor entry is not simply valid or invalid, as in a
cache. A branch-predictor entry may have reached the “strongly not taken”
state due to the effects of several different branches and may be useful to
the next branch that accesses it, even if this branch has never been executed
before.

Third, branch-predictor entries are too small to deactivate individually, so
one must consider some larger collection, such as a row of predictor entries in
the square array in which the predictor is likely implemented. The challenge
here is that unlike the grouping of data into a cache line, the grouping of branch-
predictor entries in a row is not something for which application programmers
and systems builders have a sense of spatial locality. This paper evaluates
design options related to these questions.

Last, branch predictors can be logically organized in a number of ways, from
simple bimodal branch predictors [Smith 1981], which keep one two-bit counter
per predictor entry, to multitable predictors-like hybrid predictors [McFarling
1993], which operate several prediction structures in parallel. For example, hy-
brid predictors may encounter instances when one of the predictor components
has been deactivated but the other has not. The chooser might be designed
to pick the still active component in such situations. For other branches, the
chooser may exhibit a strong bias for one predictor component over the other.
In this case, predictor entries that are not being selected might be deactivated.

Traditionally, state preserving structures have been designed with six tran-
sistor (6T) SRAM cells; unlike DRAM cells, SRAM cells retain their value while
charged. Thus, caches need not have built in circuitry to refresh the cells as in
main memory. With this in mind, decay and similar techniques focus on some-
how shutting down these cells, for example either gating the source or drain
voltages to a signal that is enabled whenever the cell needs to be turned off. By
attaching decay counters to each cell, one can detect if the cell has gone “long
enough” without activity. If this is the case, the cell is assumed to be unused
and can be deactivated.
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Traditional techniques of deactivating cells involve attaching a gate transis-
tor to the supply voltage Vdd; to deactivate a cell, the gate transistor discon-
nects the supply to the rest of the cell and thus the cell is effectively turned off
[Yang et al. 2001]. Gated-Vdd-based cache decay techniques have a few prob-
lems, however. First, attaching a gate transistor to each cache line might have
an adverse impact on the pitch of the cache line, increasing the overall size of
the cache. In addition, the counters themselves consume dynamic and static
power, which must be taken into account as well. One cannot assume that
powering up or powering down a transistor comes for free; instead, there is
some dynamic cost to the process roughly of the same order as a cache line
access.

An alternative to traditional decay is to use a quasi-static, four-transistor
(4T) memory cell. 4T cells are approximately as fast as 6T SRAM cells, but do
not have connections to the supply voltage (Vss). Rather, the 4T cell is charged
upon each access, whether read or write, and slowly leaks the charge over time.
When the charge in the cell has been depleted, the value stored is lost. Thus,
they may be referred to as quasi-static; like conventional DRAM, they leak their
charge, but do not require a full read–modify–write operation to accomplish a
cell refresh.

4T cells typically appear in embedded processors, where low-power consump-
tion is the most important aspect. 4T cells have the speed of SRAM but in
terms of power behave more like DRAM. They have been largely overlooked
in general-purpose processors because without periodic refresh they are not
truly static. However, in decay techniques, where we exploit the transient na-
ture of short-term storage by turning them on and off depending on usage,
one can take advantage of 4T cells’ dynamic nature. Decaying a 6T cell seems
somewhat like squashing its greatest asset—that it retains its value for as
long as it is powered up. Implementing decay with 4T cells is therefore conve-
nient; as it decays naturally over time if not accessed, this distinctive behav-
ior fits perfectly with the transient behavior of elements in a cache or branch
predictor.

Decay with quasi-static cells is advantageous to conventional decay in sev-
eral respects. First, by virtue of having two fewer transistors and by eliminating
the need to run power rails lengthwise throughout the array, 4T-based struc-
tures are smaller than equivalent 6T structures. As 4T cells decay and revive
naturally through the read–write process, some of the costs behind activating
decayed cells are eliminated. For example, a write to a 4T cell automatically
reactivates the cell, whereas reactivating a 6T cell is somewhat more complex,
requiring extra hardware involved in gating the supply voltage.
Contributions: Because branch predictors have behavior more nuanced than
caches, cache decay methods cannot be directly applied. This paper shows that
effective decay techniques can nevertheless be devised for branch predictors.
The paper then goes on to explore the interaction of decay policies with some
of the wealth of branch-predictor design parameters. We show that:

(1) Branch predictors, like caches, exhibit a significant amount of spatial and
temporal locality, and thus decay techniques can be applied.
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Fig. 1. Gshare predictor in the Sun UltraSPARC-III (Left) and 21264-style hybrid predictor
(Right).

(2) Unlike caches, a decayed prediction need not impact performance as much
as a decayed cache line. A decayed prediction, whether a static fallback or
a logically random value, may still be a correct prediction.

(3) Decay can reduce net leakage energy in the conditional branch predictor by
40–60% and the BTB by 90%.

(4) In hybrid predictors, decay policies can achieve 50% higher reductions in
leakage energy if the decay policy takes advantage of the hybrid predictor
organization to boost decay opportunities.

(5) Decay is most effective for intervals of 64k cycles or larger. If decay is ap-
plied too aggressively, extra mispredictions result in significant costs in
both performance and dynamic power.

(6) Quasi-static, 4T cells are a natural fit for decay, as they gradually leak
charge over time . Moreover, they suffer from less leakage overall than 6T
cells, making them an attractive choice for managing leakage energy.

The paper is organized as follows. First, we discuss the organization and
layout of branch predictors, and establish that spatial and temporal locality
exists. We then show results for basic decay in (6T) branch predictors. Next, we
discuss the structure and behavior of the 4T quasi-static cell, followed by the
results of the decay implementation. Last, we discuss related work and offer
our conclusions.

2. DECAY WITH BASIC BRANCH PREDICTORS

2.1 Logical Structure of Branch Predictors

Although a wealth of dynamic branch predictors have been proposed, we focus
on the effects of decay for the gshare and hybrid predictors, because they present
the most interesting tradeoffs.

The gshare predictor, shown in the left half of Figure 1, tries to detect
and predict sequences of correlated branches by tracking a global history (the
global branch history register or GBHR) of the outcomes of the N most re-
cent branches. In gshare, the global branch history and the branch address are
XOR’d to reduce aliasing. This paper models a 16k-entry gshare predictor in
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which 12 bits of history are XOR’d with 14 bits of branch address. This is the
configuration that appears in the Sun UltraSPARC-III [Song 1997].

Instead of using global history, a two-level predictor can track local branch
history on a per-branch basis. Local history is effective at exposing patterns
in the behavior of individual branches. Because most programs have some
branches that perform better with global history and others that perform bet-
ter with local history, a hybrid predictor [Chang et al. 1995; McFarling 1993]
combines the two. It operates two independent branch-predictor components in
parallel and uses a third predictor—the selector or chooser—to learn for each
branch which of the components is more accurate and chooses its prediction.
This paper models a hybrid predictor with a 4k-entry selector that only uses
12 bits of global history to index its PHT, a global-history component predictor
of the same configuration, and a 1k-entry local-history predictor with a 10-bit
wide BHT and 1k-entry PHT. This configuration appears in the Alpha 21264
[Gwennap 1996] and is depicted on the right side of Figure 1.

2.2 Proposed Decay Implementation

Logically, branch predictors are arrays of counters that are typically just two
bits wide. Like caches, however, branch predictors are physically implemented
as square or nearly square array structures. This helps minimize the complexity
of the row and column decoders and balance wordline and bitline length and
delay. The predictor array is thus similar to a cache array, except that it needs
no tags. For example, the 16k-entry gshare predictor discussed above can be laid
out as a 128×128 array of two-bit counters. Alternatively, it can be divided into
four banks, each a 64 × 64 counter array. We refer to these two organizations
as “unbanked” and “banked” respectively.

When first considering decay techniques with branch predictors, it might be
tempting to consider deactivating individual predictor entries. This is unten-
able, however, because our methods require two bits of state per independently
activated unit; such overhead would be excessive if applied to individual two-bit
predictor entries. Thus, a cost-effective choice for turning off these counters is
at the granularity of rows in the array structure rather than individual entries.
This requires only two bits of state per row (the reference bit and the active
bit), or a total overhead of 2

√
entries bits.

