
Developing Visualization Tools for an Out-of-Order
Execution Simulator

Anindo Mukherjee

March 13, 2005

i

Abstract

Researchers and students require visualization tools in order to efficiently
evaluate microprocessor designs as they run in a simulator. The SimpleScalar
toolkit, a popular and versatile program for simulating numerous processors,
would benefit from such tools. While some visualization tools have been made
before for SimpleScalar, few have yet supported the out-of-order execution
simulator, where independent instructions are processed in parallel, out of
program order. There are several factors that a designer must assess to develop
visualization tools that can run on numerous hardware architectures and operating
systems: code portability, the graphical user interface (GUI), and running
speed. Code portability refers to the choice of programming language/languages
and supported compilers and platforms, which determines the system configuration
required to run the software. The design of the graphical user interface determines
the effectiveness with which a user can interact with the visualization tool, and
the underlying simulator itself. Both of these factors will have an effect on
running speed and overall program efficiency. The visualization tool, JSimViz,
addresses these factors and provides software for the student and research
community.

ii

Contents

Abstract ii

1 Introduction 2

2 Background and Previous Work 8

3 Approach to Design 12
3.1 Requirements Capture . 12
3.2 Design Considerations . 14
3.3 Software Implementation Strategy . 15
3.4 Design Tradeoffs . 16

4 Software Developed 17
4.1 Overview . 17
4.2 Software Implementation . 19
4.3 IP and Software Licensing . 21

5 Significance and Recommendations 22

1

1 Introduction

Simulation is a critical aspect of microprocessor design for both researchers and

professionals. Simulation provides a method for verifying design validity as well as

benchmarking efficiency. As microprocessor design has advanced rapidly in recent

years, there is a clear need for simulators that can model and analyze the behavior

of increasingly complex machines.

Out-of-order execution is one such design feature that was developed to minimize

processor idle time and increase throughput. When running a program ”in order,”

the instructions are processed sequentially, in the order in which they appear in

the program. Due to the layout of processors, limited hardware resources, and the

development of software, data hazards arise and the processor’s pipeline must stall, or

wait for data from a source with high latency such as memory. Out-of-order execution

deals with this problem by executing the instructions out of program order if necessary

to execute more instructions over the same period of time. Data hazards and false

data dependencies are handled by one of several methods such as reservation stations

and register renaming (Sima, 2000).

As is generally the case with processor optimization, checking for such hazards

requires a great deal of logic on the chip. The processor must determine which of

its fetched instructions can be sent through the pipeline’s multiple execution units

without conflicting with any already present and executing. The area complexity of

processors that use such a feature has limited its use to large scale general purpose

2

CPUs. However, since the introduction of the Pentium Pro, the incorporation of out-

of-order processing into processors has become mainstream, and the design techniques

involved with superscalar processors have become essential knowledge for students of

the computer engineering discipline. The SimpleScalar toolkit (Austin et al., 2002)

February 2002 61

dynamic scheduling, aggressive speculative execu-
tion, and a multilevel memory system.

All the simulators have fairly small code sizes
because they leverage SimpleScalar’s infrastructure
components, which provide a broad collection of
routines to implement many common modeling
tasks. These tasks include instruction-set simula-
tion, I/O emulation, discrete-event management,
and modeling of common microarchitectural com-
ponents such as branch predictors, instruction
queues, and caches. In general, the more detailed a
model becomes, the larger its code size and the
slower it runs due to increased processing for each
instruction simulated.

Figure 2 shows the SimpleScalar hardware
model’s software architecture. Applications run on
the model using a technique called execution-dri-
ven simulation, which requires the inclusion of an
instruction-set emulator and an I/O emulation mod-
ule. The instruction-set emulator interprets each
instruction, directing the hardware model’s activities
through callback interfaces the interpreter provides.

