
ArchFP: Rapid Prototyping of pre-RTL Floorplans
Gregory G. Faust∗, Runjie Zhang∗, Kevin Skadron∗, Mircea R. Stan† and Brett H. Meyer‡,

∗Department of Computer Science, University of Virginia, Charlottesville, VA, USA
Email: {gf4ea, rz3vg, skadron}@cs.virginia.edu

† Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
Email: mircea@virginia.edu

‡Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
Email: brett.meyer@mcgill.ca

Abstract—There has been a fundamental shift from ever more
complex single cores to single chip multi-core (CMP) designs.
Along with this opportunity come major challenges; notably the
sheer size of the CMP design space. An integrated suite of tools
is needed that provides life-cycle support from early prototyping
to final design. Here we present ArchFP, a floorplanning tool
targeted towards prototyping of pre-RTL CMP design concepts.
As such, it is complementary to traditional floorplanners that are
more appropriate later in the design cycle.

An ArchFP floorplan is specified using a model similar to that
supported by GUI toolkits such as Java Swing and Windows
Presentation Foundation. The floorplan design is comprised of a
hierarchy of components placed within containers, called Layout
Managers (LMs), that provide a variety of layout algorithms.
Current LMs include a generalized grid LM, one that supports
geographic hints for component placement, and a fixed layout
of imported subcomponents. ArchFP is easy to extend with
additional LMs that leverage these initial layout algorithms to
support more specific design elements such as NoC configura-
tions, cache partitioning strategies, SIMD design, etc. To the best
of our knowledge, no one has previous used this approach for
floorplanning. ArchFP is written in C++ for UNIX systems, and
is free for download from http://lava.cs.virginia.edu/archfp.

We demonstrate the utility of ArchFP in the study of power de-
livery and temperature constraints in likely CMP configurations
of Penryn-like cores over four technology scales.

I. INTRODUCTION

The focus of chip design has shifted towards the inclusion of
many cores on a chip leading to the production of Chip Multi-
Processors (CMPs). The size and complexity of the design
space for CMPs is staggering. It spans multiple dimensions
such as the number, type, and complexity of the cores, the
size of on-chip cache, the cache sharing model, the type of
on-chip network interconnect between components, local vs.
global time synchronization, the type and number of memory
controllers, etc. While there is a combinatorial explosion of
the possible system architectures to contemplate, there is also
a number of increasingly hard to overcome constraints that
must be dealt with. These include pin count, power density,
temperature, and total die size. Each of these are worthy of
study in their own right, but making system-wide architectural
decisions while attending to one or two of these constraints at
a time can often lead to suboptimal designs [1].

In order to investigate the large CMP design space in a
comprehensive fashion, increased emphasis must be placed on
integrated tool suites capable of modeling CMPs and their on-

chip support systems. To allow rapid early stage investigation,
the suite should contain tools capable of modeling systems
at different levels of detail. An example of such a tool is
McPAT [2] which contains hierarchical power, area, and timing
models for various HW components. McPAT has been used to
investigate a number of core cluster configurations in terms of
their total area, power, and NoC latency without considering
the actual layout of the various configurations.

However, many other CMP design investigations do require
layout information. For example, at the University of Virginia,
the effect of CMP layout on peak chip temperature was
investigated for a variety of CMP configurations and target
uses [3], [4]. It was shown that the lack of temperature-aware
floorplanning can force runtime throttling of the voltage and/or
clock speed thereby affecting performance. Also, Kumar et
al. [5] studied area, power, and performance of various NoC
topologies for CMPs, and found that a hierarchical bus NoC
can result in reduced area and power consumption.

These studies and others like them [6] motivate the creation
of a pre-RTL floorplanner targeted at CMP design. While
traditional floorplanners operate well at the three levels of
description supported by McPAT (Architectural, Circuit, and
Technology), ArchFP works well at the Architectural and a
higher CMP level of design in which clusters of Architectural
level components can be combined into reusable/repeatable
elements. Traditional floorplanning tools typically operate with
detailed post synthesis information about the components and
wires which comprise the design. However, this level of
detail is not appropriate for early pre-RTL CMP design space
exploration. In addition, traditional floorplanners do not attend
to the metrics of concern to layout at the CMP level which
are different than those later in the design cycle.

