
 1

Experiences Accelerating MATLAB Systems
Biology Applications

Lukasz G. Szafaryn, Kevin Skadron, Jeffrey J. Saucerman

University of Virginia
{lgs9a, ks7h, jjs3g}@virginia.edu

Abstract— Systems biology seeks to develop an understanding

of the myriad interacting components of full biological systems,
often in order to help treat or prevent diseases. System biology
relies heavily on computation for parameterization of systems and
their simulation. Although MATLAB is a convenient
programming environment of choice for most scientists, its
performance suffers because of single-threaded interpreted
execution model. Optimizations of code and architectures are
required in order for scientists to perform large-scale simulations
on desktop machines. This paper presents a study of accelerating
two typical systems biology applications, Heart Wall Tracking
and Cardiac Myocyte Simulation, which result in 2.4x and 5.0x
speed-ups, respectively. Our optimizations include improving
single thread performance by using compiled (vs. interpreted)
code as well as taking advantage of multiple thread execution by
offloading parts of code via multi-core CPU or GPU. We show
that each of the applications presents different programming and
architectural challenges related to code structure and degree of
parallelism exhibited. GPUs have the potential to provide the best
speed-up if overhead due to the driver and data transfer can be
eliminated. The feasibility of optimizations is analyzed in terms of
the tradeoff between coding effort, degree of code modification
and achievable speed-up. The paper also discusses code and
architecture changes that would result in better acceleration.

Index Terms—Biological Systems, Simulation, Parallel
Processing

I. INTRODUCTION
The field of systems biology uses computational methods to

process large amounts of data describing full biological
systems in order to develop models of physical processes
taking place inside of them. One type of systems biology task
involves processing of biomedical images that provide a rich
source of data for building and testing models, such as in the
Heart Wall Tracking application. On the other hand, biological
systems that have already been parameterized, such as the one
in the Cardiac Myocyte Simulation, are simulated to
reconstruct their behavior.

Processing of large amounts of image data as well as
simulating accurate models in MATLAB is usually
time-consuming. Although MATLAB provides a convenient
high-level environment for expressing algorithms, its
performance is limited by its single-threaded interpreted
execution model. Since the availability of results in reasonable
time is critical to scientists’ ability to conduct research,
biological models are often simplified and simulation intervals
shortened at the expense of fidelity.

The easiest way to optimize MATLAB application is to turn
parts of it into compiled code. This can be done using the
original MATLAB code (via convenient tools such as
Embedded MATLAB Compiler) or by using the equivalent
hand-written C code (via MATLAB MEX Compiler). While
the former often requires some changes to the code (nested
structure and variable sizes), it is a convenient solution overall.
The latter, on the other hand, can provide better performance at
the expense of sometimes considerable coding effort.

Extraction of parallelism with multi-core processors, on the
other hand, requires parallel programming skills and the
knowledge of new languages. However, the use of many
high-level MATLAB functions makes it difficult to extract
parallelism and translate code to another language. Also, the
moderate amount of parallelism in many applications requires
taking into account the significant communication overhead
when using a co-processor such as the GPU. Existing parallel
processing packages for MATLAB are limited to a subset of
functions and require a large degree of parallelism to justify the
cost of offloading.

As a result, acceleration of applications is currently a
demanding task that is usually done manually by skilled
programmers. The drastic optimizations necessitate time
consuming modifications to code structure that sacrifice
modularity, which in turn can make the code difficult to use for
the scientist. Moreover, many scientists are unwilling to accept
such sacrifices unless they yield at least an order of magnitude
speed-up.

This paper introduces our work in progress, still
developmental. We make the following contributions:

• Describe experiences in accelerating two typical
MATLAB systems biology applications by optimizing
original code and rewriting parts of it for multi-threaded
CPU and GPU.

• Characterize the degree of parallelism in each
application and the feasibility of optimization.

• Illustrate common architecture and language difficulties
faced during the optimization process.

• Investigate how to best obtain code acceleration while
maintaining the original MATLAB code structure.