SimpleScalar includes instruction interpreters for
the ARM, x86, PPC, and Alpha instruction sets.
The interpreters are written in a target definition
language that provides a comprehensive mecha-
nism for describing how instructions modify regis-
ters and memory state. A preprocessor uses these
machine definitions to synthesize the interpreters,
dependence analyzers, and microcode generators
that SimpleScalar models need. With a small
amount of extra effort, models can support multi-
ple target instruction sets by implementing the full
range of callback interfaces the target definition
language defines.

The I/O emulation module provides simulated
programs with access to external input and output
facilities. SimpleScalar supports several I/O emula-
tion modules, ranging from system-call emulation
to full-system simulation. For system-call emula-
tion, the system invokes the I/O module whenever
a program attempts to execute a system call in the
instruction set interpreter, such as a callpal
syscall instruction in the Alpha instruction set.
The system emulates the call by translating it to an
equivalent host operating-system call and directing
the simulator to execute the call on the simulated
program’s behalf. For example, if the simulated
program attempts to open a file, the I/O emulation
module translates the request to a call to open()
and returns the resulting file descriptor or error
number in the simulated program’s registers.

Other I/O targets provide finer-grain emulation
of actual hardware devices. For example, the

SimpleScalar/ARM release includes an I/O emulator
for Compaq IPaq hardware devices. This emulator
is detailed enough to boot the ARM Linux operat-
ing system. Device-level I/O emulation has the
added advantage of analyzing the operating system
portion of an application’s execution. This addi-
tional fidelity proves especially useful with server
applications, where networking and file system ser-
vices demand much of the workload’s runtime.

At the center of each model, the simulator core
code defines the hardware model organization and
instrumentation. Figure 3 lists the code for a hard-
ware timing model of a simple microarchitecture
in which all instructions execute in a single cycle
except for loads and stores. These instructions exe-
cute in two cycles if they hit in the data cache, or in
10 cycles if they miss.

The simulator core defines the simulator’s main
loop, which executes one iteration for each instruc-
tion of the program until finished. For a timing
model, the main loop must account for the pro-
gression of execution time, measured in clock cycles
for this model. The cycle variable stores the exe-
cution time, which counts the total number of clock
cycles required to execute the program up to the
current instruction. To determine the relative per-
formance of programs, the model compares the

Table 1. SimpleScalar baseline simulator models.

Simulator Description Lines Simulation
of code speed

sim-safe Simple functional simulator 320 6 MIPS
sim-fast Speed-optimized functional simulator 780 7 MIPS
sim-profile Dynamic program analyzer 1,300 4 MIPS
sim-bpred Branch predictor simulator 1,200 5 MIPS
sim-cache Multilevel cache memory simulator 1,400 4 MIPS
sim-fuzz Random instruction generator and tester 2,300 2 MIPS
sim-outorder Detailed microarchitectural timing model 3,900 0.3 MIPS

Program binary

Target ISA I/O interface

Stats

Dlite!

MemoryRegs

Simulator
core

Loader

B Pred

Resource

Cache

Host interface

Host platform

Target ISA emulator I/O emulator

User programs

Prog/Sim interface

Functional core

Performance core

Figure 2. Simple-
Scalar simulator
software architec-
ture. Applications
run on the simulator
using execution-
driven simulation,
which requires the
inclusion of an
instruction set
emulator and an I/O
emulation module.

Figure 1: Layout of the SimpleScalar simulator. (Source: Austin, 2002)

is one of several simulators that support out-of-order execution. It is especially

notable in that it is a well-maintained project, is widely used, and is adaptable to

different architectures. The SimpleScalar simulator itself is compartmentalized, with

a virtual machine structure, an Instruction Set Architecture (ISA) emulator, and an

ISA interpreter. The user can compile or cross compile a binary for a given ISA,

which is then interpreted by the appropriate SimpleScalar module. This then runs on

a module that emulates the target ISA, and the emulator in turn interfaces with the

simulator, which in turn runs through the instructions as a physical chip would, and

3

tabulating statistics. Because of the modular design of SimpleScalar, it is possible

for a user to add specific functionality by simply modifying the appropriate section

of code. This has been done with the implementation of multiprocessing (Manjikian,

2001b) as well as with ISA retargetability (Mong and Zhu, 2003). SimpleScalar can

be considered the ”de facto standard for micro-architecture simulation” (Mong and

Zhu, 2003).