ArchFP retargets the model of Graphical User Interface
(GUI) design toolkits such as Java Swing [7] and Windows
Presentation Foundation [8] to provide a novel framework for
floorplanning. Components such as cores, caches, crossbars,
etc. are placed within containers. Associated with each con-
tainer is a layout algorithm called a “layout manager” (LM).
Containers are themselves components; therefore the model
is inherently hierarchical. Finally, the model is implemented
as a class library, allowing for extensibility of the model
with additional layout algorithms of arbitrary generality or
specificity. In particular, a traditional floorplanning algorithm

Greg
Typewritten Text
This is the authors' final manuscript. The authoritative version will appear in 2012 IEEE/IFIP 20th International Conference on Very Large Scale Integration (VLSI-SoC 2012).

can be included smoothly within the architecture, as can very
specific knowledge-based LMs. To the best of our knowledge,
no one has previously proposed this model of hierarchical
containment with differing LMs for hardware floorplanning.
Previously, in a Technical Report, we retrospectively showed
the utility of ArchFP for CMP design investigations like those
above [9]. Below we present a more recent example involving
the study of Power Delivery Networks (PDNs).

II. BACKGROUND AND RELATED WORK

A. Floorplanning

Traditional floorplanners input a set of HW components
with a given area and aspect-ratio (AR=width/height), and the
wires between them, and search for a non-overlapping 2D lay-
out that minimizes an objective function of total area and total
wire length. Because finding optimal floorplans is NP-Hard,
practical systems use various approximation techniques [10],
[11]. For example, floorplans are often represented as a
(binary) tree of rectangular areas, with HW components as the
leaves, and larger composite rectangles further up the tree. The
space of possible layouts is searched via simulated annealing
which randomly perturbs the tree by a series of “moves” such
as rearranging a node’s children, moving children between
nodes, laying a block on its side, etc. After each move, the
objective function is re-evaluated to decide if the new floorplan
is better or worse than the previous one. One advantage of this
approach is that all components are handled in a simple and
consistent fashion. But this approach can be slow, and produce
in any given run, a floorplan of uncertain quality.

The use of a tree structure in these algorithms does not
imply a hierarchical specification of the HW design, and
the hierarchy has neither stability nor semantic meaning. In
contrast, in the ArchFP model the hierarchical inclusion of
components in containers is stable and has direct impact on the
resultant design. More importantly, different layout algorithms
can be, and typically are, applied at different levels in the
hierarchy. Furthermore, the semantic relevance of component
placement in LMs is increased when domain-specific LMs use
specialized knowledge about how to lay out their children,

The objective functions of traditional floorplanners are too
inflexible for CMP level design. Therefore, many CMP studies
wrap an additional evaluation function around a traditional
floorplanner. For example, Meyer et al. [12] studied system
reliability and cost in application-specific SoCs using various
NoC configurations. It was necessary to generate a very large
number of floorplans to find the few that scored well on the
desired metrics. Meyer found that over 90% of the runtime
used in design space exploration was spent floorplanning.

We believe ArchFP has several advantages over traditional
floorplanners for these CMP studies. First, the current set of
LMs are quite general purpose and easy to use, and as they
do not examine a large search space, have trivial runtimes.
Second, as discussed below, the requirements on an LM are
minimal, making the system very easy to extend. Together
these two features allow ArchFP to support the direct creation
of layouts that have desirable features for the CMP design

space under investigation. The investigator can either build
domain-specific knowledge into a novel LM, or combine
existing LMs using their intuition about layouts likely to
have needed attributes. This can result in faster and more
focused investigations of large CMP design spaces. Finally, the
ArchFP system design is flexible enough to allow a traditional
floorplanner to be directly included as an LM, thereby ensuring
floorplanning capability no worse than the current standard.