Our techniques have the following general structure. At regular intervals,
all rows of predictor entries not used during the interval are assumed to have
decayed and are therefore deactivated. The interval, called the decay interval,
is measured in processor cycles and is a critical parameter for these schemes.
The shorter the interval, the more opportunities for rows to be deactivated but
the more likely it is to deactivate rows prematurely and induce extra mispre-
dictions. Intervals long enough to minimize extra mispredictions, on the other
hand, result in the deactivation of fewer entries.

Figure 2 shows a picture of a typical branch predictor arranged as a square
memory array. A group of entries, then, is a row of the square memory array.
One bit per row, the reference bit, indicates whether any predictor entry in that
row has been accessed within the last decay interval. All reference bits are
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Fig. 2. A schematic of a squarified branch-predictor table of two-bit counters (the PHT).

cleared at the end of each interval. A second bit for each row, the active bit,
indicates whether that row is currently active (i.e., not decayed). If a predictor
lookup tries to access a decayed row, the predictor signals that a prediction
cannot be made; the row is reactivated and possibly initialized to some desired
starting state; in the meantime, a default prediction is made. Upon activation,
our experiments use a default of not taken and initialize all the counters to 01.
Thus, subsequent branches using the reactivated line start in the weakly-not-
taken state.

The active ratio is the average percentage of predictor rows found to be ac-
tive (not decayed); it is a proxy for the actual leakage energy consumed by
the predictor. Shorter decay intervals yield smaller active ratios (and larger
leakage-energy savings), but performance may suffer, since useful predictor
entries are sometimes deactivated. Exploring this power–performance tradeoff
is a key objective of this paper.

To evaluate the net effectiveness, we combine the reduced value of leakage
energy that was observed with decay and the overhead energy associated with
the decay technique. For each of the predictor types we study, we then plot
the normalized leakage energy for different decay intervals against the original
value for leakage energy. This approach for measuring the net reduction in
leakage energy is similar to the techniques used by Kaxiras et al. in their work
on cache decay [Kaxiras et al. 2001].

2.3 Spatial and Temporal Locality in Branch Predictors

In order to apply decay to branch predictors, we must first establish the ex-
istence of spatial and temporal locality. In today’s machines, branch-predictor
rows typically include 32–256 counter entries. Fortunately, program branches
are clustered rather than random, and across all the predictor organizations we
examine our experiments consistently show that some rows have heavy activity
while others are idle and can be deactivated.
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In the instruction cache, programs clearly exhibit spatial locality. Over a
short period of time, only one or a few small contiguous regions of the program
are likely to be active, so branch instructions are likely to be close in terms of
their PC. This also translates into spatial locality in branch-predictor accesses.
For branch predictors, spatial locality means that at any point in the program,
active rows are likely to have many counters active and idle rows are likely to
be entirely idle. This is most true for the bimodal predictor, which is indexed
only by PC.

If branches were uniformly distributed, we would expect the probability of
two successive conditional branches falling into the same row to be close to
1/rows, or about 2% for a 4k-entry predictor array. To establish spatial local-
ity, we must show that this probability is much higher than this. Indeed, the
probability that two successive conditional branches fall into the same row in
a 4k-entry bimodal predictor is greater than 40% for all our benchmarks, and
greater than 50% for all but five.

For gshare or hybrid predictors, spatial locality is not as pronounced as for bi-
modal, since these other predictors are indexed by a combination of the branch
index and global history. Thus, depending on the global history, a single branch
can index into many different PHT entries, across many different rows. Never-
theless, in half of the benchmarks the probability of hitting the same row as the
previous branch is above 10%. This is much higher than a random distribution
(about 1% for the large, 16k-entry gshare), and thus even these more complex
predictors also exhibit some spatial locality.

Yet this is not useful if the active rows change rapidly, so we must also estab-
lish temporal locality. One immediate factor that creates temporal locality is
the fact that many benchmarks have small static branch footprints (the number
of unique branch instruction sites that are executed), as seen in Table I. Decay
will therefore clearly help bimodal predictors, as each static branch touches
only one predictor entry. From Table I, we know that they are clustered.

3. EXPERIMENTAL SETUP

This section describes our simulation technique and benchmarks, and our
method for evaluating energy savings.

3.1 Simulation Setup

Simulations in this paper are based on the SimpleScalar 3.0 toolkit [Burger and
Austin 1997]. Our model processor has microarchitectural parameters that re-
semble in most respects the Intel P-III processor [Diefendorff 1999]. The main
processor and memory hierarchy parameters are shown in Table II. For perfor-
mance estimates and behavioral statistics, we use SimpleScalar’s sim-outorder
simulator. For energy estimates, we use the Wattch simulator [Brooks et al.
2000]. Wattch uses SimpleScalar’s sim-outorder cycle-accurate model and adds
cycle-by-cycle tracking of power dissipation by estimating unit capacitances
and activity factors. Because most processors today have pipelines longer than
five stages, both our architectural and power models extend the sim-outorder
pipeline by adding three additional stages between decode and issue.
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Table I. Average Number of Static Branches Touched Every Decay Interval for SPEC2000

1k cycles 10k cycles 100k cycles 1M cycles Overall
gzip 24 32 45 103 281
vpr 31 45 58 65 742
gcc 2 9 79 193 512
mcf 65 83 92 116 565
crafty 104 305 592 855 1701
parser 53 90 157 294 2265
eon 81 289 357 415 652
perlbmk 90 453 631 1112 1541
gap 62 281 325 576 745
vortex 124 502 1227 1642 1996
bzip2 22 33 45 56 460
twolf 48 210 300 334 351
wupwise 42 52 53 55 193
swim 3 6 11 15 687
mgrid 3 6 9 25 500
applu 1 2 4 7 579
mesa 83 114 139 267 697
galgel 2 6 8 10 508
art 2 2 5 18 109
equake 167 192 193 202 226
facerec 7 24 25 39 144
ammp 11 26 105 230 794
lucas 3 3 3 4 242
fma3d 80 450 452 465 499
sixtrack 39 49 55 99 734
apsi 14 85 117 125 342
geomean 20 46 70 109 529
max 167 (equake) 502 (vortex) 1227 (vortex) 1642 (vortex) 2265 (parser)
min 1 (applu) 2 (applu) 3 (lucas) 4 (lucas) 109 (art)

The rightmost column labeled ‘overall’ gives the static branch footprint for the whole simulation period.

Table II. Configuration of Simulated Processor

Processor Core
Instruction window 40-RUU, 16-LSQ
Issue width 4 instructions per cycle
Functional units 4 IntALU,1 IntMult/Div,

4 FPALU,1 FPMult/Div,
2 MemPorts
Memory Hierarchy

L1 D-cache Size 32 KB, 1-way, 32 B blocks, 3-cycle latency
L1 I-cache Size 16 KB, 4-way, 32 B blocks, 3-cycle latency
L2 Unified, 256 KB, 8-way LRU,

32 B blocks,8-cycle latency, WB
Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

We tried to match as closely in performance respects to a P-III class pro-
cessor as possible, a four-issue width machine. As for the proposed branch
predictors, we selected branch predictors found in other four-issue width ma-
chines, such as the hybrid found in the 21264 and the 16k gshare found in the
UltraSparc-III.
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Fig. 3. Leakage current per transistor for a range of technologies in use at Agere.

3.2 Technology Assumptions and Circuit Simulations

The results of this research, while broadly applicable, are evaluated based on
particular technology assumptions. We chose a feature size of 0.16 µm, a Vdd
of 1.5 V and a clock speed of 1 GHz. We use 6T and 4T cells from cell libraries;
no custom designs are assumed. 4T cells are simple to design, do not require
special process technology, and can be included in libraries with other SRAM
memory cells.

As process technology primarily determines leakage currents, with each suc-
cessive generation leakage increases substantially. In particular, Figure 3 illus-
trates this progression by illustrating leakage currents (in nA) for four indus-
try process technologies from Agere Systems. At 2.5 V and 0.25 µm, COM1 is
largely out of date; we do not consider it further. COM2 is a reasonably current
CMOS process, with a 1.5 V supply voltage and 0.16 µm feature size. COM3
and COM4 are slightly more forward-looking CMOS processes. COM3 is a 1.0
V, 0.12 µm process, and COM4 is a 1.0 V, 0.1 µm process.

