
A Performance Study of General Purpose Applications on Graphics Processors

Shuai Che
sc5nf@cs.virginia.edu

Jiayuan Meng
jm6dg@cs.virginia.edu

Jeremy W. Sheaffer
jws9c@cs.virginia.edu

Kevin Skadron
skadron@cs.virginia.edu

The University of Virginia, Department of Computer Science

Abstract

Graphic processors (GPUs), with many light-weight
data-parallel cores, can provide substantial parallel com-
putational power to accelerate general purpose applica-
tions. To best utilize the GPU’s parallel computing re-
sources, it is crucial to understand how GPU architectures
and programming models can be applied to different cat-
egories of traditionally CPU applications. In this paper
we examine several common, computationally demanding
applications—Traffic Simulation, Thermal Simulation, and
K-Means—whose performance may benefit from graphics
hardware’s parallel computing capabilities. We show that
all of our applications can be accelerated using the GPU,
demonstrating as high as 40× speedup when compared with
a CPU implementation. We also examine the performance
characteristics of our applications, presenting advantages
and inefficiencies of the programming model and desirable
features to more easily and completely support a larger
body of applications.

1 Introduction

Traditional single-core microprocessors are having dif-
ficulty achieving higher clock frequencies. The limitations
imposed by deep pipelining, transistor scaling, and power
and thermal constraints have forced CPU vendors to find
other ways to meet high performance computing needs.

One solution is that of multi-core architectures, which
integrate multiple cores onto a single chip. Examples are
off-the-shelf Intel Duo-core and Quad-core products, the
Sony/Toshiba/IBM alliance’s Cell Broadband Engine [9],
MIT RAW [24], and Sun’s Niagra [13].

Another powerful solution is the GPU. GPUs represent
highly specialized architectures designed for graphics ren-
dering, their development driven by the computer gaming
industry. Recently, there has been a trend to accelerate com-
putationally intensive applications, including scientific ap-
plications, on graphic processors. This trend introduced the

new term GPGPU or General-Purpose computation on the
GPU.

The GPU has several key advantages over CPU ar-
chitectures for highly parallel, compute intensive work-
loads, including higher memory bandwidth, significantly
higher floating-point throughput, and thousands of hard-
ware thread contexts with hundreds of parallel compute
pipelines executing programs in a SIMD fashion. The GPU
can be an attractive alternative to CPU clusters in high per-
formance computing environments.

The term GPGPU causes some confusion nowadays,
with its implication of structuring a general-purpose ap-
plication to make it amenable to graphics rendering APIs
(OpenGL or DirectX) with no additional hardware support.
NVIDIA has introduced a new data-parallel, C-language
programming API called CUDA (for Compute Unified De-
vice Architecture) that bypasses the rendering interface and
avoids the difficulties of classic GPGPU. Parallel computa-
tions are instead expressed as general-purpose, C-language
kernels operating in parallel over all the points in a domain.

To best utilize GPUs’ powerful computing resources, it
is necessary to examine to what extent traditionally CPU
domain problems can be mapped to GPU architectures,
and what kinds of features the GPU parallel programming
model should support. A recent report from Berkeley [1]
argued that successful parallel architectures should perform
well over a set of 13 representative classes of problems,
termed dwarves, which each capture a body of related prob-
lems and include Structured Grid, N-Body problem and Dy-
namic Programming dwarves.

Inspired by this work, and noting an apparent architec-
tural convergence of CPUs and GPUs, our goal is to find a
good programming model that can provide a rich and use-
ful feature set for today’s parallel computing needs. This
paper introduces our work in progress, still developmental.
We port some widely used applications to CUDA and an-
alyze their performance. Our applications—traffic simula-
tion, thermal simulation (with HotSpot [8]), and k-means—
have a great deal of data-parallelism and benefit from the
GPU’s parallel computing resources. We compare results
on an NVIDIA Geforce 8800 GTX against and an Intel Pen-

1



tium 4 both under Windows XP. The CPU code is compiled
with Visual Studio 2005 with the SSE2 (Streaming SIMD
Extensions 2) option and O2 optimization turned on.

