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Abstract

Graphics processing units (GPUs) have attracted enormous interest over the past decade

due to substantial increases in both performance and programmability. Programmers can

potentially leverage GPUs for substantial performance gains, but at the cost of significant

software engineering effort. In practice, most GPU applications do not effectively utilize all

of the available resources in a system: they either fail to use use a resource at all or use

a resource to less than its full potential. This underutilization can hurt both performance

and energy efficiency. In this dissertation, we address the underutilization of resources in

heterogeneous CPU-GPU systems in three different contexts.

First, we address the underutilization of a single GPU by reducing CPU-GPU interaction

to improve performance. We use as a case study a computationally-intensive video-tracking

application from systems biology. Because of the high cost of CPU-GPU coordination, our

initial, straightforward attempts to accelerate this application failed to effectively utilize the

GPU. By leveraging some non-obvious optimization strategies, we significantly decreased the

amount of CPU-GPU interaction and improved the performance of the GPU implementation

by 26x relative to the best CPU implementation. Based on the lessons we learned, we

present general guidelines for optimizing GPU applications as well as recommendations

for system-level changes that would simplify the development of high-performance GPU

applications.

Next, we address underutilization at the system level by using load balancing to improve

performance. We propose a dynamic scheduling algorithm that automatically and efficiently
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divides the execution of a data-parallel kernel across multiple, possibly heterogeneous GPUs.

We show that our scheduler can nearly match the performance of an unrealistic static

scheduler when device performance is fixed, and can provide better performance when device

performance varies.

Finally, we address underutilization within a GPU by using frequency scaling to improve

energy efficiency. We propose a novel algorithm for predicting the energy-optimal GPU

clock frequencies for an arbitrary kernel. Using power measurements from real systems, we

demonstrate that our algorithm improves significantly on the state of the art across multiple

generations of GPUs. We also propose and evaluate techniques for decreasing the CPU’s

energy consumption during GPU computation.

Many of the techniques presented in this dissertation can be used to improve the per-

formance and energy efficiency of GPU applications with no programmer effort or software

modifications required. As the diversity of available hardware systems continues to increase,

automatic techniques such as these will become critical for software to fully realize the benefits

of future hardware improvements.
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Chapter 1

Introduction

For much of the history of computing, the steady growth in single-thread CPU performance

has enabled consistent performance improvements without the need for substantial software

changes. Both developers and end users could safely assume that existing software would

execute significantly faster with each new hardware release. Over the past two decades,

however, emerging thermal and power constraints forced an abrupt shift in the microprocessor

industry. Rather than continuing to focus on maximizing the performance of a single thread

running on a single core, designers began to create multi-core processors by integrating

multiple independent cores into a single processor die. As a result, CPU core count has

grown more rapidly than per-core performance, and legacy serial software no longer enjoys

the same robust rate of performance growth. Exploiting concurrency has become essential

for software to use multi-core processors to their full potential and continue to realize the

benefits of semiconductor technology scaling.

One of the best examples of this hardware and software evolution is the Graphics Processing

Unit or GPU. A GPU is a co-processor which the CPU can use to accelerate graphics rendering

applications, such as three-dimensional video games. Traditionally, both the GPU’s hardware

design and software interface have been specialized for three-dimensional rendering, with

limited utility beyond graphics. Demand for ever greater programmability, however, has led

1
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GPUs to become general-purpose architectures, with full-featured instruction sets and rich

memory hierarchies. Software tools such as NVIDIA’s CUDA and the industry standard

Open Compute Language (OpenCL) have made the process of developing general-purpose

GPU applications accessible to a wider range of programmers.

Despite their increasingly general-purpose nature, GPUs are still designed primarily for

efficient graphics rendering. Their design reflects the unique demands of graphics workloads:

unlike many CPU applications, graphics applications are much more sensitive to aggregate

throughput than they are to single-thread performance. As a consequence, GPUs are

significantly more parallel than CPUs at a number of different architectural levels: they have

more independent compute cores, more parallelism within each core, and more connections

between the cores and memory. This massive parallelism provides GPUs with a potentially

enormous performance advantage: the fastest available GPU can provide approximately six

times the memory bandwidth and twenty times the computational throughput of the fastest

available CPU.

In addition to their tremendous performance potential, GPUs are also ubiquitous: all

laptop and desktop computers and many server systems include a GPU, either integrated

into the motherboard or CPU or installed in an expansion slot as a discrete device. Some

consumer systems even include two or more GPUs: in a desktop, multiple discrete GPUs

can execute concurrently to improve performance, while in a laptop, separate integrated and

discrete GPUs can be selected at run time to provide a tradeoff between power consumption

and performance. Supercomputers are also increasingly being provisioned with large numbers

of GPUs: Titan, the fastest supercomputer in the world as of November 2012, contains more

than 18,000 NVIDIA Tesla K20X GPUs [102]. At the other end of the performance spectrum,

smart phones are being outfitted with increasingly powerful GPUs as well, as companies try

to keep pace with the growing demands of graphics-intensive mobile computing applications.

GPU-enabled systems represent one of the most interesting and widespread examples of

heterogeneous systems, in which computational devices of different capabilities are combined
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into a single system. The performance gap between the different devices in such systems

may be large, spanning an order of magnitude or more for many applications. Optimizing

applications for systems with such extreme levels of performance heterogeneity is quite

challenging. Although GPU-enabled heterogeneous systems offer the potential for high

performance and low energy consumption, in practice many applications that leverage them

are wasteful of both performance and energy. This wastefulness is typically a byproduct of

the underutilization of resources.

In this dissertation, we propose and evaluate techniques for addressing the

underutilization of resources in three different scenarios that commonly arise in

heterogeneous CPU-GPU systems. First, we observe that straightforward implementa-

tions of iterative algorithms often result in significant underutilization of the GPU because

interacting with the GPU involves relatively severe software overheads. We present general

techniques for reducing these overheads and improving GPU utilization and performance.