Floorplanners are often evaluated using benchmarks such as
GSRC [13]. These metrics relate to post-RTL floorplanning,
thus we have not tested ArchFP against such benchmarks.

B. GUI Design Toolkits
Modern GUI toolkits such as Java Swing [7] and Windows

Presentation Foundation (WPF) [8] are 3rd generation systems
built upon the lessons learned in previous systems. Java Swing
and WPF both have the same architecture of components,
containers, and LMs that we propose to use for floorplan-
ning. Both toolkits contain many different LMs supporting
horizontal, vertical, grid, box-and-spring and other placement
algorithms. In both systems, the contract for an LM is defined
as an interface. Therefore, anyone can create their own LMs
either on top of the base set or completely independently and
have them participate in the overall architecture in a consistent
fashion. ArchFP is written in C++ and offers the same level
of extensibility through the use of an abstract base-class with
virtual methods for component addition, layout, generating
output to a floorplan file, etc. In WPF, layout is done using
the same flow of information between LMs as in ArchFP.

III. ARCHFP IMPLEMENTATION

A key goal of the floorplanner is to integrate with the grow-
ing suite of tools used for CMP design space investigation. The
suite already contains tools such as gem5 [14], McPAT [2],
HotSpot [15], and ParquetFP [16]. McPAT supplies the area
information for components needed by ArchFP to produce
floorplans. ArchFP can both produce and consume HotSpot
floorplan files. This format is extremely simple; each element
specifies it name, location, width and height.

Users can integrate with ArchFP in many ways. They can
modify and recompile ArchFP code to create each floorplan.
However, most CMP design studies investigate many closely
related designs whose floorplans can be produced from one
or two parameterized specifications. The user can write these
once, then generate various floorplans by using command
line arguments or a configuration file specific to their design
parameters. For tighter integration, we expect many users will
include ArchFP as a class library into their own tool for gener-
ating and/or evaluating CMP designs. We chose not to support
a “declarative” language for ArchFP floorplan specifications
because this approach cannot support the specification reuse
described above, nor computation of component features such
as area based on configuration parameters.

A. ArchFP Components
All ArchFP components are derived from a C++ base class,

which is very similar to a component in one of the GUI

frameworks. While LMs act as containers, they are also com-
ponents. This allows the arbitrary containment hierarchy to be
consistent. Components contain the following information:

• Component type. The current general purpose LMs only
use the type to provide names during output. Future LMs
that are specific to various CMP structures will take the
type of the components into account when doing layout.

• MinAR and MaxAR. The component’s allowed AR range.
• Location. Components store their (x, y) location informa-

tion relative to their container, not the overall floorplan.
• Area. Basic components have an intrinsic area. Containers

discover their area as part of the layout process.
• Width and Height. The actual width and height are often

not known until after layout because AR specifications
flows recursively from top to bottom during layout.

B. ArchFP Layout Managers

All ArchFP LMs are derived from a C++ abstract container
class, which contains its list of inferiors, and the attributes it
inherits from the component class. However, the methods of
the LMs are where the work of the system is performed. There
are two abstract methods on the container base class that all
LMs must implement; one to perform the layout, and one to
output the layout in HotSpot floorplan format.

Information flow during layout is as follows.
1) The top level LM is given a target AR as a layout goal.
2) Recursively, each LM, starting at the top of the hierar-

chy, requests the area of its inferiors. As noted above,
leaf components are given an area when they are created,
halting the recursive descent. LMs then calculate their
own area as the sum of their inferiors’ areas.

3) Next, again starting from the top, each LM uses its target
AR and the number and size of its inferiors, to call the
layout method on those inferiors dictating their target
AR. Thus, during this phase, components discover their
width and height from the bottom up. Leaf components
are also able to lay themselves out by checking their
minimum and maximum AR and complying as closely
as possible with the AR request from above.

4) Next, the LM checks to see if the inferior’s resultant
width and height is as requested. If not, it is the LMs
responsibility to adjust accordingly.