The ultimate goal of our research is to develop tools for
analysis, compilation and automatic offloading of parallel
computation to make acceleration available to an ordinary
MATLAB programmer.

 2

II. RELATED WORK
The early attempts to optimize MATLAB targeted

utilization of clusters with MPI algorithms as back-end engines
for computation. Software such as ParMatlab, Matpar,
MALTAB Parallel Toolbox and StarP use this approach. Wide
availability of desktop machines motivated parallelization
approaches for multi-core shared memory processors. Some of
the above mentioned software supports this approach as well.
Packages such as Otter, FALCON, and Menhir link compiled
MATLAB code with parallel numerical libraries that can run
on heterogeneous architectures [1]. Jacket is an example of
applying this approach to GPUs. It uses precompiled
GPU-enabled versions of popular MATLAB functions and
compiles simple structures such as loops [2]. The MEX
interface provided in MATLAB allows for linking various
types of hardware-accelerated code [3]. While the popular
OpenMP standard is still not supported, packages with
multi-threaded replacements for common MATLAB functions
are available. Recent introduction of an API for
general-purpose GPU computation provides a more convenient
way to use GPUs as accelerators for MATLAB code.
Throughput-oriented GPUs provide considerable speedup even
over quad-core CPUs for a range of applications [4].

III. EXPERIMENT SETUP AND METHODOLOGY
Several techniques were used for optimizing applications

described in this paper. Parts of applications were compiled to
MEX files either from the original MATLAB code (using
Embedded MATLAB) or the equivalent hand-written C code
(using MEX Compiler). Only performance of the latter (~20%
better than the former on average) is reported. MATLAB
differential equation solver in Cardiac Myocyte Simulation was
replaced by compiled CVODE solver [5]. We used the .NET
thread standard for CPU multi-threaded code and CUDA [6]
for GPU multi-threaded code. Our desktop machine was
equipped with Intel Core 2 CPU (2 cores clocked at 1.86 GHz
each), NVIDIA GeForce GTX 280 GPU (240 streaming
processors clocked at 1296 MHz and 1024 MB of RAM) and 2
GB of RAM. All code was compiled using MS Visual Studio
2005 compiler and tested under Windows XP SP3. MATLAB
profiler and a high-resolution C timer were used for
performance measurements.

IV. HEART WALL TRACKING

A. Application Description
This application tracks the movement of a mouse heart over

a sequence of 100 609x590 ultrasound images to observe
response to the stimulus. In its initial stage, the program
performs image processing operations on the first image to
detect initial, partial shapes of inner and outer heart walls.
These operations include: edge detection, SRAD despeckling
[7], morphological transformation and dilation. In order to
reconstruct approximated full shapes of heart walls, the
program generates ellipses that are superimposed over the
image and sampled to mark points on the heart walls (Hough

Search). In its final Tracking stage, program tracks movement
of surfaces by detecting the movement of image areas under
sample points as the shapes of the heart walls change
throughout the sequence of images.

B. Algorithm and Optimizations
Only three parts of the application (Table 1) have enough

parallelism and significant contribution to overall run time to
justify optimization efforts. Because of the complexity of code,
we could not use automated compilation tools. We avoided
converting all parts of the application to C (with expected 3x
speed-up) in order to focus on exposing GPU optimization
potential which was of more interest to us for this application.
The first two parts, SRAD and Hough Search, were simple
enough to be entirely converted to C which resulted in 2.46x
and 2.41x speed-ups, respectively. Since these two functions
operate on entire images, there was sufficient data to distribute
calculations across several parallel processors, thus justifying
the use of GPU. The independent nature of operations with
little need for synchronization and sufficient work per kernel
minimized GPU overhead ultimately resulting in speed-ups of
9.90x and 7.45x for the two functions, respectively.

Update templates

Read next frame

Track inner point
movement

Track outer point
movement

Save point locations,
display image

Loop for the # of
inner points (20)

Loop for the # of
outer points (31)

Loop for the # of
frames in a batch

(10)

Loop for the # of
batches of frames

(10)

Fig. 1. Tracking part of the Heart Wall Tracking application.