All of our applications show satisfactory speedups. The
maximum observed speedups are about 40× for traffic sim-
ulation, 6.5× for HotSpot and 8× for k-means. Also,
to better utilize the GPU under CUDA, we make novel,
architecturally-aware changes to the algorithms and data
structures, such as the introduction of a pyramid data struc-
ture in the HotSpot benchmark to avoid the need for excess
synchronization between thread blocks.

In addition to showing speedups using CUDA, another
contribution of our work is that we present some advantages
and inefficiencies of the CUDA model. For example, we
find that a global synchronization mechanism is necessary
in order to avoid the need to separate a logical kernel into
disjoint parts. Double buffering or a bulk load/store mech-
anism would be useful as an additional mechanism to help
reduce memory access latency.

2 Related Work

A lot of recent work has focused on GPGPU. A frame-
work for solving linear algebra problems on graphics pro-
cessors is presented by Krüger et al [14]. Harris et al.
present a cloud dynamics simulation using partial differ-
ential equations [7]. Some important database operations
are implemented on the GPU by efficiently using pixel
engines [6]. Bioinformatics algorithms such as sequence
alignment [15] have also been successfully implemented on
GPUs.

OpenGL [12] and DirectX [20] are the two major API
interfaces for programming graphics applications, but they
are not convenient for developing general purpose applica-
tions on GPUs. With increased programmability in recent
GPU generations, languages such as Brook [2], Sh [18], and
Cg [17] were developed to provide simpler programming
environments for GPU developers.

CUDA is a new language and development environ-
ment from NVIDIA, allowing execution of applications
with thousands of data-parallel threads on NVIDIA G80
class GPUs. AMD recently introduced their own GPU di-
rect compute API, Close To the Metal (CTM). CTM also
provides a way around graphics APIs, with a driver and pro-
gramming interface designed specifically for compute.

3 GPU Architectures

3.1 The NVIDIA Geforce 8800 GTX GPU

GPUs have developed over the course of the last decade
as highly specialized processors for the acceleration of

raster graphics. GPUs have been developed hand-in-hand
with graphics APIs, thus each stage in the traditional GPU
pipeline corresponds very closely with a corresponding
stage in the conceptual OpenGL pipeline. Recent GPUs
have added programmability to the vertex and fragment
shading stages of the pipeline. Instead of separate process-
ing units for different shaders, the Unified Shader Model
(USM) was introduced with DirectX 10, allowing for bet-
ter utilization of GPU processing resources. ATI’s Xenos
chip for the Xbox 360, AMD R600, and NVIDIA’s Geforce
8800 [16] all implement USM. The computing resources
needed by shaders varies greatly among different applica-
tions. The unified design can overcome this issue by balanc-
ing loads between geometry, vertex, and fragment shader
functionality, yielding maximum utilization of computing
resources.

Figure 1. The Geforce 8800 GTX Architecture,
with 16 multiprocessors, each with 8 stream-
ing processors.

A diagram of the NVIDIA Geforce 8800 GTX architec-
ture is shown in Figure 1. Its design is a radical departure
from traditional mainstream GPU design. The 8800 GTX
is comprised of 16 multiprocessors. Each multiprocessor
has 8 streaming processors (SPs) for a total of 128 SPs.
Each group of 8 SPs shares one L1 data cache. An SP
contains a scalar ALU and can perform floating point op-
erations. Instructions are executed in a SIMD fashion. The
8800 GTX has 768 MB of graphics memory, with a peak
observed performance of 330 GFLOPS and 86 GB/s peak
memory bandwidth [3]. This specialized architecture can
sufficiently meet the needs of many massively data-parallel
computations.

3.2 CUDA

Direct3D and OpenGL include many functions provided
to render complex graphics scenes and abstract away the
communication between applications and graphics drivers.

2



Unfortunately, for non-graphics applications, these APIs in-
troduce many hurdles to the general purpose application
programmer, including the inherent problems born of the
need to caress general purpose problems into looking like
rendering problems and the functional problem imposed by
lack of scatter functionality.

Figure 2. CUDA’s shared memory architec-
ture. Threads in one block can share data
using on-chip shared memory [21].