5) As each LM finishes the layout for a given inferior, it
then sets that inferior’s relative location.

6) Finally, the LM calculates its own width and height
based on the actual location and size of its inferiors.

C. Initial set of LMs

As proven in many other contexts, a very powerful tool
paradigm is to have a few simple primitives that operate well
in conjunction with one another. Thus, we have started by
implementing the following small collection of such LMs.

• GridLM. A GridLM contains a single inferior (of ar-
bitrary nested complexity), and a repeat count. During
layout, the GridLM will determine the best dimensions
based on its requested AR. For example, if the grid layout

method is given a target AR of 2 (twice as wide as high),
and the grid contains 8 elements, the GridLM will set
its grid dimensions to 2 rows by 4 columns. This allows
layout of the inferior with a target AR closest to a square.

• GeoLM. This is the most flexible LM. To reduce explicit
levels of hierarchy in an ArchFP specification, inferiors
of a GeoLM can have a repeat count. The GeoLM
will then implicitly create a GridLM as an inferior to
contain the repeating group. In addition, inferiors to
the GeoLM are specified with a Geographic Location
Hint (GLH) that indicates where the component is to be
placed. Currently supported GLHs include Left, Right,
Top, Bottom, Center, LeftRight, and TopBottom. During
layout, the GeoLM takes each of its inferiors in order, and
allocates all remaining space along the specified border(s)
to it. LeftRight and TopBottom can only be applied to a
repeating group of even size. The group is cut in two and
each half put in the specified location. In addition, the
LeftRight and TopBottom hints have a Mirroring option
and a 180◦ rotation option.

• FixedLM. This powerful LM allows any pre-existing
layout in a HotSpot floorplan file to be reused in any
ArchFP floorplan. It supports optional Denard scaling,
which is often accurate enough for early stage CMP
prototyping. However, if more accurate scaling is needed,
the ArchFP floorplan specification can be reused with
rescaled areas from McPAT. This LM does no layout; its
inferiors know their size, shape, and location.

• BagLM. A BagLM contains an arbitrary collection of
components. It lays them out from largest to smallest
placing each in turn along the shortest remaining side.

As shown below, these simple, intuitive, easy to use LMs
can be used in combination to produce surprisingly complex
floorplans. In addition, such a set of primitives acts as the
foundation upon which to build more sophisticated LMs,
especially ones specific to important CMP patterns such as
NoC topologies, cache sharing models, SIMD layouts, etc.
ArchFP acts as an organizing framework into which such LMs
can be added and used in combination in a consistent fashion.

IV. CASE STUDY

As power density rises with each new generation of chip
technology, temperature and power delivery will soon become
design constraints on further CMP scaling. Here we focus on
reliability issues associated with electromigration (EM) in C4
pads and IR drop resulting in increased latencies. The study
of these physical constraints requires an integrated tool suite.
We use a combination of new and pre-existing tools; McPAT
for power and area information, HotSpot to calculate local
temperatures, a novel PDN model specifically designed for this
experiment to calculate local IR drop and C4 pad currents [17],
and ArchFP for layout information.

A. ArchFP Floorplan Specification

Using a 45nm Intel Penryn-like core as a baseline (described
in IV-C), we create a series of scaled CMPs down to 16nm and

study the resulting power delivery noise and chip temperature.
We model 2, 4, 8, and 16 core configurations. Figure 1
shows the C++ specification for the 8-core floorplan shown in
Figure 2. To create a hierarchical description of a floorplan,
we must first create the components near the leaves of the
hierarchy so that we can later include them in the higher levels.

The specification for this floorplan works as follows.
1) First, the layout of the Penryn-like core is loaded as a

“macro” from a HotSpot floorplan file which was also
created in ArchFP from 22nm scale Architectural level
components. Due to the subcomponent diversity, this
required a few dozen lines of code. In Figure 2 the
core forms the unlabled complex areas near the top and
bottom of the CMP (with names elided for clarity).