TABLE I
PERFORMANCE OF HEART WALL TRACKING APPLICATION

Application
Part

MATLAB
run time [s]

C
run time [s]
/ speed-up

[x]

CUDA
run time [s]
/ speed-up

[x]

CUDA’
run time [s] /
speed-up [x]

SRAD 8.71 3.54 / 2.46 0.88 / 9.90 0.24 / 36.66
Hough
Search 15.87 6.59 / 2.41 2.13 / 7.45 0.58 / 27.60

Tracking –
convolution 94.63 --- 37.30 / 2.54 10.07 / 9.40

Tracking -
algebraic 20.94 --- 8.95 / 2.34 2.42 / 8.67

Tracking –
statistical 13.70 --- 9.32 / 1.47 2.52 / 5.44

Tracking -
all 129.28 --- 55.97 / 2.31 15.11 / 8.55

All Parts 187.39 --- 78.40 / 2.39 21.17 / 8.85

 3

The tracking part of the application consists of multiple
nested loops (Fig. 1) that process batches of sample points from
the image. There is a sequential dependency between processed
frames. Because of the substantial coding effort involved, we
only attempted to optimize individual operations on a
fine-grained level. These consist of a large number of small
serial steps with interleaved control statements. Each of the
steps involves a small amount of data processing performed
only on a subset of entire image. Because of this, the utilization
of GPU was limited only to three streaming processors and
GPU overhead (data transfer and kernel launch) became
significant. Since the run time of the entire application was by
far dominated by the Tracking stage, we had to resort to more
drastic GPU optimization techniques that sacrificed modularity
in order to further improve performance. These techniques
included combining unrelated functions and data transfers in
single kernels, which ultimately resulted in 2.39x speed-up.
The last column in Table 1 illustrates that the best speed-up
could be achieved with GPU if its overhead was eliminated by
using a combined CPU-GPU chip architecture. This estimate is
based on our measurements of kernel launch and data transfer
times for offloaded operations, which was 73% on average.

V. CARDIAC MYOCYTE SIMULATION

A. Application Description
This simulation models the behavior of a cardiac myocyte

(heart muscle cell) according to the work by Saucerman and
Bers [8]. The model integrates cardiac myocyte electrical
activity with the calcineurin pathway, which is a key aspect of
the development of heart failure. The model spans large
number of temporal scales to reflect how changes in heart rate
as observed during exercise or stress contribute to calcineurin
pathway activation, which ultimately leads to the expression of
numerous genes that remodel the heart’s structure. It can be
used to identify potential therapeutic targets that may be useful
for the treatment of heart failure. Biochemical reactions, ion
transport and electrical activity in the cell are modeled with 91
ordinary differential equations (ODEs) that are determined by
more than 200 experimentally validated parameters. The
application feeds differential equations into the solver to obtain
results for a specified time interval (5 s for the simulation
described here). Since the ODEs are stiff (exhibit fast rate of
change within short time intervals), they need to be simulated at
small time scales with an adaptive step size solver.

B. Algorithm and Optimizations
The execution time of the application is almost entirely

dominated by the MATLAB ODE solver (~25%) and the
evaluations of the model (~70%). Therefore only the structure
of the solver (Fig. 2) and the input files are of interest to us. The
process of ODE solving is based on the causal relationship
between values of ODEs at different time steps, thus it is mostly
sequential. At every dynamically determined time step, the
solver evaluates the model consisting of a set of 91 ODEs
(“1x91 evaluation”) and 480 supporting equations to determine
behavior of the system at that particular time instance. If

evaluation results are not within the expected tolerance (usually
as a result of incorrect determination of the time step), the
recovery process takes place. As a part of this process,
MATLAB solver recalculates the Jacobian, which results in 91
evaluations of the model (“91x91 evaluation”).