CUDA provides a cleaner interface than traditional
GPGPU to program the GPU for general purpose appli-
cations, exposing important architectural features of G80
and eliminating the need to map computations to a graph-
ics API. In CUDA, the GPU is a device that can execute
multiple concurrent threads. Threads are executed in SIMD
thread blocks, which facilitate efficient data sharing. Blocks
and threads are indexed by block and thread ids, and the
GPU is conceptually viewed as a set of multiprocessors.
One or more thread blocks is dispatched to each proces-
sor, and executed using time sharing [21]. Blocks are fur-
ther organized into grids, with blocks within a grid being
run to completion and not currently guaranteed to execute
in any particular order; hence, blocks should not communi-
cate except by allowing an entire grid to complete, return-
ing to the host, and subsequently starting a new kernel. The
3D capability of blocks, coupled with the 2D capability of
grids, can potentially allow expression of 5D domains. As
is illustrated in Figure 2, each multiprocessor has a set of

register files, a shared memory data cache, and a read-only
(constant) cache. Threads within one block can share data
through shared memory, allowing very high access speeds.
Constant memory is optimized for fast read-only access to
a region of global, read/write device memory [21].

Below, we give a simple example of CUDA program
which assigns the values in an n × n matrix B to a matrix
A and an example of the same operation in C. If n is 128
and each block is 16 by 16, CUDA will divide the whole
matrix into 64 blocks, and each assignment becomes the re-
sponsibility of a single thread. The CUDA program model
abstracts away the loop needed in the CPU implementation,
a powerful abstraction very useful in solving more compli-
cated problems.

• Matrix copy in CUDA

index = n * BLOCK_SIZE * blockIdx.y +
BLOCK_SIZE * blockIdx.x +
n * threadIdx.y + threadIdx.x;

A[index] = B[index];

• Matrix copy on the CPU in C

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

A[i][j] = B[i][j];

3.3 Parallel Execution Model

The two dominant parallel architectural models are the
message passing and shared memory models [26]. CUDA’s
shared memory model allows threads within the same block
to share data using high-speed on-chip shared memory.
Threads from different blocks can share data via global
memory. CUDA adopts a SIMD data-parallel model in
which one instruction is executed multiple times in paral-
lel on different data elements.

In CUDA, the CPU is viewed as a control processor that
is responsible for parameter setup, data initialization, and
execution of the serial portions of the program. The GPU
is viewed as a co-processor whose job is to accelerate data-
parallel computations.

Though CUDA provides a powerful API with a swift
learning curve, there are several challenges for CUDA de-
velopers. First, before a kernel can be launched on the
graphics processor, data must be copied from host mem-
ory to GPU device memory. Copy overhead is proportional
to the amount of data to be copied. Also CUDA has an ex-
plicitly controlled memory hierarchy that is critical to per-
formance and requires fine-grained tuning. In addition, bar-
rier functionality can only be imposed on threads within the
same block. Synchronizing with threads in different blocks

3



can be achieved by terminating a function call, otherwise
read-after-write (RAW), write-after-read (WAR), and write-
after-write (WAW) hazards become a concern [21].

4 Experiment Setup and Methodology

We chose representative commercial products from both
of the GPU and CPU markets: an NIVIDIA Geforce 8800
GTX (128 stream processors clocked at 675 MHz with
768 MB of graphics memory and a 16 kB parallel data
cache per multiprocessor block) with NVIDIA driver ver-
sion 6.14.11.6201 and CUDA 1.0, and a traditional single-
core Intel Pentium 4 CPU (2.4 GHz with 512 MB main
memory, 512 kB L2 and 8 kB L1). We developed our GPU
code using NVIDIA’s CUDA API. The CPU code is com-
piled under Visual Studio with O2 and SSE2. The GPU
implementation results are compared against the Intel CPU
results under Windows. Given the same input data set, the
speedup is calculated by taking the wall-clock time required
by applications on the CPU divided by the time required by
the GPU. Times are measured after initial setup (e.g. after
file I/O) but do include PCI-E bus transfer times.

5 Experimental Results

5.1 Memory Overhead

Figure 3. Memory transfer overhead between
our CPU and GPU. As the size of data in-
creases, the time overhead for a data transfer
increases linearly.

Classically, in a PC the graphics card is connected via
the AGP or PCI Express bus to a North Bridge chip which

also connects to the CPU and main memory, so the data
transfer rate of bus and memory bandwidth are very crucial
to the performance of applications. We measured the mem-
ory overhead by varying the amount of data transferred be-
tween our CPU and GPU. We found that the time necessary
to transfer date increases linearly with the amount of data,
as illustrated in Figure 3, thus the constant overhead of each
individual transfer is immeasurable so long as transfers are
large or infrequent.