The leakage currents are shown for room temperature (25◦C). Although this
understates the magnitude of the leakage seen in operating chips where the
temperature is likely to be much higher, our data agrees with other predictions
[Semiconductor Industry Association 2001] that leakage is growing exponen-
tially with successive technology generations (Figure 4).

Our transistor models are based on the currently-in-production COM2 pro-
cess. We use Agere’s SPICE-like simulators for very detailed circuit simulations
with a 25 ps resolution. Although leakage savings with COM2 are small, COM2
is a process for which we can gather verifiable simulation results. As such, it
is a useful vehicle for detailed circuit studies of hold times and temperature
effects. Leakage current will be a serious problem in subsequent generations,
and this paper shows substantial savings for the COM3 and COM4 processes.

Figure 5 shows the exponential relationship of temperature to transistor
leakage currents as temperature is varied for 1.5 V 0.16 µm COM2 transis-
tors. Variations in temperature result in large variations in leakage, and these
will impact design tradeoffs. Our designs target an operational temperature
of 85◦C (appropriate for high-performance or mobile processors) but we also
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Fig. 4. Current–voltage curves for COM2 transistors at varying temperatures.

Fig. 5. Transistor leakage current (nA) for varying temperatures for the COM2 process.

simulated very high-temperature (125◦C) operation, appropriate in hard to con-
trol environments like automobiles.

3.3 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 suite
[The Standard Performance Evaluation Corporation 2000]. The benchmarks
are compiled and statically linked for the Alpha instruction set using the Com-
paq Alpha compiler with SPEC peak settings and include all linked libraries.
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Table III. Benchmark Summary

Dynamic Conditional Prediction Rate Prediction Rate Prediction Rate
Branch Frequency w/Bimod 4k w/Gshare 16k w/Hybrid 21264-style

gzip 9.40% 87.58% 90.67% 92.40%
vpr 11.08% 90.00% 97.68% 97.03%
gcc 2.56% 99.61% 99.74% 99.75%
mcf 19.40% 98.42% 99.27% 98.94%
crafty 11.13% 91.76% 93.33% 94.38%
parser 15.60% 91.25% 94.31% 94.89%
eon 11.08% 81.03% 89.71% 91.76%
perlbmk 12.43% 95.15% 97.29% 97.60%
gap 6.62% 90.10% 96.50% 96.96%
vortex 16.00% 97.85% 97.61% 97.87%
bzip2 12.13% 94.06% 94.05% 94.12%
twolf 12.24% 86.44% 88.53% 88.48%
wupwise 10.50% 92.05% 97.54% 96.66%
swim 1.35% 99.36% 99.54% 99.55%
mgrid 0.33% 92.57% 97.77% 97.95%
applu 0.28% 93.07% 98.70% 98.21%
mesa 8.73% 94.09% 96.98% 96.31%
galgel 6.09% 99.13% 99.27% 99.29%
art 11.29% 92.99% 99.02% 96.40%
equake 17.13% 98.04% 99.39% 99.28%
facerec 3.49% 97.92% 99.04% 99.21%
ammp 21.67% 98.77% 99.27% 99.23%
lucas 8.67% 90.84% 98.70% 98.84%
fma3d 18.09% 95.93% 98.39% 97.68%
sixtrack 8.08% 89.58% 99.72% 99.78%
apsi 3.51% 86.22% 96.52% 97.12%

For each program, we skip the first one billion instructions to avoid unrepresen-
tative behavior at the beginning of the program’s execution. We then simulate
500M (committed) instructions using the reference input set. Simulation is con-
ducted using SimpleScalar’s EIO traces, which include all external inputs and
outputs into the program to ensure reproducible results for each benchmark
across multiple simulations.

Table III summarizes the benchmarks used and their prediction accuracies
with several predictors.

3.4 Energy Evaluation

The net energy savings from branch-predictor decay must account for two op-
posite effects resulting from decay. Turning off Vdd in idle counters or rows can
prevent them from leaking; however, decaying the counters causes them to lose
their stored history information stored, possibly degrading the performance of
the branch predictor and resulting in more energy spent on misspeculation and
a longer execution time.

We use Wattch [Brooks et al. 2000] to measure the total processor dynamic
energy with and without applying decay, and subtract them to obtain the dy-
namic energy overhead. For leakage power, Yang et al. [2001] estimate that
with a 110◦C operating temperature, a 1 GHz operating frequency, a supply
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voltage of 1.0 V, and a threshold voltage of 0.2 V, a SRAM cell consumes about
1740× 10−9 nJ leakage energy per cycle. This is roughly in line with industry
data that Agere has found with their COM3 and COM4 process generations
[Diodato 2001].

Based on the above data, we estimate that the 4k-entry bimodal predictor,
the 16k-entry gshare predictor, and the 21264 style hybrid predictor consume
about 0.014, 0.057, and 0.0517 nJ leakage energy each cycle, respectively. In
general, the overall leakage energy for the branch predictor can be calculated
as leakage energy per bit per cycle ∗ #bits ∗ #cycles. The leakage energy of the
extra status bits can be calculated similarly. Since these status bits only switch
infrequently (at most once every decay interval—e.g., every 64k cycles), we
ignore their dynamic energy overhead in our calculation.

4. DECAY WITH 6T STATIC CELLS

To establish the effectiveness of basic branch-predictor decay, we first need
to examine how decay interacts with basic branch predictor. Using conven-
tional 6T cells and gated-Vss/Vdd techniques, we simulated three basic branch
predictors—a bimodal predictor, a gshare predictor, and a hybrid predictor.

4.1 Bimodal Predictors

Figure 6 shows the active ratio and direction prediction accuracy for 4k-entry
bimodal branch predictors with different decay intervals. We see from the active
ratio graph that decay is very effective at shutting off idle counters in bimodal
predictors. The geometric mean active ratio, which is the percentage of predictor
entries powered on (so smaller values are better), is 37%, 28%, 22%, and 18%
for decay intervals of 4096k, 512k, 64k, and 8k cycles, respectively. This means
that decay techniques have the potential to reduce branch-predictor leakage
by 2X or more. Since bimodal predictors are indexed by PC, benchmarks with
large static branch footprints tend to have higher active ratios, as shown in
crafty, perlbmk, gap, and vortex. Other benchmarks typically leave more than
half of their counters deactivated due to their small footprints.

Furthermore, the prediction rate graph shows that shutting off these idle
counters comes with minimal loss in performance except for the apparently
too-aggressive decay interval of 8k cycles. With a 64k cycle decay interval, the
overall loss in prediction accuracy is about 0.14%, with only one benchmark
(mgrid) over 1%.

Interestingly, in some benchmarks (wupwise and facerec) we actually ob-
served tiny improvements in prediction accuracy. We attribute this to the effect
of removing some destructive interference. Interference occurs when two dif-
ferent branches map to the same counter. The interference is destructive when
the branches are biased in opposite directions, for example, when one of the
conflicting branches is strongly taken and the other is strongly not taken. De-
activation resets the counter to the neutral, weakly-not-taken value, which
effectively isolates the two conflicting branches.

Figure 7 compares the leakage energy before and after applying decay. When
decay is enabled, we add to the leakage energy the extra leakage energy from
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Fig. 6. Active ratio (Top) and prediction success rate (Bottom) for a 4k-entry bimodal predictor.
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Fig. 7. Normalized leakage energy for the 4k bimodal predictor.

Fig. 8. Mean active ratio for unbanked and banked gshare predictors and a bimodal predictor
with different decay intervals. The rightmost label “orig” corresponds to nondecaying predictors.

the decay status bits as well as any dynamic-energy overhead due to extra
mispredictions or longer run time. As the decay interval lengthens, fewer mis-
predictions are induced, the extra dynamic energy incurred becomes minimal,
and over 60% of the original leakage energy can be saved.