Take next time step

Predict value

1x91 ODE
Evaluation

Recalculate Jacobian
91x91 ODE Evaluation

Reduce time step

Adjust next time
step

Converged or
iteration limit?

Converging too
slow?

Yes

No Yes

NoResults within
tolerance?

No

Yes

Fig. 2. Main part of MATLAB ODE solver in Cardiac Myocyte Simulation.

Our first optimization included performing the 1x91 and
91x91evaluations in C code, which resulted in 2.94x speed-up.
In our second attempt we optimized the 91x91 evaluation by
multi-threading and using multiple CPU cores, which resulted
in 3.31x speed-up for 2 cores. We also coded the same 91x91
evaluation for GPU, however, data transfer overhead brought
the speed-up down to 1.48x. The 1x91 evaluation did not have
enough parallelism to justify offloading to either
multi-threaded CPU or GPU. Finally, we replaced the
interpreted MATLAB solver with an external, compiled
CVODE solver. The compiled C version of the model
evaluated with CVODE solver resulted in the speed-up of
5.04x. Rows 4 and 9 in Table 1 show that the best speed-up
could be achieved with the use of GPU if its overhead was
eliminated by using a combined CPU-GPU chip architecture.

TABLE II
PERFORMANCE OF CARDIAC MYOCYTE SIMULATION

Application Part

 ODE Solver ODE Model

Run time [s] /
 speed-up [x]

1 MATLAB MATLAB 10.3 / 1.00

2 MATLAB C 3.50 / 2.94

3 MATLAB CUDA (GPU) 6.96 / 1.48

4 MATLAB CUDA (GPU) ‘ 3.02 / 3.41

5 MATLAB C (Multi-threaded CPU) 3.11 / 3.31

6 CVODE MATLAB 7.21 / 1.43

7 CVODE C 2.04 / 5.04

8 CVODE CUDA (GPU) 5.52 / 1.87

9 CVODE CUDA (GPU) ‘ 1.61 / 6.39

 4

VI. DISCUSSION
The process of optimizing the Heart Wall Tracking

application illustrates the diverse nature of a typical image
processing application. While simple functions such as SRAD
and Hough Search are nicely parallel, the structure of the
Tracking function that dominates the application is largely
sequential. In the former case, the speed-up obtained with GPU
is limited by the size of images still commonly used by
scientists. In the latter case, the parallelism is limited to within a
single image with the complexity of code requiring significant
changes in order to parallelize, which in turn limits the
effectiveness of the offloading of individual operations.
Currently, we are in the process of modifying coarse-grained
loop structure of the Tracking code to achieve better speedups
at a significant programming cost.

In case of the Heart Wall Tracking application, the
increased performance allows faster processing of images and
higher throughput. However, the accuracy of processing is not
affected as it is limited by the fixed size of images obtained
from the medical equipment. In case of the Cardiac Myocyte
Simulation, on the other hand, both the amount and the
accuracy of results can benefit from faster processing. Cardiac
function spans from millisecond-scale dynamics of electrical
activity to the remodeling of gene expression and heart
structure over weeks. The ability to develop predictive models
is severely limited by computational resources. As a result of
this, most current models of cardiac myocytes are limited to
several minutes of simulated time, and comprehensive analyses
of these models are not generally performed. Accelerated
simulations provide an opportunity to expand the aspects of
heart function accessible to modeling, as well as providing
opportunities to more thoroughly analyze the properties of
current models. Such advances are crucial for modeling the
slow, adaptive process of heart failure and other heart diseases.

The process of optimizing Cardiac Myocyte Simulation was
challenging because of the sequential time-step nature of the
ODE solving process which limits parallelism to within a single
time step. Since the MATLAB ODE solver is an encapsulated
function call, its replacement with CVODE did not alter the
structure of user’s code. The best speedup of 5.04x that we
finally obtained (with compiled solver and compiled model)
could be further increased by eliminating MATLAB
environment entirely. Our optimization allows reducing the
simulation time and/or including more details in the model.