5.2 Traffic Simulation

A great deal of civil engineering work exists on simulat-
ing automotive traffic. Aimed at improving traffic control
to reduce congestion and accidents, these simulations tend
to require a lot of compute power. There has been no previ-
ous work that uses graphics processors to accelerate traffic
simulation. Our work is based on a part of the MITSIM
model [27], which simulates traffic networks.

5.2.1 Algorithm Overview

Our work re-implements part of MITSIM’s lane-changing
model—only a portion of the MITSIM infrastructure, which
provides a much broader and more comprehensive traffic
simulation model than our benchmark—with cars running
in 4 lanes [23]. The lanes are implemented as a 4-wide 2-D
array with each cell representing a position. The car struc-
ture carries the information about the car’s speed, position,
the lane the car resides in and so forth. All of this informa-
tion is dynamically updated during the lifetime of the sim-
ulation. Cars can change lanes only if the behind-diagonal,
next-to, and forward-diagonal cells are clear of cars. A car
can accelerate when there are 2 blank positions in front of
it.

This model is straightforward to implement on CUDA’s
shared memory model and benefits from using the GPU’s
large number of concurrent threads. In each iteration, the
determination of the next action of each car (e.g. to change
lanes, accelerate, brake, etc.) is dependent only on the loca-
tions of the cars withing a small, local neighborhood.

5.2.2 Traffic Simulation Results and Analysis

We used 256 threads per block. The number of blocks are
determined by the number of cars the user specifies on the
command line. We assign each car a unique id and map that
to a thread. The number of cars (number of threads) is var-
ied in the experiment. As is evident in Figure 5, the G80
can achieve speedups of about 40× with respect to the Pen-
tium 4. When the number of cars is 800 or less, our CPU
implementations outperforms the GPU simulator; however,
as the number of cars increases, the GPU implementation
gradually surpasses the CPU, which demonstrates that GPU

4



is more appropriate for data-parallel operation with many
threads given our configuration. Applications like the traf-
fic simulation present an especially good fit for GPUs and
the CUDA programming model as, except for synchroniz-
ing the blocks for each iteration, there are no data depen-
dencies between threads within one block or between the
blocks.

Figure 4. Execution time of the traffic sim-
ulation. The input size is the number of
cars. The GPU implementation outperforms
the CPU implementation on simulations with
about 1600 or more cars.

5.3 Thermal Simulation

HotSpot [8] is a widely used tool to estimate proces-
sor temperature based on block layout and simulated per-
formance measurement in architectural simulation. It is a
representative of the structured grid dwarf [1], in which the
computation is regionally divided into sub-blocks with high
spatial locality. Structured grid applications are at the core
of many scientific computations. Other notable examples
include Lattice Boltzmann hydrodynamics [25] and Cac-
tus [4]. A major challenge of these applications comes from
dealing with the boundary data between sub-blocks.

5.3.1 HotSpot Algorithm Overview

In HotSpot, a silicon die is partitioned into functional blocks
based on the floorplan of the microprocessor, with a ther-
mal RC network connecting the various blocks [8]. The
thermal simulation iteratively solves a set of differential

Figure 5. Speedup of the traffic simulation.
The maximum speedup is more than 40×.

equations for block temperatures. Our GPU implementa-
tion re-implements the transient thermal differential equa-
tion solver from HotSpot. Given the power density and tem-
perature at time t and the simulation differential time ∆t,
the transient solver can compute the processor temperature
at time t + ∆t.

In HotSpot, each cell in the grid represents the average
power density and temperature of the corresponding area
on the chip. The grid is divided into sub-blocks along the
x- and y-axes. Therefore at the end of each iteration, the
data that lies on the boundaries between blocks should be
exchanged. In CUDA, data communication among blocks is
not supported. The threads in one block can only read data
written by another block from global memory. This solution
involves heavy global memory read/write overhead, which
significantly reduces the performance of the program.

