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Abstract— Systems biology seeks to develop an understanding 

of the myriad interacting components of full biological systems, 
often in order to help treat or prevent diseases. System biology 
relies heavily on computation for parameterization of systems and 
their simulation. Although MATLAB is a convenient 
programming environment of choice for most scientists, its 
performance suffers because of single-threaded interpreted 
execution model. Optimizations of code and architectures are 
required in order for scientists to perform large-scale simulations 
on desktop machines. This paper presents a study of accelerating 
two typical systems biology applications, Heart Wall Tracking 
and Cardiac Myocyte Simulation, which result in 2.4x and 5.0x 
speed-ups, respectively. Our optimizations include improving 
single thread performance by using compiled (vs. interpreted) 
code as well as taking advantage of multiple thread execution by 
offloading parts of code via multi-core CPU or GPU. We show 
that each of the applications presents different programming and 
architectural challenges related to code structure and degree of 
parallelism exhibited. GPUs have the potential to provide the best 
speed-up if overhead due to the driver and data transfer can be 
eliminated. The feasibility of optimizations is analyzed in terms of 
the tradeoff between coding effort, degree of code modification 
and achievable speed-up. The paper also discusses code and 
architecture changes that would result in better acceleration. 
 

Index Terms—Biological Systems, Simulation, Parallel 
Processing 
 

I. INTRODUCTION 
The field of systems biology uses computational methods to 

process large amounts of data describing full biological 
systems in order to develop models of physical processes 
taking place inside of them. One type of systems biology task 
involves processing of biomedical images that provide a rich 
source of data for building and testing models, such as in the 
Heart Wall Tracking application. On the other hand, biological 
systems that have already been parameterized, such as the one 
in the Cardiac Myocyte Simulation, are simulated to 
reconstruct their behavior. 

Processing of large amounts of image data as well as 
simulating accurate models in MATLAB is usually 
time-consuming. Although MATLAB provides a convenient 
high-level environment for expressing algorithms, its 
performance is limited by its single-threaded interpreted 
execution model. Since the availability of results in reasonable 
time is critical to scientists’ ability to conduct research, 
biological models are often simplified and simulation intervals 
shortened at the expense of fidelity. 

The easiest way to optimize MATLAB application is to turn 
parts of it into compiled code. This can be done using the 
original MATLAB code (via convenient tools such as 
Embedded MATLAB Compiler) or by using the equivalent 
hand-written C code (via MATLAB MEX Compiler). While 
the former often requires some changes to the code (nested 
structure and variable sizes), it is a convenient solution overall. 
The latter, on the other hand, can provide better performance at 
the expense of sometimes considerable coding effort. 

Extraction of parallelism with multi-core processors, on the 
other hand, requires parallel programming skills and the 
knowledge of new languages. However, the use of many 
high-level MATLAB functions makes it difficult to extract 
parallelism and translate code to another language. Also, the 
moderate amount of parallelism in many applications requires 
taking into account the significant communication overhead 
when using a co-processor such as the GPU. Existing parallel 
processing packages for MATLAB are limited to a subset of 
functions and require a large degree of parallelism to justify the 
cost of offloading. 

As a result, acceleration of applications is currently a 
demanding task that is usually done manually by skilled 
programmers. The drastic optimizations necessitate time 
consuming modifications to code structure that sacrifice 
modularity, which in turn can make the code difficult to use for 
the scientist. Moreover, many scientists are unwilling to accept 
such sacrifices unless they yield at least an order of magnitude 
speed-up. 

This paper introduces our work in progress, still 
developmental. We make the following contributions: 

• Describe experiences in accelerating two typical 
MATLAB systems biology applications by optimizing 
original code and rewriting parts of it for multi-threaded 
CPU and GPU. 

• Characterize the degree of parallelism in each 
application and the feasibility of optimization. 

• Illustrate common architecture and language difficulties 
faced during the optimization process. 

• Investigate how to best obtain code acceleration while 
maintaining the original MATLAB code structure.  