4.2 Gshare Predictors

To evaluate if decay will be effective for a gshare predictor, we must first look
at the active ratio over various interval lengths. Figure 8 shows the geometric
mean of the active ratios across the benchmarks for both banked and unbanked
16k-entry gshare predictors and, as a reference, the 4k-entry bimodal predictor.
As expected, the active ratios are quite small (i.e., good from a decay point of
view) for the bimodal predictor. Because gshare is designed to spread branch
state across the predictor, the active ratio will be larger. Yet, significant numbers
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of rows remain untouched. This indicates that decay-based techniques still
show significant promise for addressing leakage concerns.

Figure 8 shows data for an unbanked as well as a banked version of gshare.
Breaking the predictor into banks makes the active ratio smaller (better for
decay) by reducing the granularity over which activity is measured. Indeed,
the active ratio for gshare is 15–35% smaller if it is broken into four banks of
4k entries each. Overall, these active ratios yield leakage-energy savings of 40%
for unbanked gshare and about 50% for banked gshare. Even greater savings
can be achieved for structures directly indexed by PC: about 65% for bimodal
predictors and 90% for the BTB. For more details, refer to Hu et al. [2001]. Note
that energy savings are presented in terms of net leakage savings in the branch
predictor, not the total processor, to separate net leakage-energy savings in the
branch predictor from potential net leakage savings independent of the branch
predictor.

Figure 9 shows the active ratio and branch misprediction rates for an un-
banked gshare predictor on a per-benchmark basis. The geometric mean active
ratio across the 26 benchmarks is 46% for a 64k-cycle decay interval, with a neg-
ligible drop in predictor accuracy. While its decay benefits are not as pronounced
as for a bimodal predictor, nevertheless decay still produces substantial reduc-
tions in leakage power with minimal performance impact. Figure 10 shows that
the overall reduction in leakage energy is 41% for a 64k-cycle decay interval.

Further energy savings can be realized using a banked organization, which
gives a reduction in leakage energy of 51%. Note that with the banked predictor,
the reduction in leakage energy will be somewhat less than the reduction in
active ratio for two reasons. First, because the banked organization has smaller
rows and hence the overhead of more decay status bits. Second, the banked
organization is more aggressive than unbanked gshare in deactivating rows for
the same decay interval. This makes it more likely that the banked organization
deactivates a row that harms prediction accuracy. This extra dynamic-power
overhead, however, decreases with longer decay interval because for very long
intervals, even a banked row that is idle is extremely likely to have genuinely
decayed. This is why the difference in energy savings is larger for 512k cycles
and 4096k cycles than for 64k cycles.

4.3 Hybrid Predictors

With two competing components (the global component and the local compo-
nent), hybrid predictors exhibit many interesting design choices when imple-
menting decay. In this section, we will explore these design choices as well as
their effect on decay in an Alpha 21264-style hybrid predictor.

4.3.1 Selection Policy. The selection policy refers to the policy for choosing
a prediction from one of the two component predictors. In a nondecaying 21264-
style hybrid predictor, the chooser makes this decision using the global history
(see Figure 1). However, when decay is enabled, it may happen that only one of
the two components is active while the other is decayed. In this case, since the
decayed component has lost its information, it is intuitively appealing to use
the prediction from the active component, no matter what the chooser suggests.
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Fig. 9. Active ratio (Top) and misprediction rate (Bottom) for unbanked gshare predictor.
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Fig. 10. Normalized leakage energy for gshare branch predictor for both unbanked and banked
predictors.

This policy is called “believe the active component,” and is implemented in all
our experiments. It may also happen that both the two components are decayed,
in which case all components are reactivated and the branch is predicted as
“weakly-not-taken,” as in bimodal and gshare predictors.

4.3.2 Wakeup Policy. The wakeup policy refers to the decision of whether
to reactivate a decayed row when it is accessed by a branch instruction. A naive
policy would always wake up any rows that are accessed. In a hybrid predictor, a
more elegant policy is possible: the decayed component will be reactivated only
if the chooser wants to select it. We refer to this policy as “believe the chooser.”

In the situation when the accessed row in the chooser is decayed, we know
that the global component is also decayed in the 21264-style predictor. This is
because the chooser and global predictor are indexed, accessed and thus de-
cayed in exactly the same way (see Figure 1). In this case, the chooser has no
useful information. If the local component is active, then we leave the chooser
and the global component inactive and return the prediction from the local com-
ponent. Otherwise (when the local component is also inactive), we reactivate
all components and return a prediction of “weakly-not-taken.”

4.3.3 Results. Figure 11 details the active ratio and branch misprediction
rate for naive decay, which always wake up any rows that are accessed, with
a 21264-style hybrid predictor. We see that even though the active ratios are
higher (worse) than for bimodal or gshare predictors, decay has a negligible
impact on the misprediction rate for intervals of 64k cycles or larger. Note that
in order to compute active ratio sensibly on a multitable structure, we compute
it over all prediction and chooser bits in the structure. Overall, as Figure 12
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Fig. 11. Active ratio (Top) and misprediction rate (Bottom) for 21264’s hybrid predictor.

shows, naive decay realizes strong reductions in energy savings—40% for a
64k-cycle interval.

We can obtain even better energy savings by taking advantage of the “believe
the chooser” wakeup policy. As shown in Figure 12, this more sophisticated pol-
icy leads to leakage power reductions about 50% better than for the naive policy.
We achieve this by exploiting information from the chooser. The chooser points
to a particular component for a reason—that is, one component is performing
better than the other, and thus we only need information from the superior
component.

4.4 Decay with the BTB

In addition to the structure for predicting the direction of conditional branches,
a BTB [Holgate and Ibbett 1980; Losq 1982] is commonly used to store the
targets of taken branches. The BTB is typically organized like a cache, either
direct-mapped or set associative, but tagged in order to identify hits and misses.
Since it is solely indexed by PC, it has similar locality characteristics as in-
struction caches and bimodal predictors. However, the granularity in the BTB

ACM Transactions on Architecture and Code Optimization, Vol. 1, No. 2, June 2004.



Implementing Branch-Predictor Decay Using Quasi-Static Memory Cells • 199

Fig. 12. Normalized leakage energy of 21264-style hybrid predictor with naive and “believe the
chooser” wake up policies.

is single branch instructions, instead of instruction blocks as in instruction
caches. This allows even finer control for decay. Decay is therefore especially
effective for BTBs (Figure 13).

We evaluated a 2048-entry, 4-way associative BTB, which appears in the
Intel PIII processor [Diefendorff 1999]. Except for vortex, perlbmk, and crafty,
most benchmarks have a very low active ratio, below 20% or even below 10%.
This is no surprise, considering that the static footprints of most benchmarks
in Table I are very small compared to our BTB capacity. With decay, these static
footprints are automatically tracked and all other idle slots are turned off to
save leakage energy. On the other hand, BTB hit rates observe only negligible
degradation until decay interval drops to 8k cycles or less. Overall, with decay
intervals of 64k cycles or more, about 90% of the BTB leakage energy can be
saved.

4.5 Summary and Discussion

In this section, we have explored the application of decay techniques to reduce
leakage energy in branch-predictor structures. The particular policies that we
have developed (e.g., “believe the chooser”) apply to all non-state-preserving
leakage-control mechanisms. The key contributions are more general, giving
useful guidance to any work on leakage control. In particular, our locality anal-
ysis shows that all predictor organizations we examined have significant num-
bers of rows that are inactive for long periods of time. This makes leakage
control in the branch predictor and BTB profitable, regardless of mechanism.
Additionally, prior work by Jiménez et al. [2000] and Parikh et al. [2002] suggest
that branch predictors should be larger for both performance and power-saving
considerations, but that localized-heating concerns may be an obstacle. This
makes leakage control in the branch predictor and BTB particularly impor-
tant.

Over all the configurations we explored, the best reductions in leakage power
were achieved with the bimodal predictor, but the power savings achieved with
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Fig. 13. Active ratio (Top) and accuracy (Bottom) for the BTB with different decay intervals.
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the “believe the chooser” policy for hybrid prediction were nearly as good. Since
hybrid prediction has superior prediction accuracy and hence performance and
overall energy, hybrid prediction remains the best choice from both a perfor-
mance and energy standpoint [Parikh et al. 2002]. Overall, as branch predic-
tion accuracy and execution time were increased negligibly, the reduction in
leakage energy consumed by the branch-predictor unit causes the processor to
save energy as a whole.