To ameliorate the effects of this synchronization prob-
lem, we want to avoid exchanging data between blocks at
the end of each iteration. A novel solution, based on a
pyramid structure (see Figure 6), can achieve satisfactory
speedups. Using this method, we assign each processing
thread block a much bigger region than the final result. If
the pyramid base is an N × N data block, after one itera-
tion the inner (N − 2) × (N − 2) data block has precise
results. For instance, if we want to compute the result of a
grid which is comprised of many 4× 4 blocks, at the begin-
ning we can designate 16 × 16 as the size of each block in
CUDA and load each block to shared memory for computa-
tion. The data processed in adjacent blocks should overlap
in order that after 6 iterations, each of the cells in the grid
has a correct result.

5



Figure 6. Starting from an 8 × 8 block, it takes
1 iteration to compute the result of the inner
6 × 6 block

5.3.2 HotSpot Simulation Results

Our experiments show that our pyramid architecture can
achieve a maximum speedup of more than 6.5× when com-
pared with the Pentium 4 CPU. This result is much better
than our original naı̈ve implementation, which was based
more closely on the CPU implementation and did not use
the pyramid structure. Obviously, efficient use of shared
memory is important for an efficient implementation.

However, as demonstrated in Figure 8, the thermal sim-
ulation does not show the high speedups seen in the traffic
simulation. Additionally the HotSpot speedup curve satu-
rates early. We believe that this phenomenon is due to the
fact that, though the pyramid architecture can efficiently re-
duce communications between thread blocks, it simultane-
ously creates more tasks for the GPU to perform. For ex-
ample, if the result grid is comprised of a number of 4 × 4
blocks, for each block, starting from a 16 × 16 block, the
simulations requires 6 iterations to converge. For a grid of
size 256 × 256, the GPU must allocate 64 × 64 blocks to
run in parallel on 8 multiprocessors. A large number of
blocks makes the speedup saturate early. However, using
the pyramid architecture, the performance improves signif-
icantly when compared with our original implementation.

In developing this benchmark, we found that to develop
an application with good performance, CUDA’s parallel
programming model requires that programmers have famil-
iarity with the G80 architecture, as data must be explicitly
managed in the memory hierarchy. Additionally, program-
mers also need to be careful when dealing with shared mem-
ory, because inappropriate scheduling can cause bank con-
flicts which may force threads to access memory in serial-
ized order [21].

Another problem with CUDA is that there is no mech-
anism to enforce all the threads of different blocks to syn-

Figure 7. Execution Time of HotSpot. The x-
axis represents the dimensions of the com-
putation grid. a dimension of 50 means a
50 × 50 grid.

Figure 8. Speedup of HotSpot. The maximum
speedup is more than 6.5× for HotSpot

chronize at a certain point. Inside a GPU function call, us-
ing a for loop is dangerous when there are data dependen-
cies between the two adjacent loop iterations because the
CUDA parallel model is a for-all model.

6



5.4 K-Means

K-means is a clustering algorithm used extensively in
data-mining and elsewhere, important primarily for its sim-
plicity. Data-mining algorithms are classified into cluster-
ing, classification, and association rule mining, among oth-
ers [22]. Many data-mining algorithms show a high de-
gree of task parallelism or data parallelism. Researchers
at Northwestern University developed Minebench using
OpenMP [22]. Our goal with this benchmark is to test the
applicability of the GPU to data-mining using k-means.

In k-means, a data object is comprised of several values,
called features. By dividing a cluster of data objects into K
sub-clusters, k-means represents all the data objects by the
mean values or centroids of their respective sub-clusters.

5.4.1 K-Means Algorithm Overview

In a basic implementation, the initial cluster center for
each sub-cluster is randomly chosen or derived from some
heuristic. In each iteration, the algorithm associates each
data object with its nearest center, based on some chosen
distance metric. The new centroids are calculated by taking
mean of all the data objects within each sub-cluster respec-
tively. The algorithm iterates until no data objects move
from one sub-cluster to another [22].

The data objects can be organized in a 2-D array with
each row representing one data object and each column rep-
resenting the value of the corresponding feature. Some im-
plementations use K-d trees [10] to accelerate the execution
time. Advantages of k-means over other clustering algo-
rithms include its fast convergence and ease of implementa-
tion.