Second, we observe that most GPU applications only utilize one device, even in systems

with multiple powerful devices. We propose a novel, dynamic scheduling algorithm that

automatically load balances an arbitrary GPU kernel across multiple devices, keeping each

device fully utilized and improving the overall performance. Third, we observe that most

GPU kernels only fully utilize either the compute cores or the memory system. We propose a

novel DVFS algorithm for GPUs that slows down the underutilized resource to increase its

effective utilization and improve the overall energy efficiency.

1.1 Leukocyte Tracking

To better understand the challenges and tradeoffs associated with implementing an iterative

algorithm on a GPU, we use as a case study a computationally-intensive video processing

application from systems biology: the tracking of leukocytes or white blood cells. This

application is of significant interest to medical researchers but suffers from performance that
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is far from the desired real-time speed. In this dissertation, we describe in detail our efforts

to dramatically accelerate leukocyte tracking using a GPU-enabled system and make the

following general contributions:

• We highlight performance bottlenecks that reduce GPU utilization, most of them related

to the high cost of CPU-GPU interaction. These bottlenecks are likely to limit the

performance of iterative applications that may be ported to the GPU in the future.

• We discuss in detail algorithmic and programmatic transformations that can be used

by programmers to bypass or ameliorate these bottlenecks. These transformations are

general enough to be applied to a wide range of applications, potentially allowing such

applications to obtain a greater performance benefit from the GPU.

• We provide concrete suggestions for ways in which system architects can reduce the

negative impact of these bottlenecks through both software and hardware modifications.

The implementation of our suggestions would allow programmers to leverage the GPU

more efficiently with less effort.

1.2 Heterogeneous Load Balancing

In a GPU-enabled system, applications requiring high performance will typically target only

the fastest single device during computationally-intense phases. This approach is wasteful

in a system with a powerful multi-core CPU or multiple GPUs, because it leaves the other

devices in the system idle and unutilized. Unfortunately, developing an application that

can effectively utilize all available devices, and do so consistently across a wide range of

diverse systems, is challenging because a device’s execution rate, and thus the optimal work

distribution, is highly application dependent and may vary significantly at run time.

Prior work has proposed load-balancing frameworks that divide work across multiple

devices with minimal programmer effort [50,61]. However, these frameworks either assume
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that every device’s execution rate is equal [50] (i.e., that the hardware is homogeneous) or that

a device’s execution rate does not vary [61]. To overcome these limitations, in this dissertation

we explore dynamic load-balancing techniques and make the following contributions:

• We present a novel dynamic scheduling algorithm for heterogeneous systems that

can load-balance applications automatically with no offline training and can respond

effectively to variations in execution rates at run time.

• We show that our scheduling algorithm nearly matches the performance of the best

possible static partition when device-level performance is fixed and provides better

performance when device-level performance varies.

• We also show that our scheduling algorithm can provide resilience in the face of severe

performance imbalances caused by hardware or software failures or starvation.

1.3 GPU Frequency Scaling

One popular approach for reducing CPU power consumption is based on the observation that

the performance of many applications is limited by the memory system and not the CPU

itself. In such applications, the CPU is underutilized, and we can safely reduce the CPU’s

voltage and clock frequency to decrease power consumption without hurting performance.

This technique is known as dynamic voltage and frequency scaling (DVFS) [106]. The use of

DVFS is predicated on the existence of the necessary hardware support, but typically the

decision about how and when to adjust the clock frequency is delegated to software.1

GPUs present a ripe target for DVFS for two primary reasons. First, the maximum power

consumption of a typical high-end GPU is approximately twice that of a typical high-end

CPU. In many cases, the power consumption of the GPU, especially under load, can represent

the majority of a system’s overall power consumption. Second, unlike CPUs, GPUs typically

1Although DVFS varies both the voltage and the clock frequency, typically it is only the frequency changes
that are made visible to software.



Chapter 1 Introduction 6

allow software to adjust the frequency of both the compute and memory systems. Applying

DVFS in this context is more complicated, because we must first identify which resource in

the GPU is underutilized (the compute or memory system) and then decrease its frequency

to reduce power consumption without impacting performance.

Recent work has extended an existing CPU DVFS algorithm [31] to GPUs and demon-

strated substantial energy savings using a GPU that was released seven years ago [62].

Unfortunately, the proposed algorithm performs poorly on modern GPUs from a different

vendor, resulting in higher energy consumption than simply leaving the GPU’s clock frequen-

cies at their default levels. In this dissertation, we explore novel techniques for reducing the

energy consumption of GPUs using DVFS and make the following contributions:

• We demonstrate that dynamic voltage and frequency scaling (DVFS) can provide

significant energy savings for modern GPUs, using actual power measurements from a

real system.

• Although prior work has shown that, for CPUS, we must make a tradeoff between

high performance and low energy CPUs [27, 31], and the only existing GPU DVFS

algorithm is explicitly designed based on this assumption [62], we show that maximizing

performance and minimizing energy are not conflicting goals for GPUs.

• Based on this key observation, we propose a simple heuristic for predicting the energy-

optimal clock frequencies for an application based only on easily measurable performance

data. Because our heuristic does not require power measurements, it can be applied

immediately to existing commodity systems without the need for special-purpose

hardware.

• We show that our heuristic works well across multiple generations of GPUs, providing

energy savings within 87% of the optimal on average.
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• We demonstrate that the CPU also wastes a significant amount of energy during GPU

execution; we present two techniques for addressing this problem and show that they

can provide significant energy savings.