2) Second, the cluster of L2 cache and NoC is created.
3) Third, the Memory Controllers, core, and L2 clusters are

each added in implicit grids of 8 each to the CMP level
of the LM hierarchy. Note the use of the TopBottom
GLH and mirroring of the core component that lead to
the symmetric structure of the final floorplan.

4) Fourth, the layout is performed and the result is output.

// 1. Load the pre-existing Penryn core.
fixedLayout *core = new fixedLayout("Penryn22.fp");
// 2. Create the L2/NoC cluster.
geogLayout *L2 = new geogLayout();
L2->addCluster(L2, 1, L2area, 20., 1., Right);
L2->addCluster(NoC, 1, NoCarea, 50., 1., Left);
// 3. Now add all the remaining components.
geogLayout *CMP = new geogLayout();
CMP->addCluster(MC, 8, MCarea, 20., 1., TopBottom);
CMP->addComponent(core, 8, TopBottomMirror);
CMP->addComponent(L2, 8, Center);
// 4. Perform the layout and output the result.
CMP->layout(AspectRatio, 1);
CMP->outputHotSpotLayout("CMP8Core.fp");

Figure 1. ArchFP C++ code to build the layout shown in Figure 2. The
arguments to the addCluster method are component, repeat count, area,
AR limits, and a GLH. The arguments to addComponent are a predefined
cluster (thereby adding hierarchy to the layout), a repeat count, and a
GLH. The layout method takes a target AR, in this case 1 (square).

B. ArchFP Floorplan Layout

ArchFP calculates the layout for this floorplan as follows.
1) First all components calculate their total area as de-

scribed in section III-B.
2) The CMP GeoLM is the top component in the hierarchy,

and we request it lay itself out as a square. It takes
its children in order of specification and lays them out
in the requested locations. It starts with the 8 MCs,
and due to the TopBottom GLH divides them into two
implicitly generated 4-element GridLMs. Each GridLM
is allocated the entire width of the CMP square for
layout at their respective top and bottom locations. Given
the size and AR constraints, the GridLMs choose 1x4
grids, and determine the resultant width of each MC.
The MC then lays itself out to fit its width.

3) Next the CMP GeoLM lays out the core components.
Again, two 4-element GridLMs are formed, and each is

MC1 MC2 MC3 MC4

MC5 MC6 MC7 MC8

L2_1

N
oC

1

L2_2

N
oC

2

L2_3

N
oC

3

L2_4

N
oC

4

L2_5

N
oC

5

L2_6

N
oC

6

L2_7

N
oC

7

L2_8

N
oC

8

Figure 2. CMP floorplan of 8 Penryn-like cores with L2 cache, NoCs
and Memory Controllers added.

allocated the entire width of the CMP square as above,
but their y-locations are now inboard of the MCs. Due to
the TopBottomMirror GLH, the bottom GridLM is told
to reflect its component through the x-axis. The fixed
core component need not lay itself out because it uses
the information read from the Penryn22.fp file.

4) Next the CMP GeoLM lays out the L2 cluster. There is
one 8-element GridLM created. Given the shape of the
Center space to fill, it chooses a 2x4 grid configuration.

5) Finally, the L2 cluster lays itself out. As a GeoLM, it
lays out its components in order. First the L2 is allocated
the full height of the right side of its grid location to lay
itself out, followed similarly by the NoC on the left.

To validate the quality of the ArchFP floorplans, we com-
pared their half perimeter wire length (HPWL) and area
to floorplans generated by ParquetFP [16]. Based on the
designer’s placement of components and using flexible AR
constraints, the ArchFP floorplans for the 22nm Penryn-like
core and 8-core CMP have the minimum possible areas, and
(hand calculated) HPWL of 38mm and 108mm respectively.
Based on traditional wire specifications, and depending on
the relative weight given to area and HPWL in its objective
function, ParquetFP produced floorplans with a reduction in
HPWL of 15-33% for the core and 18-35% for the CMP,
but with concomitant increases in area of 8-37% and 4-58%
respectively. Also, the ParquetFP CMP floorplans do not have
the intuitive regularity of component placement shown in the
ArchFP floorplan. We conclude that the floorplans produced
by ArchFP represent a good trade-off between HPWL and
area, and act as a valid starting point for the PDN study.

