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ABSTRACT

An automata processor can execute pattern matching in par-
allel which brings potential to accelerate image recognition.
In this paper, we present a novel process of implementing
image retrieval using multinary representation for use on an
automata framework. Images are encoded into discriminative
and unique regular expression descriptors in such a way
that can be used for classification purposes. The regular
expression descriptors are streamed through sets of non-
deterministic finite automata (NFA). Results show that image
retrieval can be implemented on automata structures that
can achieve dramatic improvement over general purpose
processors or graphics processors in efficiency.

Index Terms— non-finite automata, image retrieval,
pattern matching

I. INTRODUCTION

Image retrieval is still a challenging problem in the
field of image processing. One of the major challenges
of large scale image retrieval is that it requires searching
through large databases where images specific to an object
category may have significant content variations. To capture
the intra-category variation while make the discrimination
between inter-category more prominent, computing discrim-
inative image feature descriptors is a crucial step. Addition-
ally it requires a good classifier or similarity measure to
classify images or compare pairs of images for retrieval.
Both classifier design and similarity based image search
for large scale retrieval are computationally expensive and
consequently, online image retrieval applications require
considerable parallelism. The Automata Processor (AP) is
a new hardware accelerator that can perform highly com-
plex pattern matching applications [1]. It executes parallel
processing of thousands of non-deterministic finite automata
state machines that represent different regular expression
patterns. This is ideal for pattern matching applications
with large datasets, including Brill tagging, bioinformatics,
and machine learning [2]–[4]. For example, the DNA motif
search problem [3] found speedups with AP structure when
compared to conventional methods. This automata frame-
work has the potential to provide acceleration on many
image retrieval applications, particularly those with massive
datasets that require parallelism. In this paper, we establish
a method for image classification that would be able to take
advantage of the AP’s acceleration.

A number of existing methods in the literature develop

Fig. 1. Overview of implementing image retrieval on automata.

discriminative image features to capture the intra as well
as inter-class variations. These works exploit various image
characteristics, such as color, texture, and object shape, to
compute the global image descriptors. The image feature
descriptors are integrated with a similarity or dissimilarity
measure to perform image classification. Other works ob-
tain features using local image information. Some of the
more popular works using SIFT [5], analyze local regions
based on object keypoints to obtain local image features,
while histogram of oriented gradients [6] uses local image
gradients to obtain the feature descriptors. Some methods
aim to increase robustness by aggregating the local features
into histograms [7]. Methods such as the spatial pyramid [8]
achieve robustness by incorporating spatial correspondence
of the local features to compute the final image feature
descriptor.

Dimensionality reduction techniques aim to keep sig-
nificant information such as applying principle component
analysis [9], Fisher vectors, Gaussian mixture model [10]
etc. However, the descriptors are still significantly large and
need appropriate similarity measures to compare features of
images or learn a classifier using class labels associated with
the images.

This paper expands feature descriptor to multinary rep-
resentation and present a matching method for classifying
images on an automata framework. Our method allows for
implementation of image retrieval on the new Automata
Processor (AP). The AP significantly reduces the time it
takes to search large image datasets for retrieval by taking
advantage of the AP’s massive parallelism. We propose
a method in which the feature descriptors are quantized
and encoded to regular expressions and finally incorporated
as state machine in the AP. We compare the efficiency
of this classification method with current state-of-the-art
image retrieval methods on the CPU [11], and show how
our multinary representation method could be exploited to
acquire faster and better image retrieval accuracy.



Fig. 2. Example on automaton: Finding the word [Dd](o|ough)nut
from input text.

II. AUTOMATA PROCESSOR

The Automata Processor (AP) is a scalable hardware
accelerator that can execute thousands of non-deterministic
finite automata in parallel by finding regular expression
patterns in an input data stream. Users can program automata
structures and load them onto the hardware.