1.4 Organization

The rest of this dissertation is organized as follows: Chapter 2 provides background information

on the evolution of GPU computing and the increasing importance of energy efficiency,

Chapter 3 discusses our experiences accelerating leukocyte tracking, Chapter 4 explores

heterogeneous load balancing, Chapter 5 presents techniques for applying DVFS to GPUs,

and Chapter 6 concludes.



Chapter 2

Background

In this chapter, we discuss three important trends during the past decade: improvements in

the performance and programmability of GPU hardware, the maturation of GPU software,

and the increasing importance of energy efficiency.

2.1 GPU Hardware

In early 2003, the most advanced GPU and CPU from NVIDIA and Intel, respectively, offered

approximately the same theoretical peak single-precision performance. Nine years later,

in 2011, the peak performance of NVIDIA’s most advanced GPU was eight times that of

Intel’s most advanced CPU. GPUs have been able to provide such rapid performance growth

relative to CPUs because GPU workloads are more sensitive to aggregate throughput than

single-thread performance. GPU designers have taken advantage of this fact by replicating

simple processing elements (PEs) rather than using large, expensive cores, and by devoting

much less die area to caches and control logic. Groups of the simple PEs are harnessed

together under SIMD (Single Instruction Multiple Data) control, amortizing the area and

power overhead of the instruction store and control logic. Instead of large caches, GPUs cope

with memory latency with a combination of massive multithreading (thousands of hardware

thread contexts) and higher memory bandwidth. Even if some threads are stalled waiting

8
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for data from memory, there will likely be many other threads that can be executed in their

place. This ensures high utilization and high throughput, but at the expense of increased

latency for any particular thread.

These massive increases in performance have been coupled with increases in the pro-

grammability and flexibility of GPUs [78]. In an effort to allow graphics programs to generate

increasingly realistic images, GPU architectures have evolved from a rigid set of fixed-function

pipeline stages into a fully programmable pipeline. Changes include support for more complex

control flow instructions and less rigid restrictions on memory access patterns. In more

recent years, GPUs have also added features specifically for the benefit of non-graphics,

general-purpose computation, such as support for higher-precision floating-point arithmetic

and ECC memory, both critical requirements for many applications, and much lower overhead

global synchronization, which is useful for iterative computations.

As a concrete example of the differences between CPUs and GPUs, Table 2.1 compares

the best available Intel CPU and AMD GPU using a number of different metrics. The

GPU’s massive parallelism is clearly evident in many of these metrics. While the CPU has 10

independent compute cores, the GPU has 32 independent compute units (the rough analog

of a CPU core). A single CPU core has 2 hardware thread contexts, while a single GPU

core has 2,560 thread contexts, up to 64 of which may be active in a single clock cycle. The

GPU can thus have 2,048 threads active concurrently, more than 100 times as many as the

CPU. The difference in peak performance is not quite as high, however, because the CPU

runs at a much higher clock frequency and can perform more computations per thread per

cycle. Overall, the GPU’s peak computational throughput is 21 times higher than that of

the CPU. The GPU has a smaller but still significant advantage when it comes to memory

bandwidth. Because the GPU has three times as many memory channels, significantly wider

memory interfaces, and higher memory clock speeds, it achieves a 6.7 times higher peak

memory bandwidth. It also consumes significantly more power than the CPU, although the
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Intel AMD GPU/CPU
CPU GPU Ratio

Die Size (mm2) 513 352 0.7
Cores 10 32 3.2

Thread contexts per core 2 2,560 1280
Total thread contexts 20 81,920 4096

Active threads per core 2 64 32
Total active threads 20 2,048 102

Core Frequency (GHz) 2.4 1.0 0.4
Peak throughput (GFLOPS/s) 192 4,096 21

Total cache (MB) 33.1 1.4 0.04
Memory channels 4 12 3

Peak memory bandwidth (GB/s) 43 288 6.7
Peak power consumption (W) 130 250 1.9

Release price $4,616 $499 0.11

Table 2.1: Specifications of the top-of-the-line Intel CPU and AMD GPU as of March 2013:
the Intel Xeon E7-8870 [28,29] and the AMD Radeon HD 7970 GHz Edition [6–8].

increase in peak compute and memory throughput is much higher than the increase in power

consumption.

An emerging trend over the past few years has been the combination of a CPU and a

GPU onto a single die. Both AMD and Intel released such processors in 2011, under the

brand names AMD Fusion1 and Intel Sandy Bridge. The CPU and GPU in these fused

designs share a single memory system, unlike the separate memories employed in traditional

discrete designs. Thus, one potential benefit is a much lower or even negligible overhead

in communicating data between the CPU and GPU. However, the major limitation of all

existing fused offerings is that they include relatively weak GPUs, in terms of both compute

throughput and memory bandwidth. This points to a potential limitation of fused designs,

one based primarily on financial rather than technological considerations: it is unlikely that

AMD will release a Fusion chip incorporating a high-performance GPU, because it would

risk cannibalizing sales of its high-end discrete GPUs. Intel might conceivably be free from

such economic constraints, but it does not produce high-performance GPUs. For certain

1For legal reasons, AMD now markets these processors as Accelerated Processing Units (APUs) instead of
Fusion processors.
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applications, the reduced data transfer overhead outweighs the longer computation time and

a Fusion GPU can thus provide a speedup over a more powerful discrete GPU [30]. However,

discrete GPUs will likely remain the optimal choice for most applications requiring high

performance.

2.2 GPU Software

The tremendous growth in GPU performance and flexibility has led to an increased interest

in performing general-purpose computation on GPUs (GPGPU) [78]. Early GPGPU pro-

grammers wrote programs using graphics APIs. This had the benefit of exposing powerful

graphics-specific hardware, but incurred the programming and execution overhead of mapping

a non-graphics computation onto the graphics API and execution stack. Recognizing the

burgeoning interest in GPGPU, the two largest discrete GPU vendors have released a series of

software tools designed to simplify the development of GPGPU applications. In 2006, AMD

released Close-to-the-Metal (CTM) [91], which, as its name implies, is a low-level interface

for GPU programming that bypasses the graphics API. NVIDIA took a higher-level approach

with its tool, CUDA2 [71], released in 2007. CUDA defines an API for interacting with the

GPU and a C-based programming language for expressing GPU computations.