C. Scaling and Power Modeling

Our scaling and power assumptions are as follows.

1) Multicore scaling: We choose an Intel 45nm Penryn-like
processor [18] as our baseline design. It has two 32-bit 4-way
out-of-order cores running at 3.7GHz. Each core contains a
32KB L1 instruction cache and a 32KB L1 data cache. Unified
L2 caches are private to each core and are each 3MB. For each
technology node, we hold the processor architecture constant
but assume that the number of cores (and therefore the number
of private L2 caches) doubles. We use mesh-based network-
on-chip (NoC) structure across all technology nodes.

Table I
Area and power of multicore processors with Penryn-like cores

Tech Node(nm) 45 32 22 16
of Cores 2 4 8 16
Area(mm2) 116.44 124.78 131.48 149.25

Supply Voltage(V) 1.0 0.9 0.8 0.7
Peak Total Power(W) 74.62 100.48 116.76 148.49

2) Power modeling: To get chip-wide power consumption
data for all the technology nodes, we use McPAT [2]. Table I
shows the area and peak power (including leakage power) re-
sults for our Penryn-like multicore designs in each technology.

McPAT calculates theoretical peak power by assuming max-
imum switching activity, corresponding to functional blocks
being fully active every cycle. For most structures, such as L2
cache or NoC, this is neither achievable nor sustainable. To
estimate the realistic worst-case power consumption for each
system, we conducted performance simulations and activity
factor analyses to extract an empirical reasonable worst-case
switching activity. Based on these studies, we use 80% of
McPATs theoretical peak power as our best estimate for prac-
tical peak power consumption. Previous work on single core
stressmark generation [19] and NoC throughput [6] suggest
realistic peak power to be 80-85% of theoretical peak power.

3) CMP floorplanning: As discussed above, our CMP floor-
plans were generated by ArchFP. Chips at different technology
nodes share the same single core structure and the area of
each functional block is calculated by McPAT. During the
construction of all the CMP floorplans, we place MCs on the
chip periphery and NoCs between cores as long, thin blocks.

4) Power delivery and temperature modeling: Taking our
floorplans as input, we use HotSpot [15] to model chip
temperature and a steady-state power delivery model described
in [17] to model on-chip power delivery network. Table II
lists the major physical parameters used in these two models.

Table II
PDN and cooling system parameters selected for scaling study

Power Delivery Network
Top Layer Metal Pitch (µm) 30
Top Layer Metal Width (µm) 6

Top Layer Metal Thickness (µm) 5
Top Layer Metal Resistivity (ρ) 1.68e-8

C4 Pad Diameter (µm) 130
C4 Pad Pitch (µm) 285

C4 Pad Resistivity (ρ) 1.46e-7
Package Resistance (mΩ) 0.03

Cooling System Thermal Resistance (K/W)
High end air cooling 0.25

Liquid cooling 0.1

-0.07

0.13

0.33

0.53

0.73

0.93

1.13

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

45nm 32nm 22nm 16nm

IR
 d

ro
p

 (
%

)

Max IR Drop

Max Pad Current

P
ad

 C
u

rren
t (A

)

Figure 3. Max pad current and max on-chip IR drop at each technology
node. The upper range of the right Y-axis is the threshold current value
for EM (at 100◦C). For IR drop, we do not set an explicit threshold value
but a 3.8% IR drop could cause as high as 51% delay increase [22]. IR
drop therefore poses a more significant risk to failure than EM.

For power delivery, we choose on-chip metal parameters to
approximate an Intel 45nm metal stack [20]. C4 pad spacing
was selected so that our pad density matches ITRS projections.
Package resistance comes from [21]. For temperature, we
simulated both air cooling and liquid cooling systems and their
effective thermal resistance can be found in product datasheets.