In our CUDA implementation, the clusters of data ob-
jects are partitioned into thread blocks, each thread asso-
ciated with one data object. The task of searching for the
nearest centroid to each data object is independent. Our
program uses the Euclidean distance as its distance metric.
After all the threads find their nearest centroid, a reduction
step will produce the new centroid for each sub-cluster. An
error function signals convergence and terminates the itera-
tion.

We make the GPU is responsible for calculating the dis-
tances of each object to the k clusters in parallel, while the
CPU takes over the reduction step. CUDA does provide a
handful of atomic operations that could be used to imple-
ment this reduction; however, these operations are integer
only and are restricted to the Geforce 8600, so we choose
to ship this latter step back to the CPU. The speedup mea-
surement is performed on the distance calculation only, not
on the serial reduction! The algorithm can be further paral-
lelized by calculating the partial sum for the threads in each
block and then adding the partial sums together for each

sub-cluster to calculate a new centroid.

5.4.2 K-Means Results

Figure 9. Execution time of k-means (reduc-
tion part not included). The input size is the
number of the data objects. The time showed
is for one iteration

In Figure 9, we compare the running times of k-means
separately on a Geforce 8800 and a Pentium 4 on a dataset
from an intrusion detection problem in the 1999 KDD
Cup [11]. Figure 10 shows that for a dataset with 1,638,400
elements, the CUDA program on the G80 can achieve about
8× speedup as compared with the Pentium 4. Because cur-
rently the CPU is responsible for calculating new cluster
centroids, the memory overhead is relatively large. In each
iteration we have to copy the data to the GPU to compute
the membership of each data object, then copy back to the
CPU for the reduction.

6 Discussion: CUDA Programming Model

In the course of developing these applications for
CUDA, we have developed a short “wish-list” of features
that could help improve performance. Firstly, we believe
that CUDA would benefit from facilities for asynchronous
bulk data movement from host memory to device memory.
Currently, CUDA allows only synchronous direct memory
access (DMA) transfers between the GPU and CPU. As
a result, a kernel cannot begin execution until the DMA
download completes, which introduces overhead.

Secondly, a pre-fetching mechanism can serve as a com-
plementary memory access latency hiding tool in addition
to hardware thread context switching. Especially when all

7



Figure 10. Speedup of k-means (reduction
part not included). The maximum speedup
is about 8×.

threads are accessing device memory intensively, switching
threads is unable to sufficiently overlap computation with
memory access because all threads are memory bound. Cor-
related threads within the same kernel are executed simul-
taneously, so it is probable that many threads will reach a
memory intensive phase simultaneously.

It may also be beneficial to provide a faster local
store. This could be useful in situations where data
has to be loaded from device memory and reused many
times. Options include caching, scratchpads, and bulk
DMAs. Caching supports existing programming models
and toolchains, but caching in shared memory raises the
traditional problems of coherence and memory-ordering
guarantees. The other two options also have drawbacks.
Scratchpads require explicit compiler management and
DMA may require double buffering, using extra memory.

Lack of persistent state in the shared memory data cache
results in less efficient communication among producer and
consumer kernels than might be possible. The producer ker-
nel has to store the shared memory data into device mem-
ory; the data is then read back over the bus by the consumer
kernel. This also undercuts the efficiency of global synchro-
nization which involves kernel termination and creation;
however, a persistent shared memory contradicts with the
current programming model, in which threads blocks run
to completion and by definition leave no state afterwards.
Alternatively, a programmer can choose to use a novel al-
gorithm that involves less communication and global syn-
chronization, such as the pyramid algorithm that we use in
HotSpot, but this leads to—often undesirable—tradeoffs in

program complexity that would be better left unconsidered.
CUDA’s performance is hurt by its inability to collect

data from a set of producer threads and stream them to a set
of consumer threads. Intermediate data has to be stored in
device memory before it is consumed by another thread. By
allowing fine grained synchronization among producer and
consumer threads, programs would be able to consume data
at a higher rate, earlier freeing its storage for reuse. Since
thread blocks must run to completion, and only one shared
memory can be allocated to a thread block, it is unwieldy to
support high-quality producer/consumer steaming given the
current implementation of CUDA’s shared memory model.