Automata on the processor are made up of state transition
elements (STE) that are programmed to match on individual
symbols or arbitrary character classes. In addition, the AP
board also contains Boolean elements, such as AND, NAND,
OR and NOR, and counter elements. The counters can
activate an STE or report when they reach the threshold
specified by the user. These elements are connected through
a programmable routing network. As STEs match, they
activate successor nodes. The final STE of an automaton is a
reporting STE which reports when the state machine reaches
an accept state. The first-generation AP is a PCI-Ecpress
accelerator with an offload model mediated by a driver, but
the board can also be programmed to raise interrupts when
report bits are set. An chip holds 49K STEs, and the first-
generation boards have 32 chips, so an AP board holds up to
1536K STE. It is important to note that the input stream is
fanned out to all active APs across the board. In other words,
all active STEs inspect a new input symbol every cycle. This
means that thousands of state machines can be executed in
parallel, where the input character gets sent through every
clock cycle [1].

Figure 2 shows a simple example of an automaton on the
AP. The first STE in the machine is matched when a ”D”
or ”d” is put through the input data stream. Once an STE is
matched it activates the next STE. This automaton reports if
either spelling of doughnut is found.

III. IMAGE SIMILARITY USING MULTINARY
REPRESENTATION

The AP has potential speed up on image retrieval ap-
plications with massive datasets by performing a massive
number of image matching operations in parallel. To take
advantage of this framework, images/image features need to
be encoded into regular expressions or loaded onto the AP of
its other programming modalities [12], [13]. These strings of
characters which represent an image or a particular category
of images are ultimately encoded as state machines on the
automata. Test images are streamed as input and classified
to an image category. Instead of using a similarity measure
to classify feature descriptors, this image retrieval method
may require exact matching of state machines. However,

in Section IV, we propose a method to relax the need for
exact matching, but in both scenarios the image descriptors
must be highly distinctive. Figure 1 shows the overview of
our method of implementing image retrieval on automata
structures. The two crucial steps for image retrieval on
automata are to extract discriminative features and mapping
the features as regular expressions. Once different image
categories have unique regular expression patterns, they can
be represented as automata.

III-A. Feature Extraction
In the literature, both global and local image features

have been employed for the task of image classification.
Features extracted from local image regions are often ag-
gregated in some manner to obtain a global feature [7],
[8]. The features extracted form the images can be used
for both supervised and unsupervised image classification.
For unsupervised image classification, along with extracting
discriminative feature descriptor, a robust similarity measure
is also necessary. Based on the type of feature being used,
or the type of feature encoding used, different similarity
measures may be preferred. For example in [8], a histogram
matching kernel was implemented on spatial pyramid fea-
tures. Whereas in [14], sparse codes are compared using a
compression-based similarity measure. For supervised clas-
sification, a robust classifier needs to be designed, which
again demands modeling of proper classifier functions. Im-
plementing the retrieval on AP can be an advantage in
this context. Since the AP only allows for matching based
on regular expressions, once the feature descriptors of the
images are extracted, a robust mapping of the features
to regular expressions is the only requisite, in contrast to
designing case-specific similarity measures or classifiers.

III-B. Encoding Feature Descriptors to Regular Expres-
sions

Once a discriminative feature descriptor is attained for
every image, the descriptors are encoded into regular ex-
pressions before compiling them into state machines. Since
the automata does not take in floating point numbers, the
descriptor values are binned to 8-bit characters using this
equation. The range of the bins are divided equally and
correspond to the minimum and maximum feature descriptor
ranges. The regular expression descriptor is derived by

Ri = char(yi ∗ (β/k)) (1)

where i is the length of the descriptor, y is the image
descriptor, k is the range of descriptor values for that method,
and β is the number of characters used.

IV. IMAGE RETRIEVAL ON THE AP

Automata are created for each category within a dataset
from the regular expression descriptor of the training im-
ages, and these are loaded onto the AP board. The regular
expression descriptors of the test images are then computed
as a preprocessing step, and then sent as an input data
stream to be matched in parallel with each candidate de-
scriptor on the AP board. The test image is classified to
the category with the most automata matches. Since the AP



Fig. 3. An example of automata with regular expression patterns
with threshold.

requires exact matching, a threshold can be applied on the
regular expression patterns on the automata to allow for
more lenient matching. Each STE can allow for up to 8-
bit characters. In the AP, an STE with * symbol means that
any character will match with the activated STE. Here, we
set a threshold by comparing the characters at every index
of the regular expression descriptor of the training dataset.
If there is greater than a percentage of mismatches at that
index then the symbol is hard-coded as * symbol, as shown
in Figure 3. The threshold gives more flexibility in exact
pattern matching without losing significant information. In
the figure, each automata represents a pattern of an image in
the training dataset that is to be matched by the input data
stream.