More recently, the Open Computing Language (OpenCL) has emerged as an industry

standard programming language for heterogeneous computing. Development of the OpenCL

specification was initiated by Apple but is now managed by the Khronos Group, an industry

consortium. The first version of the specification was released in late 2008, with both AMD

and NVIDIA releasing compliant implementations in 2009. AMD has since dropped support

for CTM and thrown its full weight behind OpenCL. A number of other companies, including

Apple, ARM, IBM, Intel have also announced support for OpenCL. Because of this industry-

wide support, OpenCL kernels can run on two important classes of hardware that CUDA

2Officially, CUDA is no longer an acronym, although originally it stood for “Compute Unified Device
Architecture”.
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1 for (int i = 0; i < N; i++) {

2 C[i] = A[i] + B[i];

3 }

(a) Serial implementation.

1 #pragma omp parallel for

2 for (int i = 0; i < N; i++) {

3 C[i] = A[i] + B[i];

4 }

(b) OpenMP implementation.

Figure 2.1: CPU implementations of vector addition.

kernels cannot: CPUs and non-NVIDIA GPUs. The first category includes CPUs from AMD,

ARM, IBM, and Intel; the second includes GPUs from AMD, ARM, and Intel.

2.2.1 GPU Programming Model

CUDA and OpenCL utilize extremely similar programming models. Although we use OpenCL

terminology in the following discussion, CUDA provides equivalent functionality except where

noted otherwise.

The OpenCL system model consists of a host device (a CPU) for running serial portions of

an application and one or more compute devices for running parallel sections. Note that the

two categories are not mutually exclusive3; the host CPU can also act as a compute device.

The host interacts with a device through the OpenCL API, which allows the host to request

the allocation of resources, transfer data between host and device memory, and schedule

commands for execution. Data-parallel computations are expressed as kernel functions that

get executed at every point in an application-defined domain, which can be one-, two-, or

three-dimensional. A single point in the domain is called a work item, and the domain is

sub-divided into groups of neighboring work items called work groups.

As a concrete example, consider how we might parallelize the computation of the vector

sum C = A+B. Figure 2.1a shows a straightforward serial implementation that uses a for

loop to iteratively compute the value of each element of C. Although there are many possible

ways that we could parallelize this computation on a CPU, the simplest approach would

3In CUDA, the categories are mutually exclusive: the only compute device currently supported is an
NVIDIA GPU.
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1 __kernel void add_vectors(float *A, float *B, float *C, int N) {

2 int i = get_global_id (0);

3 if (i < N) {

4 C[i] = A[i] + B[i];

5 }

6 }

Figure 2.2: OpenCL kernel function implementing vector addition.

be to use a high-level programming model like OpenMP [77]. Figure 2.1b shows a basic

OpenMP implementation that parallelizes the for loop using a special pragma statement,

which instructs the OpenMP runtime system to evenly divide the iterations of the for loop

across the available CPU cores or thread contexts.

A common way to transform a serial implementation like this one into a parallel kernel is

to use, with some minor modifications, the body of the for loop as the body of the kernel

function. Figure 2.2 shows the OpenCL kernel4 that results from transforming the serial

vector addition implementation (from Figure 2.1a) in this manner. Recall that the kernel

body encodes the behavior of each work item. In line two, each work item first determines its

location i in the domain (in this case, a one-dimensional domain) using a built-in OpenCL

function. If this location corresponds to a valid vector element (i.e., it is not beyond the end

of the vector), then the work item computes a single value of the result vector in line four.

Note that this is certainly not the only possible way to implement vector addition as a kernel

function. For example, each work item could compute the values of multiple elements in the

result vector, rather than only computing a single element.

How a kernel gets mapped onto hardware depends on the type of processor being used. On

a CPU, a work group gets mapped onto a single CPU thread; the thread iterates through the

set of work items, executing them sequentially. Parallelism is achieved by mapping different

work groups onto different CPU cores. On a GPU, a work group gets mapped onto a SIMD

4For simplicity, we only show the kernel function here. We omit the corresponding host code which would
be responsible for transferring the input vectors to the GPU, invoking the kernel (with the correct number of
work items), and transferring the output vector back to the CPU.
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core, which executes multiple work items concurrently. Parallelism is thus achieved both

within a single work group and across multiple work groups that get mapped onto different

GPU cores.

A group of work items that executes together is called a wavefront on AMD GPUs and a

warp on NVIDIA GPUs and consists of 64 or 32 work items, respectively.5 Although it is

possible to write a correct kernel without taking this information into account, in many cases

it is impossible to achieve high performance without doing so. In particular, control-flow

divergence or memory divergence (work items accessing non-contiguous memory locations)

within a wavefront or warp can have severe performance consequences.

The size of the work group is set by the programmer, but an upper limit is determined

by the compute device being used; work groups on the latest AMD and NVIDIA GPUs, for

example, can contain no more than 256 and 1,024 work items, respectively. Synchronization

and communication are only allowed within a work group6, not among different work groups,

and work groups may be executed in any order. Together these two properties, limited work

group size and independence of work groups, help ensure scalability by setting an upper limit

on the number of work items that might need to communicate.

2.3 Energy Efficiency

Energy has long been a first-class concern in portable, battery-powered systems. It is only in

more recent years that the energy consumption of desktop and server systems has become

an important consideration. Although performance is still king in many domains, energy is

increasingly considered a hard design constraint if not a metric to be optimized. When we

optimize solely for energy, we are attempting to maximize energy efficiency, often expressed

as the number of operations per joule. We can alternatively jointly optimize for performance

5Note that a warp or wavefront is not the same as a work group: the former is a byproduct of the way
that GPU hardware is implemented while the latter is an explicit software construct.