Given that there are so many complex issues involved with out-of-order processing

and its representation, it is often difficult for student learning the material to grasp

the inner workings of the processor being simulated, or the internal state of the

instructions and stages. Work has been done to facilitate better usage of SimpleScalar

by students (Manjikian, 2001a)(Moure et al., 2002). In ”More Enhancements of the

SimpleScalar Tool Set,” Manjikian writes,

These enhancements were inspired in part by research needs and in part by

a desire to improve the utility of the SimpleScalar tool set in education.

Undergraduate and graduate student at Queen’s University have used

several of these enhancements in both coursework and research, and the

software for the enhancements will be released for wider use in the computer

architecture community.

As indicated, this work to improve the usability of SimpleScalar by students has

generally been done by instructors to aid in specific courses, but released to the

community at large.
4

SimpleScalar can produce a pipetrace file that displays the contents of each stage

during execution. This pipetrace however, is a log containing the cycle and state

changes as the virtual machine processes instructions; it is machine-readable, rather

than human-readable. The file is generated by specifying an optional parameter

when executing SimpleScalar from the command line. SimpleScalar then enables

pipetracing, and the simulator logs certain values to the tracefile as it is running.

It is important to note that since SimpleScalar simulates a machine, none of this

information is retained unless logged, since the contents of the virtual components

such as the fetch queue and cache change over the course of program execution.

The presentation and layout of the data produced by such a simulator is important

in allowing someone unfamiliar with the algorithms involved in out-of-order execution

understand such processors. Without generating a pipetrace, SimpleScalar only

provides the user with general execution statistics. The pipetrace itself contains

information on the status of each instruction in the pipeline, but no information on

any other structures within the virtual machine. SimpleScalar can also run in debug

mode within a debugger, DLite, but this interface is more suited to one already

familiar with the processes involved.

Numerous programs have been written to better present and orient the data the

SimpleScalar obtains in a graphical user environment (Austin et al., 2002)(Moure

et al., 2002). However, all of these programs have been written for a specific application,

and thus have limitations that may not make them as accessible to a wide range of

5

students. It is therefore the goal of this project to develop visualization tools for

SimpleScalar that are easily accessible to students on a variety of platforms.

JSimViz, the software developed in this project, is a Simplescalar visualization

application written in Java. Requiring a modified SimpleScalar Toolkit and the Java

Runtime Environment 1.4.2 or higher, JSimViz can take a pipetrace and display

information from a series of pipetraces in a view that is oriented based on processor

cycles. This cycle view allows the user to view instructions’ entry into the superscalar

processor, which states they occupy, and how they are processed. The visualizer can

also display information on the Instruction Fetch Queue (IFQ), Load/Store Queue

(LSQ), and Register Update Unit (RUU). The contents of these structures can also

aid understanding of superscalar processors. With an emphasis on efficiency, ease of

use, and simplicity, JSimViz is a tool designed for displaying useful information about

out-of-order program execution. As with the related projects in this field, it is made

available to any who desire access by way of an open source license, similar to that

of SimpleScalar.

This paper will cover the design and implementation of JSimViz, as well as the

decisions made in its development. To provide a basis for the general structure of the

visualizer, I will first discuss SimpleScalar and the projects that use or modify its out-

of-order simulator, sim-outorder. The subsequent chapters will examine the process

used to write and test the software, a guide for the typical use case of the software,

and the strengths and shortcomings of the result. Finally, a recommendation will be

6

made for further work on a similar visualizer or improving JSimViz.

7

2 Background and Previous Work

This section will discuss the simulator tools released as SimpleScalar, as well as

the subsequent work that has built upon it. It will also cover similar visualization

applications available for Simplescalar, and compare and contrast their respective

interfaces and features.