Some of our interesting results were specifically due to the fact that there
are two independent component predictors in a hybrid predictor. In the 21264’s
hybrid predictor, for example, the chooser and global component were organized
in the same way. This let us to deduce useful facts about one based on state in
the other. More generally, the influence of indexing on decay may suggest that
the choice of predictor index is worth revisiting (yet again). In the past, indexing
functions have been chosen to minimize aliasing, usually by spreading the state
from branches in the same working set as widely as possible. In contrast, decay
can be more effective by clustering similar states into rows, with the goal of
making as many counters in a row as possible idle or active at any point in
time. This observation therefore sets up a tradeoff between reducing aliasing
and increasing decay opportunities. Although beyond the scope of this paper,
seeking index functions that can balance the two factors is an interesting area
for future work. It may be possible to develop tractable index functions that
cluster similar state into rows with minimal increase in aliasing. In addition,
large predictors in particular may be able to accommodate index functions that
boost row clustering.

As for the actual decay intervals, this paper applies only fixed decay inter-
vals. Kaxiras et al. [2001] show that for caches, even better decay rates can be
achieved with decay intervals that adapt to changing program behavior. Other
work by Zhou et al. [2001], Velusamy et al. [2002], and Sankaranarayanan and
Skadron [2004] also improved on cache decay by selecting better policies for
adapting the decay interval. While studying adaptive branch-predictor decay
was beyond the scope of this paper, it remains worth investigating because our
data showed that some benchmarks suffered no performance loss even with
a short, 8k-cycle decay interval (Figure 14) (and would get even more benefit
from decay), while others suffered drastically.

A further consideration is that banked and multitable organizations pro-
vide substantial benefits in reduced dynamic energy, by reducing word- and
bit-line lengths. Furthermore, when decay is applied to multitable predictors,
some tables can be left inactive, as in the “believe the chooser” policy. Another
example arises in local-history prediction, where timing issues may require
caching the predicted direction for each BHT entry in the BHT. As with “be-
lieve the chooser,” decay might permit the PHT update and lookup in such
a local-history organization to be omitted if that PHT entry is inactive and
the cached direction was correct. Such a policy might be called “believe the
BHT.” Not only do these “believe” policies reduce leakage energy, also they
avoid the dynamic power associated with accessing that table. Our work here
did not model these extra savings, but doing so would only make decay more
valuable.
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Fig. 14. Normalized leakage energy for the BTB with different decay intervals.

Another issue that warrants study further is interference in branch predic-
tors. In some experiments, we observed mild but interesting improvements in
prediction rate with decay. This shows that decay (by setting the two-bit coun-
ters to a weak state) may have the effect of reducing destructive interference,
something we plan to quantify in our future work. Lastly, since many other
prediction structures such as value predictors [Lipasti et al. 1996] and prefetch
address predictors [Lai et al. 2001] are organized similarly to branch predic-
tors, an interesting future effort will be to apply strategies found in this paper
to these structures.

5. DECAY WITH 4T RAM CELLS

Thus far we have explored the use of traditional SRAM cells and their use in
decay. Traditional decay techniques involve manipulating the power supply to
create the illusion of dynamic behavior on top of a cell originally designed and
selected for its ability to hold its value indefinitely. Viewed in this light, it seems
natural to use quasi-static 4T cells to implement decaying branch predictors.

5.1 The Quasi-Static 4T Cell

Basic 4T DRAM cells are well established and described in introductory VLSI
textbooks and various articles [Lyons et al. 1987; Noda et al. 1998; Wolf 1998].
4T cells are similar to ordinary 6T cells but lack two transistors connected to Vdd
that replenish the charge that is lost via leakage (Figure 15). Using exactly the
same transistors as an optimized 6T design, the 4T cell requires approximately
two-third of the area. For example, under a 0.18 µm process, an ordinary 6T
cell occupies an area of 5.51 µm2, whereas a 4T cell would occupy an area of 3.8
µm2 (i.e., 69% of the area [Diodato et al. 1998]).

Essentially, the 4T cell is just as fast as a 6T cell. While our data demonstrate
a slight speed disadvantage, the difference is so small that coupled with the
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Fig. 15. Circuit diagrams of the 6T SRAM cell (left) and the 4T quasi-static RAM cell (right).

smaller amount of parasitic interconnect, the difference essentially disappears.
More importantly, 4T DRAM cells naturally decay over time (without the need
to switch them off); once they lose their charge they leak very little because
there is no connection to Vdd. However, some secondary leakage via the access
transistors still remains due to bit-line precharging, which we do take into
account in our transistor-level simulations.

Precharging, in both SRAM and DRAM designs, saps some of the power
savings; any charge loss, power dissipation, or cell behavior that is a result
of precharging is accounted for in our simulation. There are various forms of
precharge (full-Vdd, half-Vdd, 2/3-Vdd) and they vary from those that are nor-
mally on to those that are normally off. We use full-Vdd in our simulations. The
precharge control circuitry in the simulation is normally off; the precharge is
on for 33% of the time and then off at the specific moment of a read or write.
Whether the precharge transistors are on or off, residual charge on the bit-line
does leak through the access transistors and eventually is lost to the ground
node. Even when all residual charge is removed from the bit-line, the leakage of
the precharge transistors supply a low level of current flow through the access
transistors.

In addition, 4T cells are automatically refreshed from the precharged bit-
lines whenever they are accessed. When a 4T cell is accessed, its internal high
node is restored to high potential, refreshing the logical value stored in it;
there is no need for a read–write cycle as in 1T DRAM. As the cell decays and
leaks charge, the voltage difference of its internal nodes drops to the point
where the sense amps cannot distinguish its logical value. Conservatively, this
occurs when the node voltage differential drops below a threshold of the or-
der of 100 mV (for 1.5 V designs). Below this threshold we have a decayed
state, where reading a 4T DRAM cell may produce a random value (not nec-
essarily a zero). Over a long time the cell reaches a steady state, where both
the high node and the low node of the cell “float” at about 30 mV (for 1.5 V
designs).

Thus 4T cells possess two characteristics fitting for decay: they are refreshed
upon access, and decay over time if not accessed. In the rest of this section,
we discuss extensively the 4T decay design, including decay or data retention
times, dynamic energy and other considerations.
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5.2 Hold Times in 4T Cells

The critical parameter for a 4T design is retention time. When implemented in
4T cells, decay techniques have the cell’s retention time as their natural decay
interval. We define retention time to be the time from the last access to the
time when the internal differential voltage of the cell drops below the detection
threshold. Hold time depends on the leakage currents present in the 4T cell,
which in turn depend on process technology variations and temperature.

To study retention times for the 4T cache decay we chose Agere’s COM2
0.16 µm CMOS process for which we have accurate transistor models. We also
use COM2 for this study because it is the most modern of the four COM pro-
cesses that is available in-house, in real silicon, to validate our models against
real measurements. Although this particular technology does not suffer ex-
cessively from leakage, our analysis scales to future generations. Subsequent
sections will discuss how to manipulate retention times to match application
needs, so although our initial retention time numbers are for COM2, we feel
they are achievable in COM3 and COM4 as well.

Variations in the process technology significantly affect leakage currents and
therefore retention times. In our studies, we use three reference points in the
process technology: (i) Nominal transistors (NOM) represent the expected be-
havior and constitute the bulk of the production; (ii) worst-case fast (WCF)
transistors are transistors that are six standard deviations (σ ) (À99.99%) from
the process mean in terms of speed. They are very fast but very leaky transis-
tors; (iii) worst-case slow (WCS) transistors are the opposite six-σ point in the
process distribution, where transistors are quite slow but leak far less.

The WCF and WCS are extreme cases that by definition rarely appear in pro-
duction; they are essentially theoretical constructs used as bounds. In general,
fast chips are likely to leak more and thus have shorter retention times. How-
ever, fast chips are also clocked at higher speeds, which means that even their
short retention times correspond to many cycles. It is the cycle count that mat-
ters, not real time, since decay is an architectural phenomenon characterized
by cycle counts and largely independent of cycle duration.