The ultimate goal of our research is to develop tools for 
analysis, compilation and automatic offloading of parallel 
computation to make acceleration available to an ordinary 
MATLAB programmer. 
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II. RELATED WORK 
The early attempts to optimize MATLAB targeted 

utilization of clusters with MPI algorithms as back-end engines 
for computation. Software such as ParMatlab, Matpar, 
MALTAB Parallel Toolbox and StarP use this approach. Wide 
availability of desktop machines motivated parallelization 
approaches for multi-core shared memory processors. Some of 
the above mentioned software supports this approach as well. 
Packages such as Otter, FALCON, and Menhir link compiled 
MATLAB code with parallel numerical libraries that can run 
on heterogeneous architectures [1]. Jacket is an example of 
applying this approach to GPUs. It uses precompiled 
GPU-enabled versions of popular MATLAB functions and 
compiles simple structures such as loops [2]. The MEX 
interface provided in MATLAB allows for linking various 
types of hardware-accelerated code [3]. While the popular 
OpenMP standard is still not supported, packages with 
multi-threaded replacements for common MATLAB functions 
are available. Recent introduction of an API for 
general-purpose GPU computation provides a more convenient 
way to use GPUs as accelerators for MATLAB code. 
Throughput-oriented GPUs provide considerable speedup even 
over quad-core CPUs for a range of applications [4]. 
 

III. EXPERIMENT SETUP AND METHODOLOGY 
Several techniques were used for optimizing applications 

described in this paper. Parts of applications were compiled to 
MEX files either from the original MATLAB code (using 
Embedded MATLAB) or the equivalent hand-written C code 
(using MEX Compiler). Only performance of the latter (~20% 
better than the former on average) is reported. MATLAB 
differential equation solver in Cardiac Myocyte Simulation was 
replaced by compiled CVODE solver [5]. We used the .NET 
thread standard for CPU multi-threaded code and CUDA [6] 
for GPU multi-threaded code. Our desktop machine was 
equipped with Intel Core 2 CPU (2 cores clocked at 1.86 GHz 
each), NVIDIA GeForce GTX 280 GPU (240 streaming 
processors clocked at 1296 MHz and 1024 MB of RAM) and 2 
GB of RAM. All code was compiled using MS Visual Studio 
2005 compiler and tested under Windows XP SP3. MATLAB 
profiler and a high-resolution C timer were used for 
performance measurements. 
 

IV. HEART WALL TRACKING 

A. Application Description 
This application tracks the movement of a mouse heart over 

a sequence of 100 609x590 ultrasound images to observe 
response to the stimulus. In its initial stage, the program 
performs image processing operations on the first image to 
detect initial, partial shapes of inner and outer heart walls. 
These operations include: edge detection, SRAD despeckling 
[7], morphological transformation and dilation. In order to 
reconstruct approximated full shapes of heart walls, the 
program generates ellipses that are superimposed over the 
image and sampled to mark points on the heart walls (Hough 

Search). In its final Tracking stage, program tracks movement 
of surfaces by detecting the movement of image areas under 
sample points as the shapes of the heart walls change 
throughout the sequence of images. 

B. Algorithm and Optimizations 
Only three parts of the application (Table 1) have enough 

parallelism and significant contribution to overall run time to 
justify optimization efforts. Because of the complexity of code, 
we could not use automated compilation tools. We avoided 
converting all parts of the application to C (with expected 3x 
speed-up) in order to focus on exposing GPU optimization 
potential which was of more interest to us for this application. 
The first two parts, SRAD and Hough Search, were simple 
enough to be entirely converted to C which resulted in 2.46x 
and 2.41x speed-ups, respectively. Since these two functions 
operate on entire images, there was sufficient data to distribute 
calculations across several parallel processors, thus justifying 
the use of GPU. The independent nature of operations with 
little need for synchronization and sufficient work per kernel 
minimized GPU overhead ultimately resulting in speed-ups of 
9.90x and 7.45x for the two functions, respectively. 
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Fig. 1. Tracking part of the Heart Wall Tracking application. 
 