The SimpleScalar Toolkit is comprised of a simulator, debugger, simulator tests,

and the related source code. Binaries are also available from the website, but typically

the sources are compiled for the host’s architecture either using the SimpleScalar/Portable

ISA (PISA) or SimpleScalar/Alpha for Alpha processors. The test binaries are

compiled as well, and tested against the known good outputs to verify the simulator

is operating properly. SimpleScalar is packaged as a set of simulators which provide

different and specific functionality; for example, sim-bpred for branch prediction

behavior, sim-cache for cache statistics, and so forth. The simulator that is relevant

for the scope of this project is sim-outorder, which provides simulation of an out-of-

order processor, as well as the functionality and statistics for the features of the other

simulators. Many variables such as translation look-aside buffer (TLB) miss latency,

cache size, and a variety of other factors which affect processor operation. Because

of its support for out-of-order execution, and its high reconfigurability, it is the most

interesting simulator to study and modify. References in this paper to SimpleScalar,

or its simulator, refer to sim-outorder unless otherwise specified.

To use SimpleScalar, a user will execute sim-outorder from the command line with

8

the desired options that specify the parameters that the simulated machine will have.

The user can run one of the provided test benchmarks or cross compile their own

custom program using a special compiler. The simulator will then run through the

program, tallying running statistics such as cache usage/misses, branch prediction

accuracy, etc. If a pipetrace was requested at runtime, a file with the specified name

will be created, and a flag will be set in the simulator. As it runs, the main simulator

loop that performs the appropriate actions every clock cycle will output instruction

status to this file. As mentioned earlier, the tracefile itself is not designed to be

human readable; it simply contains marks to indicate the type of status change, and

information that is not organized into any regular hierarchy. Simplescalar comes with

a script written in PERL, pipeview.pl, that will parse a tracefile to standard output

in a sort of table format. Because of the constraints of a typical terminal screen, the

amount of information displayed for each instruction is kept to a bare minimum, and

a fair amount of visualization is left to the user.

SimpleScalar is not the first out-of-order processor simulator, but is currently one

of the most widely used for the verification of designs. This is due to the potential

to support simulation of multiple ISAs, the extendability of the simulator’s features,

and the ease with which SimpleScalar can be ported to different systems; only minor

changes should need to be made (Austin et al., 2002). Significant work has been

done to expand and improve SimpleScalar functionality in the past. An example of

this is the multiprocessing extension developed by Manjikian of Queen’s University

9

(Manjikian, 2001b). In that project, support for multiprocessing and memory system

was added to SimpleScalar. Also, a multi-threaded simulator, SImulator for Multi-

threaded Computer Architecture (SIMCA) was developed using sim-outorder as a

base (ARCTiC, 2005).

Visualization tools have been developed for SimpleScalar, including a package

called ss-viz, the SimpleScalar Visualizer. Known to work with Linux, Solaris and

Windows, ss-viz requires X Windows support, and installation of Tcl/Tk to implement

the graphical user interface (GUI). Additionally, the visualizer uses a modified sim-

outorder with graphical ”hooks” to allow the tool to extract relevant data from the

virtual machine. The SimpleScalar Visualizer tool has many features, but lacks

an elegant interface. Also, not every user will have Tcl/Tk, and there may be

issues for Windows users; the installation procedure recommends a complete Cygwin

installation, which may take well over a gigabyte of space. Ss-viz is adequate for some

users, but clearly may not be easily configured for any given system.

KScalar, another SimpleScalar-based visualizer with a GUI, (Moure et al., 2002)

uses the KDE/Qt libraries to render its interface. The visualizer itself is fairly

complete, providing the user with several view types. The user can choose a cycle

view, where the focus is on the events that occur in each cycle of the simulator’s

execution, or an instruction view, where a user can follow an instruction’s status as

it enters and leaves the machine. While the KDE/Qt libraries provide a good basis

for windowing, they may not be available on a wide variety of systems. Furthermore,

10

according to the included description of KScalar, it uses a ”highly modified” version

of SimpleScalar, which may impact future extendability if a user wishes to modify the

simulator underlying the visualization tool. These are not necessarily shortcomings,

but merely choices made to suit KScalar to its application: classroom use in undergraduate

and graduate lecture courses. Naturally, KScalar may be used by any other researcher

with a system that meets the requirements, but with an x86 processor and Linux

required, the systems available may be limited.