As mentioned previously, variations in temperature also result in large vari-
ations in retention times. Our designs target an operational temperature of
85◦C (appropriate for example for mobile processors) but we also discuss mech-
anisms to adjust in very high temperature (125◦C).

Finally, selecting 3.3 V I/O transistors—readily available in COM2
technology—to replace the 1.5 V transistors while maintaining 1.5 V signaling
in the 4T cells significantly extends retention times at the expense of increased
cell area. Even in this case the 4T cell, area is still less than that of the 6T
cell. Building 4T cells out of 3.3 V transistors while operating them at 1.5 V
is feasible because of the nature of the 4T cell which acts as a placeholder for
charge. The same cannot be done for an active 6T circuit (two cross-coupled
inverters) that requires its transistors to be fully biased to work correctly.

Based on these assumptions, we determined retention times for our tech-
nology through detailed transistor-level simulations. We simulated an access
to a cell, followed by a long period in which the cell was left unread. During
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Table IV. Hold Times (in ns) for 1.5 and 3.3 V Versions of 4T Cells at
Different Operating Temperatures

1.5 V 3.3 V
25◦C 85◦C 125◦C 25◦C 85◦C 125◦C

NOM 18,000 1700 560 1,040,000 57,200 9400

For a 1 GHz (1 ns cycle-time) processor, one can also consider these retention
times as cycle counts.

Table V. Read Energies (in fJ) for Nominal 1.5 and
3.3 V 4T Cells at 85◦C for Different States of

Decay (i.e., Different Internal Voltages)

Internal 4T 6T
Voltage (V) 1.5 V 3.3 V 1.5 V
1.5 na 149 156
1.0 166 151 na
0.7 171 153 na
0.5 175 155 na
0.1 219 199 na

Values include energy dissipated in the cell, precharge cir-
cuits, and sense amplifier. The 3.3 V 4T cells are operated
at 1.5 V. An internal voltage of 1.5 V is not available in
the 1.5 V 4T because the 4T cell internal node voltages are
constrained by the cut-off region of the MOSFETS used as
access transistors. This affect could be overcome by over-
driving the wordlines, as in conventional DRAM design.

this time, leakage causes the cell’s internal nodes to lose charge. We defined
the hold time to be the duration between an access and the point at which the
differential voltages of the 4T cells internal nodes lapsed to a value less than
100 mV. We used 100 mV as our criteria for the minimum voltage at which we
would expect the sense amps to distinguish the logical state. If the 4T cell is
read after it has decayed beyond this point, it still operates safely and does not
raise metastability or other concerns; it just does not have the data it had before.
Reading a decayed cell, as shown and verified in our circuit models, produces an
electrically stable, though logically random, value. It is essential therefore to
know well in advance when data have decayed in a 4T cache. This necessitates
decay counters not to turn the branch-predictor row on and off as in previous
work but to just signal the decay of a branch-predictor row. Table IV gives the
cell retention times in nanoseconds for the COM2 technology. These retention
times are for a 4T cell using the same highly optimized 6T cell transistors.

5.3 Sense Amplifier Considerations

One implication of the 4T cell is that it becomes progressively more expensive
to read as it decays (similar to the behavior of DRAM). As the cell decays, the
sense amp must work harder to detect and amplify the differential signal on
the bitlines. Besides the sense amp energy there is also energy expended to
refresh the cell as we read it. We have studied both of these effects for all the
types of 4T cells (with 1.5 and 3.3 V devices) and for various stages of decay.
Table V gives the read energy for the 4T cell at various internal voltages.
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5.4 Locality Considerations

Granularity is also relevant in the 4T design but here it stems from the way
4T cells are refreshed. As reading a single cell asserts the wordline and re-
freshes all the cells in the accompanying row, cells that would have decayed
if left alone get refreshed coincidentally by nearby active cells. This leads to
the observation that even 4T cells with short retention times may not actually
lose data as quickly if the row size is long enough. Thus retention time se-
lection goes together with locality granularity because large row granularities
make the apparent rate of refresh much higher. (Segmented wordlines would
allow more selective refresh but these designs are outside the scope of this
paper.)

In contrast, in a design with very fine row granularity, one would opt for
4T cells with very long retention times. Fine granularity leads to a very good
decay ratio but the important cells must remain alive on their own (without
the benefit of accidental refreshes) for considerable time.

5.5 Metastability

A key issue regarding 4T structures is the fact that metastability problems
may be a concern when the cell’s internal differential voltage is too small. To
avoid metastability, it is tempting to use refresh, but this would obviate the
savings of our approach. Instead, one can detect the small differential voltages
and avoid relying on array data at these points. As an example of the latter, we
propose that one could avoid metastability in a 4T branch predictor by adding
a reference column whose sole purpose is to detect low differential voltage and
to prevent the sense amp output from propagating further into the circuit. In
this column, instead of a sense amplifier we have a voltage comparator. When
the voltage difference is too small, the comparator output forces the reference
cell to read as a logical zero (otherwise it reads as a logical one). The output of
the comparator qualifies the result. A small differential is therefore prevented
from inducing metastability in the subsequent circuit.

Other approaches are possible, such as the use of decay counters
[Kaxiras et al. 2001], but the one we have proposed—the use of a single com-
parator in a reference column—is appealing because it prevents metastability
while requiring minimal extra area or power.

5.6 Reliability, Determinism, and Controlled Operation

In some cases it is necessary for 4T memory structures to appear static. As
in any other DRAM, this is done by periodically refreshing the dynamic cells.
Refresh can be accomplished in a way that is largely transparent to the nor-
mal operation of the memory array. Hanamura et al. [1987] describe a refresh
mechanism that on a periodic basis momentarily strobes the address lines after
the bitlines have been precharged. Sense amps are idle at this point, resulting
in low power consumption. The short strobe pulse allows charge to flow from
the bitlines to the cells of the selected line and restore their contents. Ordinary
reads and writes take precedence over refresh, resulting in minimal perfor-
mance impact.
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Such refresh circuitry (whose area-cost is negligible) is likely to be included
with a 4T data array. In normal operation the refresh circuit is inactive and the
4T structure operates in decay (low-leakage) mode. However, under special cir-
cumstances, refresh provides indispensable functionality. These include (i) chip
testing, (ii) deterministic operation for real-time applications, and (iii) possible
operation beyond recommended temperature range. While the first two should
be apparent, the third one arises because at high temperatures, leakage may
be so high that branch predictors decay too quickly. In such situations, the sys-
tem will want to reenable refresh, reverting to nondecay mode. One method
to achieve this is by using on-chip sensors to automatically trigger the refresh
when necessary.

5.7 Trends in Process Technology

With the advent of new process technology, transistor leakage will increase
at a tremendous rate, making 6T solutions somewhat less attractive due to
power dissipation concerns. This same transistor leakage will of course lower
the data retention of 4T cells; however, since access times will also improve,
there would appear to be some kind of balance between the number of machine
cycles that the 4T cell can hold its data and the number of machines cycles
that the 4T cell is required to hold its data in cache applications. For example,
simulating under SPICE using a future technology (65 nm), at 85◦C a 3.3 V
4T cell has a 1.4 µs retention time, translating into 1400 processor cycles at 1
GHz. However, according to the ITRS roadmap, by the time 65 nm is reached
the processor clock should be approximately 7.5 GHz, translating into an ef-
fective retention time of just over 10,000 cycles. Coupled with architectural
techniques to extend the retention time, even with the impact of process tech-
nology, we can still field an effective retention time for decay. Therefore, 4T still
wins.

As process technology advances:

—transistor leakage increases for all devices, especially for those types of tran-
sistors used in 6T cells, but not so rapidly for those longer channel transistors
used in 4T cells;

—data access time decreases in all cases;
—data retention time decreases in 4T cells;
—alpha particle immunity (and soft errors in general) will get worse for both

types of cells;
—precharge and access transistors leakage is a mechanism of pure charge loss

and complete power waste in a 6T-SRAM;
—precharge and access transistor leakage tends to replenish the internal node

charge lost due to the leakage of other transistors in the 4T-DRAM.