V. EXPERIMENTS

We evaluate our results with two datasets: ADL dataset
[15], and the Vehicle dataset using two different feature
extraction and representation methods. We compare our
results with SHIRC [15], and SLIDE [14], respectively.

V-A. Evaluation for ADL datasets
The ADL database contains kidney, lung and spleen

tissue datasets with healthy and inflamed tissues. Each
dataset contained about 330 images. Figure 4 shows the
major challenge for each dataset is the slight dissimilarity
between healthy and inflamed tissues. For each organ, 115
images per class are used for training and 40 images per
class are used for testing.

For this dataset, we use a Gabor bag-of-words method
to represent the feature descriptor. 32 Gabor features were
extracted from 1910 generated superpixels of every tissue
image. A codebook was trained via k-means clustering with
k=500 centers to then attain a histogram descriptor for every
image, size R1×500. The regular expression descriptors of all
the training images are concatenated. If there are X images
in the training dataset, then there would be X automata of
length 500. The descriptor values for the first dataset range
from [0,1]. These descriptors have an unknown non-linear
distribution where most of the values lie close to 0 and a few

Healthy Kidney Inflamed Kidney

Healthy Lung Inflamed Lung

Healthy Spleen Inflamed Spleen

Fig. 4. Samples of three ADL organ tissue datasets: (a) kidney (b)
lung and (c) spleen.

values very large arbitrary values. This is a challenge when
matching with the automata because it requires exact pattern
matching, rather than using a similarity measure between the
descriptors. To aid this, a threshold is set for the allowable
mismatches at each index of the descriptor using 250 ran-
domly chosen training images. Figure 5 shows the effect
of the threshold for allowable mismatches on classification
accuracy with T=10%, 20%, and 30%. For every dataset, a
threshold of T=10% reported the best accuracy.

Table I shows a confusion matrix using our method
at a 10% threshold in comparison with the simultaneous
sparsity model for histopathological image representation
and classification (SHIRC), which is a sparsity model that
learns a dictionary for RGB color channels [15]. There are
three confusion matrices for each of the organ datasets.
The class label on that row represents the class the test
image actually belongs to, and the column is the class
the method classified it to. The bold numbers are the true
positives attained using our retrieval method. The method
deployed on the automata framework does not do better in
most cases. However, the lower performance was largely due
to unclassified images since our method uses exact pattern
matching.

Fig. 5. Performance for the kidney, spleen, and lung datasets when
the threshold for allowable mismatches is set to T= 10, 20 and 30
%.



Table I. Confusion Matrix for ADL Dataset
Kidney Lung Spleen

Class Healthy Inflamed Healthy Inflamed Healthy Inflamed
Gabor w/ Superpixels Healthy 61.3 38.7 63.6 36.4 64.6 35.4

Inflamed 32.5 67.5 47.3 52.6 24.4 75.6
SHIRC [15] Healthy 92.0 8.0 91.0 9.0 90.8 9.2

Inflamed 16.3 83.7 28.6 71.4 30.6 69.4

V-B. Evaluation for Vehicle dataset

The vehicle dataset contain four categories-airplane, car,
motorbike, and ships with 70, 50, 70, and 36 images,
respectively. The images were obtained partly from Google,
Caltech-101 dataset [16] and the Inria GRAZ02 dataset [17].
The sample images are shoen in Figure 6, There are a
few challenges with this dataset. Within each category, the
objects are variable in rotation, color, size and type. The car
images have varying frequency of objects in a single image.
Some images also have low contrast between foreground
and background which makes it difficult to extract objects
features. Superpixels were generated on every image to
mitigate this challenge by grouping the image into segments
based on spatial and color information. For each image, a
dictionary was learned from the HOG descriptors using the
following minimization.

X = argmin
D,x

‖Y −DX‖22 s.t.∀i, λ‖x‖0 ≤ e (2)

The HOG descriptor represents the input signal, Y ∈
R60×1200, which is represented as linear combination of
dictionary, D ∈ R60×500, while minimizing the reconstruc-
tion error. X are the sparse codes for the signal Y, and e is
the sparsity constraint [18]. The values of the atoms range
from [-1,1] and are encoded into regular expression patterns
without a threshold. Each dictionary atom in the training
dataset are represented as automata on the AP. The dictionary
atoms of the test images are sent through the input data
stream to be matched. Thus the learned dictionary atoms
are used as image features for this dataste. A test image is
classified to a category for which maximum number of atom
matches to that category’s automata.