6There is one exception: atomic operations can be used for global synchronization, but only when the
number of work groups is small enough that all are simultaneously active, which is typically not the case.
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and energy by trying to minimize metrics such as the energy delay product (ED) or energy

delay squared (ED2). Note that optimizing for energy is not the same as optimizing for power;

techniques that decrease power often also reduce performance and can thus lead to an overall

increase in energy. For example, decreasing power consumption by 2x at the cost of a 3x

increase in total execution time leads to an overall 3
2

= 1.5x increase in energy.

Energy is of particular concern in large-scale systems; for example, the majority of the

total cost of ownership of a supercomputer is due to the cost of purchasing electricity to

power the system [87]. Los Alamos National Laboratory recently announced that Roadrunner,

the fastest supercomputer in the world as recently as June 2009 [101] and still one of the

25 fastest supercomputers as of November 2012 [102], has been decommissioned because

its energy efficiency was insufficient “to make the power bill affordable” [60]. The power

consumption of computing equipment is not the only concern; approximately half of the

energy used by a data center is consumed by other components, such as the power delivery

and cooling systems [20]. Reducing the power consumption of the computing equipment can

have a commensurate impact on the power consumption of these other components. As the

number of data centers as well as their individual energy consumptions both continue to

grow, data centers represent an ever-larger fraction of total global energy usage: data center

power usage doubled from 2000 to 2006 and already represented 1.5% of the total electricity

usage in the United States as of 2006 [20].

One important step on the road to enabling improvements in energy efficiency has

been the development of industry standard power management interfaces, of which the

Advanced Configuration and Power Interface (ACPI) [2] is the best example. ACPI provides

a mechanism by which software (typically the operating system) can make tradeoffs between

the performance and power consumption of the various components in a system. ACPI

defines different performance states (P-states), which reduce power at the expense of lower

performance, and different sleep states (C-states), which reduce power at the expense of

higher latency before a device is returned to an active state. The mere existence of these
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low power states does not guarantee energy efficiency, however; software must decide how to

leverage the various states judiciously in order to reduce energy while maintaining acceptable

performance.

Related to energy efficiency is the concept of energy proportionality, the notion that the

amount of energy consumed by a system should be proportional to the amount of work it

completes [10]. Although the vast majority of computers are most energy efficient at higher

utilization, they unfortunately spend most of their time underutilized and thus in a less

energy-efficient state. Note that proportionality and energy efficiency are related but distinct

concepts: proportionality simply means that a system’s energy usage is proportional to its

utilization but says nothing about its energy efficiency at any particular utilization. We

might argue that, for systems with varying utilization, energy proportionality is a necessary

but not sufficient condition for energy efficiency.

The two sources of power consumption in integrated circuits are dynamic power and static

power. Dynamic power is due to transistors switching on and off and is therefore directly

related to the utilization (or activity factor) of a circuit. Static power, on the other hand, is

primarily due to undesired leakage current which flows even when a transistor is nominally

off. Leakage current has increased substantially as process technologies have shrunk, and is

also exponentially dependent on temperature [47]. This temperature dependence can result

in a positive feedback loop, because temperature is also dependent on power consumption.

Decreasing temperature, in addition to decreasing leakage power, decreases cooling costs and

often improves reliability.

Another source of wasted power consumption in a computer system is the power supply,

which is responsible for converting the high-voltage AC input signal into multiple low-voltage

DC output signals to power the various components in the system. This conversion process

is not perfectly efficient and results in wasted power. The efficiency of a power supply is

typically an increasing function of its load, except at loads near the power supply’s maximum
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rated load, where efficiency typically decreases. A decent modern power supply can achieve

efficiencies of at least 80% at loads ranging from 10% to 100% of its maximum rated load [34].

We discussed earlier the performance implications of leveraging GPUs; a GPU can also

provide substantial energy savings. This is because a high-end GPU can provide more than

an order of magnitude higher peak compute performance than a high-end CPU while only

dissipating around twice as much power. Thus, GPUs may be attractive regardless of whether

our goal is to maximize performance or minimize energy.



Chapter 3

Case Study: Leukocyte Tracking

This chapter discusses our experiences parallelizing a computationally intensive application

from the field of systems biology: the detection and tracking of rolling leukocytes (white

blood cells) in in vivo video microscopy of blood vessels [33,81]. Tracking leukocytes provides

researchers with important information about the inflammatory response of the vascular

system. Unfortunately, manual tracking is a tedious process, requiring on the order of tens of

hours of manual analysis for video from a single experiment [81]. Automated approaches to

the detection [33] and tracking [81] of leukocytes obviate the need for manual analysis, but are

computationally expensive, requiring more than four and a half hours to process one minute

of video on state-of-the-art hardware. Significantly reducing the execution time of these

automated approaches would help accelerate the process of developing anti-inflammatory

medications.

This particular application was targeted for acceleration partially because it demonstrates

an urgent need for dramatic speedups. More importantly, however, it is a useful case study

because it illustrates many of the issues that other applications will face in trying to leverage

many-core systems. It is a complex application that presents nontrivial software engineering

challenges and is representative of a much broader class of applications. The application’s

execution time is dominated by a number of widely used operations, such as stencil-based

18
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operations (specifically feature extraction and image dilation) and an iterative solution

procedure. Both operations are widely used in image processing and the last operation is

widely used in high performance computing.

The detection and tracking algorithm was originally implemented in MATLAB [33,81].