The last point is a key point because 6T cells in this era have shown soft error
problems owing to their larger source-drain area. 1T cells (previously notorious
for their soft error sensitivity) are not getting as bad as once thought because
their source-drain area is so small that the offending particle has a smaller
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target to hit it, and when it hits there is less of a charge imbalance because the
cross-sectional area of the depletion region is so small. Once again the 4T cell
seems to be a reasonable middle ground between 6T and 1T.

5.8 Controlling Retention Times

The success of a 4T decay design depends on matching retention times to ac-
cess (i.e., “refresh”) intervals. Thus, the ability to control retention times could
give us a new degree of freedom in designing 4T decay structures. One way to
affect retention times is to add devices such as resistors or capacitors to the
basic 4T cell [Diodato et al. 2001]. Such devices can be used to slowly replenish
the lost charge. If the rate of replenishment is less than the leakage the cell
will still decay albeit much more slowly, thus retention time can be extended
significantly.

The ability to control retention times is key to the applicability of 4T cells
to branch-predictor designs, as the retention time is dependent on tempera-
ture. Thus, one can adapt the natural decay interval (in cycles) more closely
to the desired decay interval in response to the given temperature range. As
described below, refresh circuitry can be included to be used as a fail-safe if the
temperature exceeds a certain threshold.

In addition, retention times can be controlled using architectural techniques,
such as using multiple refreshes to prolong retention time, accomplished either
statically or adaptively. Moreover, as described above, the structure of the cache
may make the apparent rate of refresh much higher; longer row granularities
can compensate for a shorter decay interval. One thus can design the structure
to orient towards longer rows for an increased decay interval (and a larger
safeguard against performance loss) or shorter rows for greater leakage-energy
savings.

6. RESULTS FOR 4T-BASED BRANCH PREDICTORS

To illustrate the effects of the increase in the misprediction rate due to decay,
we simulated a processor with the direction predictor and BTB built with 4T
structures. We simulated under the worst-case scenario: small static leakage in
comparison to dynamic energy, which correlates closely with the COM2 process.
Thus we use slow-decaying 3.3 V 4T cells in our design, operating at 85◦C,
leaving us a decay interval of 57,200 cycles for both the direction predictor and
the BTB.

These values can be adjusted using the techniques as described in Section 5;
for example, if the decay interval of 57,200 cycles is too long, we can instead use
1.5 V 4T cells, which have a shorter decay interval (8000 cycles), and extend
that retention time appropriately.

6.1 4T Decay Results

6.1.1 Gshare. Figure 16 shows the normalized execution time and mispre-
diction rate of the 4T branch predictor versus a standard (nondecaying) branch
predictor. We see that the misprediction rate and thus the execution time are
virtually unchanged. In fact, due to the random effects of reading the decayed
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Fig. 16. Normalized execution time (Top) and misprediction rate (Bottom) of standard and 4T
predictors. 4T predictors produce minimal performance losses.

values, a few benchmarks actually improve 2–3%. Overall, the accuracy was
affected less than 5%.

Figure 17 shows the active ratio of the direction counters under various SPEC
benchmarks. On average, we see a 28.2% active ratio, which directly translates
into over 70% savings on leakage power over a traditional, nondecaying predic-
tor. The savings is not without cost; however, additional read energy is required
every time a nearly decayed or completely decayed counter is read. Under our
current process, this penalty is an additional 27.5% of the read energy of a
nondecayed counter.

Moreover, this penalty is applied also when nearly decayed counters on the
same row are refreshed accidentally due to a nearby read; fully decayed counters
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Fig. 17. Active ratio of a 4T-based predictor.

Fig. 18. Normalized leakage energy for the 4T branch predictor at 57.2k and 8k cycles.

on the same row, however, are left decayed and therefore not refreshed. We im-
plement this by detecting the voltage differential on the bitlines; if this voltage
swing is close to zero, we can tie the signal into the refresh lines and avoid
refreshing an unused cell. The sum total is that we retain the effective long
decay interval of low row granularity but achieve much lower active ratios.

Finally, the normal dynamic energy overhead of additional mispredictions
must be included in our results. Figure 18 shows the 4T-based branch predictor
in comparison with the previous 6T designs. While the 4T decay interval is set at
57.2k, at equivalent processes, the 4T usually outperforms the 6T. For instance,
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Fig. 19. Normalized execution time (Top) and misprediction rate (Bottom) of standard and 4T
bimode predictors. 4T predictors produce minimal performance losses.

a 6T-based decaying predictor on a COM3 process would actually consume more
energy than a standard, nondecaying predictor, whereas the 4T version of the
same predictor, with a shorter decay interval, does better.

In addition, the data also shows that it is possible with 4T cells to use very
aggressive decay intervals in the direction counter tables. Under the COM4
process, we see leakage power savings even when the decay interval is 8000
cycles. As mentioned above, we are seeing the effects of the lower active ratios
at the same row granularity that the 4T cells allow.

6.1.2 Bimode Results. Figure 19 shows the normalized execution time and
misprediction rate of a more complex predictor, the bimode. In this configuration
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Fig. 20. Active ratio of a 4T-based bimode predictor.

we used an aggressive bimode predictor composed of two 16k PHTs activated
by an 8k selector. We see that execution time is moved very little; misprediction
rate is increased roughly 0.3%, translating into a performance loss of 0.1%.
The complexity of the predictor helps alleviate the performance loss due to the
misprediction, as a single static branch covers a larger area than, for example,
a bimodal predictor, which raises the apparent refresh rate. This is confirmed
by the fact that bimode predictors suffer less as the decay interval is decreased
compared to the gshare. The results for varying the decay interval of gshare
will be discussed in Section 6.2.

Figure 20 shows the active ratio of the bimode predictor. The active ratio
appears to be smaller than that of the gshare because the active ratio is an
average of all three components of the bimode—one of which is a very simple
bimodal predictor. While the bimodal component is half the size of the PHTs,
its active ratio is significantly smaller than that of the PHTs and thus lowers
the overall active ratio.

6.1.3 BTB Results. The results for the 4T BTB are similar to the 6T BTB.
Because each BTB target is much larger than the two-bit counter, we can afford
to attach counters to each BTB target and thus achieve the optimum granular-
ity; those counters that are used are refreshed, and those that decay are not
accidentally refreshed. As a result, the active ratios of the 6T BTB are identical
to the 4T BTB.

6.2 Sensitivity to Decay Interval

Figure 21 shows the impact of decay interval over execution time and predictor
accuracy. Shorter (aggressive) decay intervals increase the decay ratio, but at
the cost of performance. For example, at a 256-cycle decay interval, the active
ratio is less than 1%, but the execution time is increased 11% due to the branch
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Fig. 21. Normalized execution time and branch-predictor accuracy for the 16k gshare predictor at
varying decay intervals.

predictor suffering a 10% drop in accuracy. Overall, the normalized leakage
energy for the branch predictor is increased 7 times.

While temperature can cause the 4T cell to leak more rapidly (and thus
shorten the decay interval), it is important to restate that a randomized value
in the directional counters may still be correct, and thus the effect of accidentally
decaying branch predictors is not as severe as decaying cache lines. More, as
mentioned earlier, retention time can be controlled using the techniques men-
tioned in Section 5. For example, if the temperature is beyond some threshold
such that cells are leaking too quickly, a stand-by refresh circuit can be enabled
to return the branch predictor into a nondecaying mode.

6.3 Summary and Discussion

We see that using quasi-static 4T cells allows us to build naturally decaying
branch predictors with minimal impact on performance. Furthermore, predic-
tors built using 4T-based decay offer additional benefits over those already
shown with decay with 6T cells. We show that 4T RAM cells are as much as
one-third smaller in area and are comparable in terms of read energy when
accessed frequently. Most importantly, they reduce leakage energy compared
to 6T cells and are comparable in terms of program performance.

Thus our proposal to use 4T cells for predictor structures is driven by the
following observations:

—Branch-predictor entries exhibit locality. Data arrays are approximately
square, and decay techniques are most easily applied to rows in these ar-
rays. This helps 4T structures, because an access to anything along a row
boosts the voltages of all cells in that row. Locality means that active code
regions have their predictors refreshed while inactive regions decay. Once
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decayed, they leak very little, essentially capping the energy dissipated by
idle entries.