The retrieval-accuracy results using an automata frame-
work for both datasets are given in Table II and are com-
pared with state-of-the-art methods implemented on similar
datasets. Image retrieval on an automata framework per-
formed significantly better when using dictionary atoms as
descriptors than when using Gabor bag of words descriptors.
Retrieval using regular expressions still did slightly worse
than the SLIDE method for the vehicle dataset.

Table II. Overall retrieval performance
Method Acc. (%) Runtime (s)

Gabor w/ Superpixelson ADL dataset using AP 63.2 2.967e-5
SHIRC [15] on ADL dataset 80.5 .55

HOG w/ Superpixels on Vehicle dataset using AP 79.5 .06

V-C. Run-time Comparison

The computational cost of image classification on an au-
tomata framework was computed using a run-time estimation
as explained by the authors in [19]. The AP processes a
new, 8-bit input symbol every clock cycle and is stalled by

Airplane

Motorbike

Car

Ship

Fig. 6. Vehicle dataset with four categories: (a) airplane (b)
motorbike (c) car and (d) ship.

40 nanoseconds in an output buffer every time it reports.
The run-time estimation for the AP is calculated to take
[(16 + 40p + l)] ∗ 7.5 nanoseconds to run, where 16 is the
inital setup latency, p is the number of output vectors per
cycle, l is the number of STEs reported in that cycle, and
7.5 ns is the clock cycle. The computational cost for both
datasets deployed on the AP are compared to the runtime of
comparison methods, as shown in Table II. The comparison
only reports the time it takes to classify the descriptors. The
SHIRC method takes .55s to classify one image running in
Matlab on a 64-bit Windows 7 system equipped with Intel
Core i72600 3.4-GHz processor and 8 GB RAM [15]. We
compute the classification run-time in each method for one
image and see a significant speedup.

VI. DISCUSSION

There were several notable discoveries and challenges in
our work that can be improved on in future work. Over-
all, our experiments show that multiple feature extraction
methods can be encoded into regular expressions and used
to implement image retrieval on an automata framework.
However, because the AP methods do not yet achieve state-
of-the-art accuracy, our results suggest a trade-off between
speed and accuracy. The reduced accuracy may be acceptable
in applications requiring significant speedup. However, this
work is just the first step in exploring potential feature
descriptors and mappings for automata processing. While the
accuracy of image classification with regular expressions has
not reached current state-of-the-art accuracy, there is clear
room for future work to achieve improvement.
Feature Extraction. The second experiment shows that
more discriminative descriptors are simpler to implement on
exact matching automata and attain better retrieval accuracy.
Future work includes combining feature extraction methods
and reducing to a discriminative representation.
Mapping distributions. As in the first experiment, the
feature descriptor may not have a known distribution which
is a challenge when encoding the descriptor to regular



expressions. The experiment demonstrated manipulation of
automata STE symbols to aid this challenge. There are
other potential methods to encode these descriptors such that
information is not lost and thus improve performance. Non-
linear feature descriptors may be more efficiently encoded
to regular expressions by using kernel mapping methods.
Image Matching on the AP. We showed a method of
matching on an automata framework where images are
classified based on how many automata they match. Further
manipulation of AP elements and re-configuring automata
structures that do not require exact descriptor matching can
be applied. This could improve accuracy and reduce run-time
of image retrieval applications [20].

VII. CONCLUSIONS AND FUTURE WORK
The Automata Processor allows potential accelerating

pattern matching applications in image retrieval. In this
paper, we proposed a process for encoding an image to
regular expressions for implementation of image retrieval
on an automata framework. The process requires acquiring
discriminative feature descriptors and encoding them into
regular expressions. While the accuracy for image classifi-
cation deployed on the AP has not reached that of state-
of-the-art methods, we find a large run-time speed-up. This
motivates further work to identify feature descriptors and
encoding methods that are more effective for automata
implementations. This work could also be extended to mul-
timodal classification using multiple feature extraction and
mapping methods.
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