We first reimplemented the entire application in C, which resulted in a significant performance

improvement. We further improved the performance by accelerating the most computationally

demanding stages using CUDA1 and, for comparison, OpenMP. Relative to the original

MATLAB implementation, we achieved an overall speedup of 200x using a desktop system with

an NVIDIA GeForce GTX 280 GPU, compared to a speedup of 7.6x on the fastest available

multi-core CPU system. These speedups demonstrate the advantages of the throughput-

oriented nature of GPUs. Additionally, we have identified a number of bottlenecks, in both

hardware and software, whose elimination would enable even more significant speedups and

simplify the development of efficient CUDA applications.

In addition to the substantial speedup, the main contribution of this chapter is to describe

in detail the algorithmic transformations needed to reduce the overheads associated with a

separate coprocessor. These overheads are particularly acute with iterative algorithms such as

iterative solvers. The best implementation required abandoning the canonical parallelization

strategy suggested in the CUDA literature, in which each output value is computed by a

separate thread. We also propose changes to CUDA’s software and hardware architecture

that would provide better support for applications with fine-grained interleaving of serial and

parallel regions.

The work presented in this chapter was completed in early 2009. Some aspects of GPU

hardware and software have evolved significantly since that time, and some of the observations

we make here have become less relevant with time. This is discussed in greater detail in

Section 3.7.

1OpenCL did not yet exist at the time this project was initiated. We have since ported the application to
OpenCL as well.
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3.1 Leukocyte Detection and Tracking

Leukocytes, or white blood cells2, play an important role inside the body, acting as the

body’s defense mechanism against infection and cellular injury. Much effort has been invested

in studying the way leukocytes carry out this role in the process of inflammation. The

most commonly used statistic predicting the level of cell recruitment during inflammation

is the velocity distribution of rolling leukocytes [36, 82]. Knowing this distribution can

aid researchers in understanding the mechanisms behind leukocyte rolling and arrest in

order to create effective inflammation treatments. As a result, researchers investigating

anti-inflammatory drugs need a fast, accurate method of attaining these measurements to

test the validity of their treatments.

Currently, the velocity distribution is measured manually. Researchers go through hours

of video data frame-by-frame, marking the centers of rolling leukocytes at an average rate

of several minutes per leukocyte [3, 36, 82]. To obtain a valid estimate of the leukocyte

velocity distribution, hundreds of cells must be tracked. This process requires many tiresome

hours and, like any human action, involves a certain amount of observer bias. Automatically

tracking cells addresses both of these problems and allow researchers to focus more on the

problem of creating treatments and less on the tabulation of data. Furthermore, the possibility

of real-time leukocyte detection and tracking would open new avenues for experimentation by

allowing a researcher to vary experimental parameters until appropriate results are obtained,

rather than conducting many different experiments separated by periods of data tabulation

and analysis.

Automatic detection is accomplished using a statistic called the Gradient Inverse Coefficient

of Variation (GICOV) [33]. The GICOV measures the mean outward gradient magnitude

along a closed contour divided by the standard deviation of the same. In the implementation

used here, the contours are restricted to circles of a known range of radii. In the first image of

a sequence, detection is performed on the whole image, because leukocytes may be present at

2We use the terms leukocyte and cell interchangeably in this chapter
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Figure 3.1: Still image from an intravital video of a mouse cremaster muscle. On the left
is the original image; on the right is the result of automatic detection with the leukocytes
outlined.

any location in the frame. Following the initial detection, subsequent detections only need to

be performed in a small window at the entry side of the venule in order to detect leukocytes

entering the field of view.

After detection, an active contour (snake) algorithm is used to track the boundary of

each leukocyte from frame to frame using a statistic called the Motion Gradient Vector Flow

(MGVF) [81]. The MGVF is a gradient field biased in the assumed direction of the movement

of the leukocytes (i.e., the direction of blood flow). This active contour method works well

in the cluttered, contrast-varying scene encountered in intravital microscopy. The snake is

tailored to the leukocyte model and is constrained to prefer circular shapes of a radius near

the average radius for leukocytes of a given species.

The images used for detection and tracking are of leukocytes found in vivo, that is, within a

living organism. The video used in this chapter was made using intravital microscopy, filming

the cremaster muscle of a mouse. This muscle is particularly thin, making it transparent, and

is filled with post capillary venules. Part of a frame from such a movie is shown in Figure 3.1.

These intravital images present a salient challenge for automated image analysis.

The particular video used in this work is a 640 x 480 uncompressed AVI file. The actual

blood vessel being analyzed only occupies approximately a third of each frame, so a frame is

cropped to a 218 x 480 sub-frame before detection is performed. The cropping boundary is

hard-coded for all performance measurements, although in practice it would be designated

manually by the user in the first frame. During the tracking stage, only a small, fixed-sized
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area around each cell is analyzed, so the performance of the tracking stage is a function of

the number of cells being tracked rather than the size of the frame. The video was recorded

at 30 frames per second (FPS), so achieving real-time analysis would require processing each

frame in 1/30th of a second.

3.2 Accelerating the Detection Stage

In order to automatically detect leukocytes in an image, three operations are performed.

First, for each pixel in the image, the GICOV score is computed for circles of varying radii

(stencils) centered on that pixel, and the maximum of those scores is output into a matrix.

Second, this matrix is dilated3, which simplifies the process of determining if the GICOV

score at a given pixel is the maximum within that pixel’s neighborhood. Third, for those

pixels which have locally maximum GICOV scores, an active contour is used to refine the

initial circle and more precisely determine both the location and the shape of the leukocyte.

Previous work implemented both the detection [33] and tracking [81] stages of the algorithm

using MATLAB. In the detection stage of that implementation, the GICOV computation

and dilation take 36.7% and 28.2% of the overall execution time, respectively. In our C

implementation of the algorithm, these two operations further dominate the execution, taking

59.1% and 39.2% of the execution time, respectively. The C implementation is essentially

a line-by-line translation of the MATLAB implementation and provides a speedup of 2.0x

on the detection stage. To further improve the performance of the C implementation, we

accelerated the critical operations using OpenMP and CUDA. The OpenMP acceleration was

achieved with the introduction of two simple pragmas. The CUDA acceleration was more

complex, starting with a straightforward translation and then applying increasingly complex

optimizations. The speedups achieved by the C, OpenMP, and CUDA implementations of

the detection stage are shown in Figure 3.2.