TABLE I 
PERFORMANCE OF HEART WALL TRACKING APPLICATION 

Application 
Part 

MATLAB 
run time [s] 

C 
run time [s] 
/ speed-up 

[x] 

CUDA 
run time [s] 
/ speed-up 

[x] 

CUDA’ 
run time [s] / 
speed-up [x] 

SRAD 8.71 3.54 / 2.46 0.88 / 9.90 0.24 / 36.66 
Hough 
Search 15.87 6.59 / 2.41  2.13 / 7.45 0.58 / 27.60 

Tracking – 
convolution 94.63 --- 37.30 / 2.54 10.07 / 9.40 

Tracking - 
algebraic 20.94 --- 8.95 / 2.34 2.42 / 8.67 

Tracking – 
statistical 13.70 --- 9.32 / 1.47 2.52 / 5.44 

Tracking - 
all 129.28 --- 55.97 / 2.31 15.11 / 8.55 

All Parts 187.39 --- 78.40 / 2.39 21.17 / 8.85 
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The tracking part of the application consists of multiple 
nested loops (Fig. 1) that process batches of sample points from 
the image. There is a sequential dependency between processed 
frames. Because of the substantial coding effort involved, we 
only attempted to optimize individual operations on a 
fine-grained level. These consist of a large number of small 
serial steps with interleaved control statements. Each of the 
steps involves a small amount of data processing performed 
only on a subset of entire image. Because of this, the utilization 
of GPU was limited only to three streaming processors and 
GPU overhead (data transfer and kernel launch) became 
significant. Since the run time of the entire application was by 
far dominated by the Tracking stage, we had to resort to more 
drastic GPU optimization techniques that sacrificed modularity 
in order to further improve performance. These techniques 
included combining unrelated functions and data transfers in 
single kernels, which ultimately resulted in 2.39x speed-up. 
The last column in Table 1 illustrates that the best speed-up 
could be achieved with GPU if its overhead was eliminated by 
using a combined CPU-GPU chip architecture. This estimate is 
based on our measurements of kernel launch and data transfer 
times for offloaded operations, which was 73% on average. 
 

V. CARDIAC MYOCYTE SIMULATION 

A. Application Description 
This simulation models the behavior of a cardiac myocyte 

(heart muscle cell) according to the work by Saucerman and 
Bers [8]. The model integrates cardiac myocyte electrical 
activity with the calcineurin pathway, which is a key aspect of 
the development of heart failure. The model spans large 
number of temporal scales to reflect how changes in heart rate 
as observed during exercise or stress contribute to calcineurin 
pathway activation, which ultimately leads to the expression of 
numerous genes that remodel the heart’s structure. It can be 
used to identify potential therapeutic targets that may be useful 
for the treatment of heart failure. Biochemical reactions, ion 
transport and electrical activity in the cell are modeled with 91 
ordinary differential equations (ODEs) that are determined by 
more than 200 experimentally validated parameters. The 
application feeds differential equations into the solver to obtain 
results for a specified time interval (5 s for the simulation 
described here). Since the ODEs are stiff (exhibit fast rate of 
change within short time intervals), they need to be simulated at 
small time scales with an adaptive step size solver. 

 

B. Algorithm and Optimizations 
The execution time of the application is almost entirely 

dominated by the MATLAB ODE solver (~25%) and the 
evaluations of the model (~70%). Therefore only the structure 
of the solver (Fig. 2) and the input files are of interest to us. The 
process of ODE solving is based on the causal relationship 
between values of ODEs at different time steps, thus it is mostly 
sequential. At every dynamically determined time step, the 
solver evaluates the model consisting of a set of 91 ODEs 
(“1x91 evaluation”) and 480 supporting equations to determine 
behavior of the system at that particular time instance. If 

evaluation results are not within the expected tolerance (usually 
as a result of incorrect determination of the time step), the 
recovery process takes place. As a part of this process, 
MATLAB solver recalculates the Jacobian, which results in 91 
evaluations of the model (“91x91 evaluation”). 
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Fig. 2. Main part of MATLAB ODE solver in Cardiac Myocyte Simulation. 
 