D. Results

1) Electromigration on C4 Pads: EM is one of the major
failure mechanisms that deserve designers’ attention. Accord-
ing to [23], aluminum and copper metal wires, commonly
used for on-chip interconnections, can carry two orders of
magnitude higher current density than solder joints. This
suggests that C4 solder bumps are more vulnerable to EM.
For this reason, we calculate the max current density on C4
pads, illustrated by the line in Figure 3. In order to determine
the upper bound of the PDN capacity (or the lower bound of
PDN noise), we assume that all pads are used for power or
ground (and that each type is distributed uniformly). While this
is an unrealistic assumption for a real system, it allows us to
determine the best-case trend in PDN behavior. In the event
that the PDN imposes constraints on the rest of the design
under this best case, clearly any design under more realistic
assumptions will be constrained by the PDN as well.

In [23], the author gives an EM threshold current density for
SnPb solder. At 100◦C, the maximum current density that a
solder joint can carry without EM damage is 8.5×103A/cm2.
Combined with our pad diameter assumption, we calculate
the per pad current limit as 1.13A, shown in Figure 3 as the
maximum value of the right Y-Axis. It is obvious that even
though the maximum pad current increases as the technology
scales, the absolute value is still far from the EM threshold.
This could be an indication that under ITRS’s projections for
total pad count, there may be enough guard band for EM in
C4 pads for at least the near future.

2) Steady-State IR drop: IR drop is an important PDN
metric because it is directly related to silicon delay increase
and frequency degradation. As technology scales, the impact
of IR drop would increase due to higher currents. Similar to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50

60

70

80

90

100

110

45nm 32nm 22nm 16nm

M
ax

 C
h

ip
 T

e
m

p
e

ra
tu

re
(o

C
)

Liquid Cooling

High End Air Cooling

Worst IR Drop

M
ax IR

 D
ro

p
 (%

)

Figure 4. A comparison between chip max temperature and worst IR
drop across different technologies

the previous section, we dedicate all potential pad locations to
power and ground pads and no pads to I/O signals. We then
use the model to find the maximum on-chip IR drop ratio for
each technology. This gives a lower bound on IR drop and
the results are shown in Figure 3. The reported IR drop value
combines both voltage drop from power plane and ground
bounce on ground plane.

IR drop, unlike EM, does not directly result in immediate
failure when a threshold current has been crossed, but results in
performance degradation instead. Previous work [22] suggests
that a 0.05V voltage drop at 0.13µm with 1.35V power supply
would cause a 15% average and up to 51% maximum delay
increase. The bars in Figure 3 show that the IR drop increases
as the power density increases with technology scaling, and
that the IR-drop ratio value reaches above 4% at 16nm—
resulting in non-trivial performance degradation. For a more
realistic scenario where not all pads were dedicated to power
and ground, the problem would be even worse.

3) Temperature vs. IR drop: Both IR drop and temperature
are physical design constraints that closely relate to chip power
density. A robust system should be designed with both factors
in mind. Figure 4 combines chip max temperature with max
IR drop. The temperature results are based on both an air
cooling system and a liquid cooling system. Our results to date
indicate similar trends for both power delivery and thermal
limits. Starting from 16nm, air cooling will be insufficient for
the modeled CMP. Even though switching to liquid cooling
can keep chip temperature under the limit, power delivery will
become a new bottleneck. The platform we built provides an
infrastructure for future studies.

V. CONCLUSION

To facilitate investigation of the very large design space
for CMPs, tools that can be used to rapidly prototype pre-
RTL CMP designs are becoming increasingly important. We
present ArchFP, a floorplanning tool specifically designed to
operate with CMP and Architectural components before the
Circuit and Technology details have been determined. ArchFP
retargets the flexible and extensible component/container/LM
model of GUI design tools to floorplanning. To the best of our
knowledge, this approach to floorplanning is completely novel.
ArchFP is complementary to traditional floorplanners; it is

superior for early prototyping, while traditional floorplanning
techniques are necessary later in the design life-cycle. We
previously showed that ArchFP could have been useful to
several CMP design investigations. Here, we show the utility
of ArchFP as part of an integrated tool suite in the study
of power delivery and temperature constraints in likely CMP
configurations of Penryn-like cores for four technology nodes.
We conclude that IR drop may pose a more significant risk to
PDNs than EM in C4 pads. In addition, starting with 16nm
chips, power delivery is likely to become a more limiting factor
than temperature in applications using liquid cooling.