3Dilation takes as input an M ×N matrix and a stencil or neighborhood, and outputs an M ×N matrix
in each which each element i is the maximum of all of the values in the neighborhood of i in the input matrix.
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Figure 3.2: Speedup of the different implementations of the detection stage over the original
MATLAB implementation.

Execution times for all implementations were measured on a machine running Ubuntu

version 7.10 with a 3.2 GHz quad-core Intel Core 2 Extreme X9770 processor and an NVIDIA

GeForce GTX 280 GPU, with NVIDIA driver version 177.67 and CUDA 2.0. The original

implementation was executed in MATLAB version 7.6.0.324. The C code was compiled using

GCC version 4.2.3 and the CUDA code was compiled using NVCC version 0.2.1221. The first

access to the CUDA API incurs a non-negligible delay due to initialization overhead. Because

a real-time implementation would initialize the API before the video capturing begins, and

because this delay can vary significantly between different runs, we started measuring the

execution time after a dummy call to the API.

3.2.1 Comparison to OpenMP

A popular approach to parallelizing programs on shared-memory machines is the OpenMP

standard [77]. In order to provide a point of comparison to our CUDA implementations, we

have also parallelized the leukocyte detection using OpenMP. Specifically, the for loops in

the GICOV computation and dilation functions that iterate over the pixels in the image were

augmented with a parallel pragma. This transformation was trivial because the for loops

contain no inter-loop dependencies. The OpenMP speedups for two, three, and four threads
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are shown in Figure 3.2. With four threads, the OpenMP implementation achieves speedups

of 6.2x and 3.1x over the original MATLAB and C implementations, respectively.

3.2.2 Näıve CUDA Implementation

The CUDA implementations parallelize exactly the same loops as in the OpenMP approach.

The code inside the nested for loops in each function was converted directly into a kernel

function, and the domains of the kernel functions were defined to be the pixels in the image;

in other words, each CUDA thread was assigned the computation for a single pixel. This

straightforward CUDA implementation achieves a 5.9x speedup over the original C version.

3.2.3 CUDA Optimizations

Although the näıve CUDA implementation achieves a non-trivial speedup over the sequential

version of the application, it was written without taking into account the unique architecture

of the GPU. A number of optimizations were applied to the original CUDA implementation

that significantly improved its performance. Each optimization is described in turn. Note

that the optimizations are cumulative, meaning that once an optimization has been applied,

it remains in effect in all subsequent optimizations. However, they are independent of each

other and could be applied in any order. For each optimization, we also note its applicability

to programs parallelized using OpenMP.

Constant Memory: Many of the arrays accessed by both kernels are read-only and

relatively small. Thus, they can be allocated in the GPU’s special-purpose constant memory

address space, which allows them to be cached on-chip. Accomplishing this change in CUDA

is trivial, but it allows the code to achieve a speedup of 6.8x over the original C version and

1.16x over the näıve CUDA version. This optimization is not applicable to the OpenMP

version, since CPU architectures do not provide such special purpose address spaces.

Texture Memory: GPUs also employ another special-purpose address space for texture

memory. Like constant memory, texture memory only supports read-only data structures.
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Data structures mapped to texture memory can take advantage of special hardware on the

GPU which provides a small amount of on-chip caching and slightly more efficient access

to off-chip memory. By moving the large arrays accessed by the two kernels into texture

memory, the application achieves a speedup of 7.8x over the original C version and 1.15x

over the previous CUDA version. As texture memory is an architectural feature of GPUs,

this optimization is not applicable to the OpenMP version.

Array Ordering: The two largest arrays accessed by the GICOV kernel were originally

allocated in row-major order. The memory access pattern of the kernel resulted in threads

within the same warp accessing non-contiguous elements of the arrays. Allocating the arrays

in column-major order allows threads within the same warp to access contiguous elements,

which can significantly improve performance due to the GPU’s ability to coalesce multiple

contiguous memory accesses into one larger memory access. With this optimization, the

detection stage achieves a speedup of 21.7x over the original C version and 2.8x over the

previous CUDA version. Programs using OpenMP on many-core CPUs such as Sun Niagara

2 [69] and Intel Larrabee [92] can benefit from this optimization, as it makes more efficient

use of the L1 data cache and memory bandwidth when working on many data points in

parallel. It does not impact the running time of our OpenMP implementation, however, as

each heavyweight core processes a single data point at a time and can fully buffer the array

in the L1 cache in both layouts.

One-Pass Variance: For each point in the image, the GICOV kernel computes the sum

of a function at 150 different points and then computes the variance of the function across

those same points. This two-pass approach is inefficient because it requires storing the 150

intermediate values, which requires spilling those values to global memory4. The variance

can instead be computed in a single pass using a relatively straightforward algorithm [107].

This optimization provides an overall speedup of 29.7x over the original C version and 1.37x

over the previous CUDA version. We experimented with this optimization in the OpenMP

4Another option would be to spill to the on-chip shared memory. Because the shared memory is small,
however, this approach reduces the number of threads per core and reduces overall performance.
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Implementation Slowdown

Näıve CUDA 1.78x
Constant Memory 1.96x

Array Ordering 1.49x
One-Pass Variance 1.88x

Table 3.1: Slowdown of the double-precision versions of the different CUDA implementations
of the detection stage relative to the original, single-precision versions.

version and observed no speedup, since the L1 cache in each CPU core is large enough to

buffer the 150 intermediate values.