Our first optimization included performing the 1x91 and 
91x91evaluations in C code, which resulted in 2.94x speed-up. 
In our second attempt we optimized the 91x91 evaluation by 
multi-threading and using multiple CPU cores, which resulted 
in 3.31x speed-up for 2 cores. We also coded the same 91x91 
evaluation for GPU, however, data transfer overhead brought 
the speed-up down to 1.48x. The 1x91 evaluation did not have 
enough parallelism to justify offloading to either 
multi-threaded CPU or GPU. Finally, we replaced the 
interpreted MATLAB solver with an external, compiled 
CVODE solver. The compiled C version of the model 
evaluated with CVODE solver resulted in the speed-up of 
5.04x. Rows 4 and 9 in Table 1 show that the best speed-up 
could be achieved with the use of GPU if its overhead was 
eliminated by using a combined CPU-GPU chip architecture. 
 

TABLE II 
PERFORMANCE OF CARDIAC MYOCYTE SIMULATION 

 
Application Part 

 ODE Solver ODE Model 

Run time [s] / 
 speed-up [x] 

1 MATLAB MATLAB 10.3 / 1.00 

2 MATLAB C 3.50 / 2.94 

3 MATLAB CUDA (GPU) 6.96 / 1.48 

4 MATLAB CUDA (GPU) ‘ 3.02 / 3.41 

5 MATLAB C (Multi-threaded CPU) 3.11 / 3.31 

6 CVODE MATLAB 7.21 / 1.43 

7 CVODE C 2.04 / 5.04 

8 CVODE CUDA (GPU) 5.52 / 1.87 

9 CVODE CUDA (GPU) ‘ 1.61 / 6.39 
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VI. DISCUSSION 
The process of optimizing the Heart Wall Tracking 

application illustrates the diverse nature of a typical image 
processing application. While simple functions such as SRAD 
and Hough Search are nicely parallel, the structure of the 
Tracking function that dominates the application is largely 
sequential. In the former case, the speed-up obtained with GPU 
is limited by the size of images still commonly used by 
scientists. In the latter case, the parallelism is limited to within a 
single image with the complexity of code requiring significant 
changes in order to parallelize, which in turn limits the 
effectiveness of the offloading of individual operations. 
Currently, we are in the process of modifying coarse-grained 
loop structure of the Tracking code to achieve better speedups 
at a significant programming cost. 

In case of the Heart Wall Tracking application, the 
increased performance allows faster processing of images and 
higher throughput. However, the accuracy of processing is not 
affected as it is limited by the fixed size of images obtained 
from the medical equipment. In case of the Cardiac Myocyte 
Simulation, on the other hand, both the amount and the 
accuracy of results can benefit from faster processing. Cardiac 
function spans from millisecond-scale dynamics of electrical 
activity to the remodeling of gene expression and heart 
structure over weeks. The ability to develop predictive models 
is severely limited by computational resources. As a result of 
this, most current models of cardiac myocytes are limited to 
several minutes of simulated time, and comprehensive analyses 
of these models are not generally performed. Accelerated 
simulations provide an opportunity to expand the aspects of 
heart function accessible to modeling, as well as providing 
opportunities to more thoroughly analyze the properties of 
current models. Such advances are crucial for modeling the 
slow, adaptive process of heart failure and other heart diseases. 

The process of optimizing Cardiac Myocyte Simulation was 
challenging because of the sequential time-step nature of the 
ODE solving process which limits parallelism to within a single 
time step. Since the MATLAB ODE solver is an encapsulated 
function call, its replacement with CVODE did not alter the 
structure of user’s code. The best speedup of 5.04x that we 
finally obtained (with compiled solver and compiled model) 
could be further increased by eliminating MATLAB 
environment entirely. Our optimization allows reducing the 
simulation time and/or including more details in the model. 