Results obtained for both applications considered in this
paper suggest that GPU would offer the greatest potential for
code acceleration if its overhead due to the driver and data
transfer was eliminated. Future-generation chips that combine
heterogeneous CPU-GPU cores in one package [9] should
overcome this problem. The Heart Wall Tracking application
would ultimately benefit more from the use of GPU because of
the larger degree of parallelism (determined by each individual
operation performed on subsets of 609x590 images). In the
Cardiac Myocyte Simulation, on the other hand, the achievable
GPU speedup is limited by the serial structure of the solver of
and limited workload (only about 480 equations) in the
evaluation of the model.

VII. CONCLUSIONS AND FUTURE WORK
Our experiences with accelerating two representative

systems biology applications, Heart Wall Tracking and Cardiac
Myocyte Simulation, allow us to conclude:

• Many important applications remain difficult to
reorganize for scalable parallelism.

• Retaining structure and extensibility of the code further
limits parallelism, but major structural changes are
unacceptable to many users.

• Improvement in application performance is mainly
proportional to the coding effort.

• The use of software with persistent CPU threads is
required to eliminate thread launch overhead for small
workloads.

• Combined CPU-GPU chips should eliminate current
overhead and make GPUs the most successful
accelerators even for medium and small workloads.

• Packages such as Jacket fail for this type of applications
because they lack support for functions that dominate
execution time and they assume large parallelism.

With the current programming paradigm, a scientist
attempting to use compilation for speed-up is either required to
write compliant MATLAB code or to generate C code
manually. Also, the specifics of the particular accelerator need
to be known to determine the benefit of offloading. A
promising alternative could be an approach based on compiler
assistance. Compiler should analyze a particular section of
source code, determine whether it would benefit from
accelerating, compile it and/or automatically offload it to an
appropriate back-end engine transparently to the user. A more
advanced compiler also should derive dependency tree that
could be used to batch accelerator offload requests.

Interesting directions for future work include automated
compiler analysis within the MATLAB runtime to perform the
necessary restructuring transparently while preserving the
overall MATLAB programming “look and feel”. This includes
automatic analysis of whether to optimize and/or offload a
particular section of code or run it natively on a CPU.
Techniques to cope with tightly coupled serial-parallel steps
using alternative accelerators are another possibility.

REFERENCES
[1] R. Choy and A. Edelman. Parallel MATLAB: Doing it right. IEEE

Proceedings. Volume 93: 331-341, Issue 2, February 2005.
[2] Accelereyes. Jacket. http://www.accelereyes.com/overview.php, 2008.
[3] Mathworks. Using MEX-Files to Call C and Fortran Programs.

MATLAB Documentation.
http://www.mathworks.com/access/helpdesk.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. A
Performance Study of General Purpose Applications on Graphics
Processors using CUDA. JPDC, Elsevier, June 2008.

[5] Lawrence Livermore National Laboratory. Sundials: CVODE.
 https://computation.llnl.gov/casc/sundials/main.html.
[6] J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable Parallel

Programming with CUDA. ACM Queue, 6(2):40-53, Mar.-Apr. 2008.
[7] Y. Yongjian and S.T. Acton. Speckle reducing anisotropic diffusion.

IEEE Transactions on Image Processing. Volume 11, November 2002.
[8] J. J. Saucerman and D. M. Bers. Calmodulin Mediates Differential

Sensitivity of CaMKII and Calcineurin to Local Ca2+ in Cardiac
Myocytes. Biophysical Journal 95:4597-4612, 2008.

 5

[9] AMD. The Industry-Changing Impact of Accelerated Computing.
http://www.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf.
2008.

	I. INTRODUCTION
	II. Related Work
	III. Experiment Setup and Methodology
	IV. Heart Wall Tracking
	A. Application Description
	B. Algorithm and Optimizations

	V. Cardiac Myocyte Simulation
	A. Application Description
	B. Algorithm and Optimizations

	VI. Discussion
	VII. Conclusions and Future Work