11

3 Approach to Design

The software produced by this project was developed using general guidelines set

by the principles of software design. The requirements capture exercise served to

establish basic user requirements, and the typical use case for a student fairly unfamiliar

with the out-of-order processors and SimpleScalar. I then developed a set of design

considerations, or goals that I would use to write the software based on the results of

the requirements capture and the needs that have not been addressed by the other

SimpleScalar visualization tools already developed. This section will cover those

stages of the design process, and conclude with a discussion of the trade-offs that

were made in meeting the desired constraints of the software.

3.1 Requirements Capture

To form the basic requirements for use, I familiarized myself with the use of SimpleScalar

and the PERL script used to parse pipetrace results. I used the command line

arguments for SimpleScalar to specify arbitrary ranges over which to produce pipetraces,

and examined the trace files themselves. A student using SimpleScalar would presumably

track instructions through the pipeline to understand the program flow in the simulated

processor, so I also used the PERL script pipeview.pl to display and format the results

and followed the execution. I did this for the example test programs included with

SimpleScalar, such as test-fmath, test-anagram, and test-printf.

As discussed earlier, the constraints of a terminal window limit the amount of

12

information that pipeview.pl can display at one time. The pipeview script assigns a

two-letter designation to an instruction when it first enters the pipeline, and refers

to that designation in a table thereafter. For example, the instruction lw r16,0(r29)

would be assigned a value as

aa = ‘0x00400140: lw r16,0(r29)’

and referred to as aa in all of the displayed tables. This is conceptually adequate

in indicating the location of a particular instruction at a particular cycle, but relies

upon the user to keep track of which abbreviations refer to which cycles. This can be

somewhat confusing, and the user will probably end up writing out a note of which

instructions translate to which on paper. The use of abbreviations also distances the

instruction itself from the type of instruction, a factor that is critical in understanding

why the processor delayed an instruction from issuing, or several instructions have

been sent to execute. Because of this, I deemed it important that a user is able to see

the type of instruction while looking at the events that take place in a processor cycle.

Balancing the amount of information a typical user would need with the constraints

of what will fit on screen in an unobtrusive application, and avoiding the problem of

disorienting the user with too much information became a concern in designing the

visualizer interface.

13

3.2 Design Considerations

The focus of the GUI design was on providing a useful but uncluttered interface. The

results of the requirements capture indicated that displaying instruction information

in the cycle event table itself would be ideal. The SimpleScalar Visualizer, ss-viz,

also includes the contents of the IFQ, LSQ, and RUU, which may assist students in

understanding the simulator, so I evaluated that to be a useful feature as well.

SimpleScalar pipetrace files are typically used to examine part of a program’s

execution rather than the entire program’s execution; a typical program can easily

take hundreds of thousands of clock cycles, and present more information than a

human would need to examine personally. Hence, when a user specifies to the

simulator that a pipetrace should be generated, the range would usually be small,

specifying the range that the user is interested in. However, I thought that it would

be useful for the program to be able to run on a large pipetrace file, and navigate to the

sections that the user is interested in, rather than force the user to continually rerun

the simulator and produce different ranges to examine one by one. By supporting

scalability for the input, memory requirements will also decrease; if the amount of

memory the visualization application is largely independent of the input, not only

will it be able to handle large files, but it will be able to be run on a wide range of

systems, and use a reasonable amount of memory. Fewer system requirements will

make the visualizer available to a wider audience, which is a goal of the project in

general.

14

Perhaps one of the most important design considerations was maintaining the

extendability of the SimpleScalar code. The modifications and extensions done to

SimpleScalar mentioned in prior sections of this paper were made by researchers.