Finally, even though we did not perform extensive per-
formance tuning (tiling, managing bank conflicts, etc.), we
found that CUDA programming required extensive knowl-
edge of the underlying hardware architecture. This is ac-
tually true of almost any parallel programming environ-
ment today. This makes parallel programming an excel-
lent vehicle for teaching computer architecture, and in fact
we used CUDA to good effect in a senior-level computer-
architecture course. We worry, however, that the associated
learning curve will deter adoption of parallel programming,
especially for more complex algorithms and data structures
that do not map as easily to a manycore environment.

7 Conclusions and Future Work

This work compared the performance of CPU and GPU
implementations of three, naturally data-parallel applica-
tions: traffic simulation, thermal simulation, and k-means.
Our experiments used NVIDIA’s C-based CUDA interface
and compared performance on an NVIDIA Geforce 8800
GTX with that on an Intel Pentium 4 CPU. Even though
we did not perform extensive performance tuning, the GPU
implementations of these applications obtained impressive
speedups and add to the growing body of GPGPU work
showing the potential of GPUs for general-purpose comput-
ing. Furthermore, the CUDA interface made programming
these applications vastly easier than traditional rendering-
based GPGPU approaches (in particular, we have prior ex-
perience with structured grids [5]). We also believe that
the availability of shared memory and the domain abstrac-
tion provided by CUDA made these applications vastly eas-
ier to implement than traditional SPMD/thread-based ap-
proaches. In the case of k-means and the traffic simula-
tion, CUDA was probably a bit more difficult than OpenMP,
chiefly due to the need to explicitly move data and deal
with the GPU’s heterogeneous memory model. In the case
of HotSpot with the pyramidal implementation, CUDA’s
“grid-of-blocks” paradigm probably simplified implemen-
tation compared to OpenMP.

The work we presented in this paper only shows a de-
velopmental stage of our work. We plan to extend our

8



GPGPU work by comparing with more recent commodity
configurations such as Intel dual-core processors and ex-
amining the programmability of more complex applications
with various kinds of data structures and memory access
patterns. In addition, in order to better understand the pros
and cons of GPU architectures for general-purpose paral-
lel programming, new metrics are needed for characterizing
the applications. With greater architectural convergence of
CPUs and GPUs, our goal is to find a parallel programming
model that can best aid developers to program in today’s
high-performance parallel computing environments, includ-
ing GPUs and multi-core CPUs.

Our sample applications mapped nicely into CUDA and
would map easily enough to most manycore programming
environments. In all cases, however, managing data place-
ment, communication, and synchronization becomes a nui-
sance at best—and intractable at worst—with more com-
plex applications. Higher-level programming APIs are
needed! Ideally, these should promote use of higher-level
data structures that implicitly convey information about de-
pendencies and data layout to the compiler or middleware,
which can then manage much of the concurrency, data
placement, communication, and synchronization. Opera-
tions on these data structures then would implicitly con-
vey parallelism while preserving a more natural, quasi-
sequential programming style [19]. Ideally, programmers
should still be able to “drill down”—to manage the hard-
ware themselves using a lower-level API such as CUDA—
albeit at their own risk.

The common view that effective parallel programming
requires low-level, explicit management of concurrency and
hardware resources only applies to the most expert pro-
grammers! We contend that high-level APIs and auto-
matic parallelism will boost productivity and, for many pro-
grammers, will yield better speedups. Higher-level APIs
that abstract away hardware details also simplify portability
among different parallel platforms.

8 Acknowledgements

This work is supported by NSF grant nos. CNS-
0306404 and CNS-0615277, and by a grant from
NVIDIA Research. We would like to thank Michael Gar-
land of NVIDIA Research for pointing out the pyramidal
algorithm for the HotSpot problem, Kevin Stammetti for
his help with the traffic simulation algorithm and imple-
mentation, Karthik Sankaranarayanan for his help with the
Hotspot grid solver and John Stuppy and S. R. Siddarth for
their help with the k-means implementation.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[2] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for gpus: stream com-
puting on graphics hardware. In SIGGRAPH ’04: ACM SIG-
GRAPH 2004 Papers, pages 777–786, New York, NY, USA,
2004. ACM Press.

[3] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Gpuqp: query co-processing using graph-
ics processors. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of
data, pages 1061–1063, New York, NY, USA, 2007. ACM
Press.

[4] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf. The cactus framework and toolkit:
Design and applications. In VECPAR, pages 197–227, 2002.