Results obtained for both applications considered in this 
paper suggest that GPU would offer the greatest potential for 
code acceleration if its overhead due to the driver and data 
transfer was eliminated. Future-generation chips that combine 
heterogeneous CPU-GPU cores in one package [9] should 
overcome this problem. The Heart Wall Tracking application 
would ultimately benefit more from the use of GPU because of 
the larger degree of parallelism (determined by each individual 
operation performed on subsets of 609x590 images). In the 
Cardiac Myocyte Simulation, on the other hand, the achievable 
GPU speedup is limited by the serial structure of the solver of 
and limited workload (only about 480 equations) in the 
evaluation of the model. 

VII. CONCLUSIONS AND FUTURE WORK 
Our experiences with accelerating two representative 

systems biology applications, Heart Wall Tracking and Cardiac 
Myocyte Simulation, allow us to conclude:  

• Many important applications remain difficult to 
reorganize for scalable parallelism. 

• Retaining structure and extensibility of the code further 
limits parallelism, but major structural changes are 
unacceptable to many users. 

• Improvement in application performance is mainly 
proportional to the coding effort. 

• The use of software with persistent CPU threads is 
required to eliminate thread launch overhead for small 
workloads. 

• Combined CPU-GPU chips should eliminate current 
overhead and make GPUs the most successful 
accelerators even for medium and small workloads. 

• Packages such as Jacket fail for this type of applications 
because they lack support for functions that dominate 
execution time and they assume large parallelism. 

With the current programming paradigm, a scientist 
attempting to use compilation for speed-up is either required to 
write compliant MATLAB code or to generate C code 
manually. Also, the specifics of the particular accelerator need 
to be known to determine the benefit of offloading. A 
promising alternative could be an approach based on compiler 
assistance. Compiler should analyze a particular section of 
source code, determine whether it would benefit from 
accelerating, compile it and/or automatically offload it to an 
appropriate back-end engine transparently to the user. A more 
advanced compiler also should derive dependency tree that 
could be used to batch accelerator offload requests.  

Interesting directions for future work include automated 
compiler analysis within the MATLAB runtime to perform the 
necessary restructuring transparently while preserving the 
overall MATLAB programming “look and feel”. This includes 
automatic analysis of whether to optimize and/or offload a 
particular section of code or run it natively on a CPU. 
Techniques to cope with tightly coupled serial-parallel steps 
using alternative accelerators are another possibility. 

REFERENCES 
[1] R. Choy and A. Edelman. Parallel MATLAB: Doing it right. IEEE 

Proceedings. Volume 93: 331-341, Issue 2, February 2005. 
[2] Accelereyes. Jacket. http://www.accelereyes.com/overview.php, 2008. 
[3] Mathworks. Using MEX-Files to Call C and Fortran Programs. 

MATLAB Documentation. 
http://www.mathworks.com/access/helpdesk. 

[4]  S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. A 
Performance Study of General Purpose Applications on Graphics 
Processors using CUDA. JPDC, Elsevier, June 2008. 

[5] Lawrence Livermore National Laboratory. Sundials: CVODE. 
 https://computation.llnl.gov/casc/sundials/main.html. 
[6] J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable Parallel 

Programming with CUDA. ACM Queue, 6(2):40-53, Mar.-Apr. 2008. 
[7] Y. Yongjian and S.T. Acton. Speckle reducing anisotropic diffusion. 

IEEE Transactions on Image Processing. Volume 11, November 2002.
[8] J. J. Saucerman and D. M. Bers. Calmodulin Mediates Differential 

Sensitivity of CaMKII and Calcineurin to Local Ca2+ in Cardiac 
Myocytes. Biophysical Journal 95:4597-4612, 2008. 



 5

[9] AMD. The Industry-Changing Impact of Accelerated Computing. 
http://www.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf. 
2008. 


	I. INTRODUCTION
	II. Related Work
	III. Experiment Setup and Methodology
	IV. Heart Wall Tracking
	A. Application Description
	B. Algorithm and Optimizations

	V. Cardiac Myocyte Simulation
	A. Application Description
	B. Algorithm and Optimizations

	VI. Discussion
	VII. Conclusions and Future Work