However, this does not preclude the possibility of a student modifying sim-outorder

either as part of a class or for research; to allow for such an occurrence, the software

should adhere to to basic requirements. First, the project should use an unmodified

version of SimpleScalar as its base so that users working with the version distributed

in the simulator will already be familiar with the code. Second, the project should not

break any functionality that SimpleScalar already has: the hooks that the JSimViz

software uses should not be intrusive and make any previously selectable options

unavailable to the user.

3.3 Software Implementation Strategy

The primary software design methodology used in developing and testing the JSimViz

visualizer was the spiral approach. In the spiral approach, the program is written and

tested incrementally at different stages of its development, and milestones are set to

indicate progress. Appropriate software milestones in software engineering are binary;

they are criteria that are either met by the deadline, or unmet (Brooks, 1995). I took

the time allotted for software design, implementation, and testing, and divided it into

three basic stages for development:

15

1. Make the necessary modifications to the sim-outorder code; add the necessary

hooks to SimpleScalar itself, and write additional source in C to interact with

SimpleScalar (i.e. use the SimpleScalar pipetrace to generate other necessary

information in addition to the normal pipetrace)

2. Develop a window-based GUI to display the data gathered by the code in the

previous step, provide the user with an interface to manipulate the data view

as necessary, and provide some coherence between the two parts.

3. Test the finished software with some typical cases using the test programs

included with SimpleScalar.

3.4 Design Tradeoffs

By electing to use as little memory as possible, a tradeoff regarding speed had to

be made. All applications that run on a computer must achieve a balance between

memory ’footprint’ and running speed. Making the program prohibitively slow was

unacceptable, so other methods to improve speed were required. Also, a downside to

using pipetraces is that only the information requested by the modified pipetrace will

be available to the visualization tool; there is no way to access data in the simulator

once its state has changed, or the simulator has terminated.

16

4 Software Developed

4.1 Overview

Given that data for a given cycle exists within the simulator only while the sim-

outorder is within that particular cycle, visualization tools have two ways in which to

extract the necessary information: either suspend the simulator itself, displaying only

information about the current cycle, or use pipetraces to have the simulator dump

data as it is running so the information is available after SimpleScalar terminates.

The latter option was chosen for several reasons. First, suspending the simulator, and

visualizing a state similar to a debugger would require work with DLite, and would

probably elevate the level of complexity of the project, making it unfeasible in the

given time frame. Second, a debugger is intended to display current information, and

may not be optimal for preserving information from past cycles that may be lost in

case the user wishes to view a previous cycle. In a pipetrace file, the state changes for

all cycles are recorded. Note that this is not the same as a static list of the contents

of each pipeline stage; for a given cycle, there may be instructions that do not change

state, and are therefore not listed in a cycle. However, these instructions are still

present in the pipeline. Although the pipetrace does not present a convenient table,

it is the better option, and was chosen as a means of accessing data for the JSimViz

visualizer.

I implemented the design in Java for several reasons: it could be assured to have

17

similar performance on a variety of systems provided they had an adequate version of

the Java Runtime Libraries, and Java is available for almost every architecture and

operating system. By using Java, the JSimViz visualizer is theoretically able to run

on Windows, OS X, UNIX, and Solaris systems on any architecture that supports

SimpleScalar (though JSimViz has not been exhaustively tested). X Windows (the

X11 windowing protocol) is an open standard for GUI applications that was considered

for this project but not used due to the unavailability of adequate documentation

in the project time frame. Java’s Swing libraries provide a base for ”lightweight”

applications– those that interface with the host OS for the rendering of windows, and

the interception of user commands. Creating an application using Swing removed a

great deal of the technical and logistic issues involved with creating a visual program,

and was ideal.

To use JSimViz, the user will run sim-outorder requesting a pipetrace as usual.