[5] N. Goodnight, G. Lewin, D. Luebke, and K. Skadron. A
multigrid solver for boundary value problems using graphics
h ardware. Technical report, University of Virginia, January
2003. University of Virginia Technical Report CS-2003-03.

[6] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Courses, page 206, New York, NY, USA, 2005. ACM
Press.

[7] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Las-
tra. Simulation of cloud dynamics on graphics hard-
ware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hard-
ware, pages 92–101, Aire-la-Ville, Switzerland, Switzer-
land, 2003. Eurographics Association.

[8] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan,
K. Skadron, and M. R. Stan. Hotspot: A compact thermal
modeling methodology for early-stage vlsi design. IEEE
Trans. VLSI Syst., 14(5):501–513, 2006.

[9] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J.
Res. Dev.,49(4/5):589C604, 2005.

[10] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silver-
man, and A. Wu. An efficient k-means clustering algorithm:
analysis and implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(7):881–892, 2002.

[11] KDD Cup. http://kdd.ics.uci.edu/databases/kddcup99/kdd-
cup99.html.

[12] J. Kessenich, D. Baldwin, and R. Rost. The opengl shading
language. Technical report, The OpenGL Architectural Re-
view Board, 2006. http://www.opengl.org/documentation/-
glsl.

[13] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way multithreaded sparc processor. IEEE Micro, 2005.

[14] J. Krüger and R. Westermann. Linear algebra operators
for gpu implementation of numerical algorithms. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, page 234,
New York, NY, USA, 2005. ACM Press.

9



[15] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig. Stream-
ing algorithms for biological sequence alignment on gpus.
IEEE Transactions on Parallel and Distributed Systems,
18(9):1270–1281, 2007.

[16] D. Luebke and G. Humphreys. How gpus work. IEEE Com-
puter, 40(2):96–100, 2007.

[17] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard.
Cg: a system for programming graphics hardware in a c-like
language. ACM Trans. Graph., 22(3):896–907, 2003.

[18] M. D. McCool. Metaprogramming GPUs with Sh. AK Pe-
ters, 2004.

[19] W. mei W. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm, I. Gelado,
S. S. Stone, R. E. Kidd, S. S. Baghsorkhi, A. Mahesri, S. C.
Tsao, N. Navarro, S. S. Lumetta, M. I. Frank, and S. J. Patel.
Implicitly parallel programming models for thousand-core
microprocessors. In DAC, pages 754–759. IEEE, 2007.

[20] Microsoft Corp. DirectX. http://www.gamesforwindows.-
com/en-US/AboutGFW/Pages/DirectX10.aspx.

[21] NVIDIA. Cuda programming guide 1.0, 2007. http://devel-
oper.nvidia.com/object/cuda.html.

[22] J. Pisharath, Y. Liu, W. Liao, A. Choudhary, G. Memik,
and J. Parhi. Nu-minebench 2.0. Technical report, North-
western University Department of Electrical and Computer
Engineering, 2005. http://cucis.ece.northwestern.edu/tech-
reports/pdf/CUCIS-2004-08-001.pdf.

[23] K. Stammetti. Testing the feasibility of running a computa-
tionally intensive real-time traffic simulation on a multicore
programming graphics processor, May 2007. U.Va. SEAS
Senior Thesis.

[24] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota,
A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amaras-
inghe, and A. Agarwal. Evaluation of the raw microproces-
sor: An exposed-wire-delay architecture for ilp and streams.
In ISCA ’04: Proceedings of the 31st annual international
symposium on Computer architecture, page 2, Washington,
DC, USA, 2004. IEEE Computer Society.

[25] G. Vahala, J. Yepez, L. Vahala, M. Soe, and J. Carter. 3d
entropic lattice boltzmann simulations of 3d navier-stokes
turbulence. In Proceedings of the 47th Annual Meeting of
the APS Division of Plasma Phsyics, 2005.

[26] B. Wilkinson and M. Allen. Parallel programming: tech-
niques and applications using networked workstations and
parallel computers. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1999.

[27] Q. Yang and H. Koutsopoulos. Microscopic traffic sim-
ulator for evaluation of dynamic traffic managment sys-
tems. Transportation Research Part C(Emerging Technolo-
gies),4(3), 1996.

10