—The retention time for 4T cells—the amount of time it takes for a 4T cell to
leak enough charge that the value it stores is corrupted—is long enough that
4T cells’ decaying behavior is naturally suited to exploiting decay in large
structures over our benchmarks: it is rare that a value leaks away before it
is needed again.

—Retention times vary with design style, fabrication technology, and tempera-
ture. Nonetheless, we have discussed techniques that allow one to modulate
the retention times sufficiently to guarantee good performance. We have also
shown that there exist several techniques that will prevent small voltage dif-
ferentials in decayed cells from inducing metastability. Our results in Section
5.7 show that our technique will be viable even in future technologies.

These insights suggest that 4T cells are inherently useful for managing leak-
age in predictive structures. The fact that 4T cells decay naturally provides
leakage-energy savings without either the overhead of gated-Vdd techniques or
the overhead of maintaining decay counter bits. Finally, 4T designs are smaller,
saving die area and possibly permitting faster access times for a given number
of bits.

7. RELATED WORK

Much research has recently been done in the field of static leakage, both at the
architectural level and at the device level. At the architectural level, prior work
focused on improving the static leakage performance by shutting off (decaying)
unused portions of large array-like structures, for example, in caches. Yang
et al. [2001] described an instruction cache organization that disables ways of
a set-associative cache to match the capacity currently needed by the executing
program.

Several papers [Powell et al. 2000; Kaxiras et al. 2001; Hu et al. 2002] de-
scribe techniques for disabling individual cache lines by inferring that lines
which have not been used in a long time have decayed: they probably con-
tain data that is not likely to be used again before replacement. Building
on the cache decay work, Hu et al. [2002a] extended decay techniques to
the branch predictor. Most of the above techniques assume technologies such
as gated-Vdd or supply-voltage gating to control whether or not a portion of
the structure is enabled or disabled. More recently, Hanson et al. [2001] pre-
sented a comparison of leakage-control techniques, and concluded that gated-
Vdd may not be the best approach for controlling static power in large data
arrays. Instead, they find that dual-Vt techniques [Roy 1998] save more over-
all energy for structures that should have fast lookup times (like first-level
caches).

Zhou et al. [2003] proposed turning off only the data portion of the cache,
leaving the tag portion active in order to monitor and exploit miss information.
Furthermore, using adaptive cache decay as an example, Velusamy et al. [2002]
applied formal feedback control mechanisms to improve leakage savings by im-
plementing an adaptive controller which varied decay intervals dynamically.
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Sankaranarayanan and Skadron [2004] also improved on cache decay by se-
lecting better policies for adapting the decay interval. Flautner et al. [2002]
presented a technique in which to improve leakage savings not by fully decaying
cache lines, but rather to put the in a low-power “drowsy” state, which main-
tains the cache state rather than discarding it as in decay techniques. Extending
gated-Vdd, Agarwal et al. [2002] DRG-Caches use data-retentive leakage-aware
cells to reduce leakage energy. Alternatively, Azizi et al. [2002] introduced an
asymmetric dual-Vt SRAM cell. Another leakage control technique saving the
cache state was described by Heo et al. [2002]. Combining state-preserving
and state-destroying techniques, Li et al. [2002] demonstrated a technique
in which leakage energy was further reduced by exploiting data duplication
across the cache hierarchy. Lastly, focusing instead on the compiler, Zhang et al.
[2002] presented techniques using the compiler to improve instruction cache
leakage.

A separate, architectural way of improving energy consumption performance
of structures such as the cache was proposed by Balasubramonian et al. [2000]
and Yang et al. [2002], in which the cache is reconfigured in order to best support
the working set of the data with as little wasted cache as needed. Resizable
caches are indeed orthogonal to decay techniques and also take advantage of
the fact that some applications require very little either the cache or from the
branch predictor. However, the decay approach is simple, requires very little
hardware, and can potentially use very small operating intervals. Still, there is
nothing preventing a resizable cache from being built with decay, and combining
the benefits of both.

Taking a different approach, Juang et al. [2002] looked at eliminating Vdd
altogether in replacing the standard SRAM cell with a dynamic, quasi-static
4T cell. Using the quasi-static cell allows for an easily built, naturally decaying
cache. In addition to caches, Hu et al. [2002b] described ways of saving leakage
in branch predictors by implementing them with quasi-static cells. Finally, Hu
et al. [2003] included cache decay as an example of improving power dissipa-
tion and performance by looking at more than just simple time-independent
behavior, such as event ordering, and exploiting the generational behavior of
structures such as the cache and prefetch unit.

8. CONCLUSIONS

In this paper, we examine implementations of decay-based leakage control us-
ing quasi-static memory cells. Cache decay, first proposed in Kaxiras et al.
[2000], and Kaxiras et al. [2001], aimed to turn off unused portions of caches
with long idle times to reduce cache leakage energy.

We start by evaluating decay implementations based on coarse-grained
counters appended to traditional 6T SRAM arrays. While previously consid-
ered for caches, this paper shows that such techniques can be effective for
branch predictors as well. Inherent in this success is the observation that
branch predictors exhibit row-based spatial locality that allows some of the
rows to be deactivated due to long idle times, while other rows are heavily
accessed.
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We see that, much like caches, exploiting this spatial and temporal local-
ity allows us to save significant amounts of leakage energy, especially in sim-
pler branch predictors. In more complex branch predictors we show that in-
telligent policies can save significant amounts of leakage energy over naive
decay.

Prior implementations of decay were based on gated-Vdd or gated-Vss [Yang
et al. 2001], where power and ground are gated by a transistor. This implemen-
tation, however, not only leads to about 5% area overhead but also brings about
complex design issues, especially for turning on a decayed cache line.

A closer examination of gated-Vdd-based decay reveals an intrinsic con-
flict between the standard 6T cell design and gated-Vdd. Specifically, while
gated-Vdd tries to shut off cache lines, the two load transistors in 6T cells are
merely wasting charge. To resolve this conflict, we proposed using 4T quasi-
static memory cells to implement cache decay. By removing the two tran-
sistors that connect the cell to Vdd, quasi-static cells naturally implements
the two key functions for decay: their charges lose over time and are replen-
ished during each cache access. Compared to gated-Vdd implementation, this
method avoids the area overhead and the design issues related to the gate
transistor.

Thus, we also examine the use of quasi-static 4T cells for implementing
branch-predictor decay. Such cells have been proposed to implement on-chip em-
bedded DRAM in a fairly traditional style with refresh circuitry. In our work, we
examine using the natural decay of the 4T cells to implement decay for leakage-
control in branch predictors. Because branch predictors are performance hints,
not correctness-critical, lost entries do not cause incorrect execution. Moreover,
we show that 4T cells can be built with sufficient natural retention times to
implement useful decay-based predictors with negligible impact on prediction
rate.

Using a combination of transistor-level simulation and instruction-level sim-
ulation, we show that a 4T decay implementation achieves significant savings
in leakage power. While 4T decay typically offers greater savings than 6T so-
lutions, there are many places were it may not be feasible to implement a 4T
branch predictor. 6T decay is more flexible in the selection of retention time,
as well as a finer granularity in selecting dynamic retention times. Further-
more, it may not always be possible, either through device or layout concerns,
to wholesale replace a 6T solution with a 4T solution.

Thus, by presenting both traditional (6T) and quasi-static (4T) solutions, we
show that decay can be easily applied either architecturally on top of a given
design, or be an integral part of the design from the beginning. While branch-
predictor leakage is now only 7–10% of total CPU leakage, we are able to reduce
it by a significant fraction, sometimes 90% or more. This reduces overall chip
leakage by 5–7%. Furthermore, we can reduce leakage with essentially no per-
formance cost. In future processors, as branch predictors potentially will grow
in size very quickly, outpacing the growth of the cache, the power consumption
of the branch predictor will be an important problem. Most broadly, the paper
prompts a rethinking of how transient data can best be exploited in designing
power-efficient processors.
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