ACKNOWLEDGMENT

This work was supported in part by the NSF under grants
CRI-0551630 and MCDA-0903471 and by the SRC under task
1972, as well as grants from AMD and Intel. We also thank
the anonymous reviewers for their helpful feedback.

REFERENCES

[1] Y. Li et al., “CMP design space exploration subject to physical con-
straints,” in HPCA, Feb. 2006, pp. 17–28.

[2] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, Dec.
2009, pp. 469–480.

[3] K. Sankaranarayanan et al., “A case for thermal-aware floorplanning at
the microarchitectural level,” JILP, vol. 7, 2005.

[4] K.Sankaranarayanan et al., “Architectural implications of spatial thermal
filtering,” Integration, the VLSI Journal, Online, Dec. 2011.

[5] R. Kumar et al., “Interconnections in multi-core architectures: Under-
standing mechanisms, overheads and scaling,” in ISCA, 2005, pp. 408–
419.

[6] P. P. Pande et al., “Performance evaluation and design trade-offs for
network-on-chip interconnect architectures,” IEEE Trans. Computers,
vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[7] D. M. Geary, Graphic Java 2 : mastering the JFC, 3rd ed., ser. The Sun
Microsystems Press Java series. Sun Microsystems, 1999, v. 2. Swing.

[8] C. Anderson, Essential Windows Presentation Foundation, ser. Microsoft
.NET development series. Addison-Wesley, 2007.

[9] G. Faust et al., “Rapid prototyping of CMP floorplans: A technical
report,” University of Virginia, Tech. Rep. CS-2012-02, March 2012.

[10] S. H. Gerez, Algorithms for VLSI design automation. Wiley, 1999.
[11] M. Sarrafzadeh et al., An Introduction to VLSI Physical Design. Mc-

Graw Hill, 1996.
[12] B. H. Meyer et al., “Cost-effective slack allocation for lifetime improve-

ment in NoC-based MPSoCs,” in DATE, March 2010, pp. 1596–1601.
[13] “GSRC floorplan benchmark suite.” [Online]. Available: http://www.

cse.ucsc.edu/research/surf/GSRC/GSRCbench.html
[14] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.

News, vol. 39, no. 2, pp. 1–7, Aug 2011.
[15] K. Skadron et al., “Temperature-aware microarchitecture,” in ISCA, June

2003, pp. 2–13.
[16] S. N. Adya et al., “Fixed-outline floorplanning: enabling hierarchical

design,” IEEE Trans. VLSI, vol. 11, no. 6, pp. 1120–1135, Dec. 2003.
[17] R. Zhang et al., “Some limits of power delivery in the multicore era,”

in WEED, Jun 2012.
[18] V. George et al., “Penryn: 45-nm next generation Intel Core 2 processor,”

in ASSCC, Nov 2007, pp. 14–17.
[19] M. Joshi et al., “Automated microprocessor stressmark generation,” in

HPCA, 2008, pp. 229–239.
[20] N. H. Weste et al., CMOS VLSI Design A Circuit and Systems Perspec-

tive, 4th ed. Addison-Wesley, 2011.
[21] Intel Pentium 4 Processor in the 423 pin package / Intel 850 Chipset

Platform. Intel, 2002.
[22] M. Shao et al., “IR drop and ground bounce awareness timing model,”

in ISVLSI, May 2005, pp. 226–231.
[23] Y. T. Yeh et al., “Threshold current density of electromigration in

eutectic SnPb solder,” Applied Physics Letters, vol. 86, no. 20, May
2005.