However, the modifications I made to the simulator will generate additional files that

the visualization tool will use to display the information. After opening the JSimViz

application, the user can open a file using a standard choose file dialog box. Due to the

”lightweight” nature of Swing, the window will use the ”look and feel” and widgets of

the user’s operating system (see figure). The user is then presented with an interface

containing the previous cycle contents (top), current cycle contents (middle), and

next cycle contents (bottom). A user can press the appropriate buttons to advance

one cycle, or go back one cycle, as well as enter a number and go to an arbitrary cycle

18

Figure 2: The JSimViz Visualizer displaying information on a program’s execution in
the simulator. The instructions are identical; instruction number view is on the left,
assembly instruction view is on the right.

that exists within the specified pipetrace.

4.2 Software Implementation

The visualizer was implemented using the principles of object-oriented programming.

Instructions were made into objects with properties that can be set such as assembly

instruction, number, memory address, and so on. These instruction objects are added

to pcycle objects which represent the contents of each of the pipeline stages in a

given cycle. The dynamically updated tables (JTables) that display information are

connected to these pcycles via the AbstractTable construct in Java. All filehandling

is done with a filehandler object I wrote. This filehandler opens tracefiles, and parses

them into pcycles on demand.

The ability to randomly access a file, that is, the ability to seek to an arbitrary

location without having to start at the beginning and search until that point, presented

a potential memory problem. A possible solution would be to create a data structure
19

that contained the contents of each of the pipeline stages. This may not be feasible

because the contents of pipeline stages are instruction objects, and the amount of

memory required to catalog all of them for each cycle would be prohibitive for very

large inputs. Furthermore, a user will not need to access all parts of the file at once,

so it is not necessary to keep all of the data easily accessible in memory.

The software solves this problem and meets the memory design constraint two

ways. First, upon opening a pipetrace file, it creates a data structure that finds the

beginning of each cycle and each new instruction and marks it. This takes O(n), but

only needs to be done once for any tracefile opened. This way, whenever a cycle or

instruction is needed by the program, or requested by the user, it can be directly

accessed, and no further searching through the file is necessary. Second, as this

marking is done, the program creates a table of ”live” instructions, or instructions that

are currently in the pipeline, for each cycle. As previously discussed, the pipetrace

file only notes changes in instruction state. SimpleScalar’s pipeview.pl PERL script

keeps a hash table of which instructions are currently in the pipeline. JSimViz takes

a similar approach, but extends it by creating a list of which instructions are live

for any given cycle. This results in significant memory savings because though the

number of cycles in the input may be high, the list of ”live” instructions are simple

integers, which consume little memory. These instructions are then parsed from the

trace file on demand by the filehandler object.

20

4.3 IP and Software Licensing

Software licensing was the primary issue for this project with regards to the social and

ethical context in which it is to be placed. Defining a license for software is important

because it grants users certain rights to examine and modify the source code behind

the executable programs. Myriads of software licenses exist for different purposes and

different goals. KScalar, for example, is distributed under the GNU General Public

License (GPL). The GPL grants users the right to modify and reuse code as long as

the resulting code is also available under the terms of the GPL. SimpleScalar, on the

other hand, uses a simpler license with fewer guidelines, and its license will be used

for JSimViz and the related code produced by this project as well. This is generally

termed ”open source,” where the original source code used to make the programs can

be freely distributed, and modified under the terms of the associated license.

21

5 Significance and Recommendations

With the development of the JSimViz SimpleScalar Visualizer, the research and

student community in computer engineering now has access to a portable visualization

tool written in Java where none had existed before. The tool has fairly basic capabilities,

and is limited in scope, but allows students to view the contents of a processor’s

pipeline over a 3-cycle span. JSimViz also allows a user to quickly navigate to

the information on any desired cycle without consuming a large amount of system

memory. The slightly modified version of SimpleScalar included with JSimViz also

outputs auxiliary information about processor structures such as the IFQ, LSQ, and

RUU. With this information, a student should be able to use JSimViz on programs

and aid her understanding of the fundamental operation of out-of-order processors.

JSimViz is also notable in that an interested user can run it without installing any

other required libraries or utilities other than the Java Runtime Environment 1.4.2,

and does not even require the user to compile the source code due to the fact that it

runs in Java.

The source code to the visualizer developed in this project will also be released

to allow interested parties to examine the code, and create custom modifications or

derivative works. The open source software license ensures that the student and

research community will benefit from this by guaranteeing access to those groups.

Considerable work could be done in the future to improve or extend the capabilities

of JSimViz. Currently, the software supports viewing of three cycles at one time. If

22

a user deemed it necessary, he could extend this to any number of cycles within the

limits of screen size very easily because of the way in which JSimViz is written. The

layout of the interface itself could be improved; though Java’s Swing libraries allow a

look and feel native to the host operating system, the addition of a toolbar or icons

could improve ease of use. Over the course of this project, the primary concern was

the functionality of the application, though aesthetics often play an important role

in improving user interaction speed.

Work could also be done to rewrite the base of the GUI or create a new visualization

application that could support an extremely configurable processor. As it currently

stands, JSimViz was written to interact with sim-outorder of the SimpleScalar toolkit,

and any minor modifications made to it. However, one could create a more flexible

GUI that could display a processor with any number of pipeline stages (SimpleScalar’s

pipeline has 5). Doing so was far beyond the scope of this project and therefore

not attempted. Designing such a visualization tool would be complex, but could

potentially work for simulated processors that are vastly different from SimpleScalar’s

default, as well as future simulators other than SimpleScalar.

23

References

ARCTiC (2005). Arctic labs.

Austin, T., Larson, E., and Ernst, D. (2002). Simplescalar: an infrastructure for
computer system modeling. Computer, 35(2):59–67.

Brooks, F. (1995). The Mythical Man-Month: Essays on Software Engineering.

Burger, D. and Austin, T. M. (1997). The simplescalar tool set, version 2.0. SIGARCH
Comput.Archit.News, 25(3):13–25.

Chen (2004). Kernel analysis and application of simplescalar simulator. Journal of
the Harbin Institute of Technology, 36(5):652–654 696.

Espasa, R., Valero, M., and Smith, J. E. (1997). Out-of-order vector architectures.
pages 160–170.

Liu, C.-C., Shiu, R.-M., and Chung, C.-P. (1996). Register renaming for x86
superscalar design. pages 336–343.

Manjikian, N. (2001a). More enhancements of the simplescalar tool set. SIGARCH
Comput.Archit.News, 29(4):5–12.

Manjikian, N. (2001b). Multiprocessor enhancements of the simplescalar tool set.
SIGARCH Comput.Archit.News, 29(1):8–15.

Manjikian, N. (2001c). Parallel simulation of multiprocessor execution:
implementation and results for simplescalar. pages 147–151.

Mong, W. S. and Zhu, J. (2003). A retargetable microarchitecture simulator. pages
752–757.

Moure, J. C., Rexachs, D. I., and Luque, E. (2002). The kscalar simulator.
J.Educ.Resour.Comput., 2(1):73–116.

Schnarr, E. and Larus, J. R. (1998). Fast out-of-order processor simulation
using memoization. In Proceedings of the eighth international conference on
Architectural support for programming languages and operating systems, pages
283–294. ACM Press.

Shealy, A. R., Malloy, B. A., and Sykes, D. A. (1997). Simx86: An extensible simulator
for the intel 80x86 processor family. pages 157–166.

Shen, G., Patkar, N., Ando, H., Chang, D., Chen, C., Chen, C., Chen, F., Forssell,
P., Gmuender, J., Kitahara, T., Li, H., Lyon, D., Montoye, R., Peng, L., Savkar,
S., Sherred, J., Simone, M., Swami, R., Tovey, D., and Williams, T. (1995). A
64b 4-issue out-of-order execution risc processor. pages 170–171, 359.

24

Sima, D. (2000). The design space of register renaming techniques. Micro, IEEE,
20(5):70–83.

Williams, T., Patkar, N., and Shen, G. (1995). Sparc64: a 64-b 64-active-instruction
out-of-order-execution mcm processor. Solid-State Circuits, IEEE Journal of,
30(11):1215–1226.

25