3.2.4 Single- vs. Double-Precision Performance

Early releases of CUDA only supported single-precision floating point arithmetic due to the

limitations of the underlying hardware. Recent releases of CUDA, however, fully support

double-precision arithmetic as a result of the hardware support offered in NVIDIA’s most

recent GPUs, such as the GeForce GTX 280 used in this work. There is an important caveat,

however: although each core in the GTX 280 contains its own single-precision floating point

ALU, the double-precision floating point ALUs are actually shared among 8 SMs. Thus, for

compute-bound kernels, switching from single- to double-precision should reduce performance

by approximately a factor of eight.

The original MATLAB and C implementations use double-precision values throughout the

application. For the results presented earlier, the CUDA implementations use single-precision

values in the two GPU kernels but retain the use of double-precision values in the rest of the

computation. Four of the CUDA implementations5 described above were also reimplemented

using double-precision values. The resulting slowdown of those versions compared to the

original single-precision implementations are shown in Table 3.1. The increase in execution

time due to the use of double-precision values ranges from about 1.5x to 2.0x. These results

5The Texture Memory version could not be implemented using double-precision because the underlying
hardware does not support double-precision textures.
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suggest that the application is memory-bound rather than compute-bound, because the

switch to double-precision doubles the application’s memory bandwidth requirements.

For many applications, using single- instead of double-precision values can obviously

impact the final results. For leukocyte detection, however, this turns out not to be the

case. Most importantly, for the first frame of the video analyzed here, the number of cells

detected by the single- and double-precision CUDA implementations (specifically the one-pass

variance versions) are the same. More surprisingly, the x- and y-coordinates of those cells are

equivalent out to 13 decimal places in both versions. This is more than enough precision for

this application, since the final results are only meaningful in terms of integer pixel locations.

It might be objected that it is unfair to compare the performance of the single-precision

CUDA implementations to the double-precision CPU implementations, and that perhaps

we should use single-precision values in the CPU versions as well. However, it turns out

that the performance of the CPU implementations do not improve if we use single-precision

values in the GICOV computation and dilation steps. This is because, as in the CUDA

implementations, the rest of the application uses double-precision values, and these inputs

must first be cast to single-precision values before the computations can proceed. This

overhead negates any speedup due to the faster single-precision arithmetic.

3.3 Accelerating the Tracking Stage

After the locations of leukocytes in frame i have been determined by the detection stage of

the algorithm, this information is used by the tracking stage to determine the new locations

of those same leukocytes in frame i+ 1. These updated locations are then fed back into the

tracking stage to determine the new cell locations in frame i + 2. This process continues,

with detection typically performed once every 10 frames.

In each frame, all cells can be processed independently. For each cell, the algorithm only

analyzes a fixed-sized portion of the frame (41x81 pixels for the particular leukocytes studied
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Figure 3.3: Speedup of the different implementations of the tracking stage over the original
MATLAB implementation.

in this work), centered around the cell’s location in the previous frame. This explicitly limits

the maximum velocity at which a cell can be successfully tracked. Within the sub-image of

interest, two operations are performed. First, the Motion Gradient Vector Flow (MGVF)

matrix is computed via an iterative Jacobian solution procedure. The solver iterates until

it has met a convergence criterion, which is a function of all of the elements in the matrix.

Second, an active contour minimizes an energy function defined on the MGVF matrix and

computes the new location of the leukocyte.

In the original MATLAB implementation of the tracking stage, 93.5% of the execution

time is spent in the iterative solver. In the C implementation, the iterative solver consumes

essentially all (99.8%) of the overall execution time. The C implementation provides a

speedup of 2.0x over the MATLAB implementation. As with the detection stage, we further

accelerated the tracking stage using OpenMP and CUDA. The execution time of each of

the different implementations was measured on the same system as described in Section 3.2.

The speedups achieved by the C, OpenMP, and CUDA implementations over the original

MATLAB implementation are shown in Figure 3.3.
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3.3.1 Comparison to OpenMP

Accelerating the tracking stage with OpenMP was a relatively straightforward transformation.

Since each cell being tracked can be processed in parallel, we simply added a parallel

pragma to the for loop that iterates over all of the cells. Because the number of cells is

small (generally less than 50), this approach would not be effective if we attempted to scale

the OpenMP implementation to a much larger number of processors. For the hardware on

which we benchmarked the implementation, however, the decomposition was good enough to

achieve nearly linear scaling. The OpenMP speedups for two, three, and four threads are

shown in Figure 3.3. With four threads, the OpenMP implementation achieves speedups of

7.7x and 3.8x over the original MATLAB and C implementations, respectively.

3.3.2 Näıve CUDA Implementation

Because the execution time of the tracking stage is dominated by calls to the iterative

solver, which in turn is dominated by calls to a regularized version of the Heaviside function,

the first CUDA implementation simply replaced each call to the Heaviside function with

a call to a Heaviside CUDA kernel. In this implementation, each element in the output

matrix is computed by a single thread. Although the overall kernel execution time is slightly

less than one second, the memory allocation and copying overheads add more than eleven

seconds to the overall execution time. Due to these overheads, this implementation achieves

a 2.6x slowdown compared to the original C implementation (and is actually slower than the

MATLAB implementation). Parallelizing the OpenMP implementation at the granularity of

individual calls to the Heaviside function similarly resulted in a significant slowdown.

3.3.3 CUDA Optimizations

As with the detection stage, a number of optimizations were applied to the näıve CUDA

implementation of the tracking stage in order to improve its performance. For each implemen-



Chapter 3 Case Study: Leukocyte Tracking 30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Naïve CUDA Larger Kernel Reduced

Allocation

Partial

Reduction

Full Reduction

(2 Kernels)

Full Reduction

(1 Kernel)

Persistent

Thread Block

P
e
rc
e
n
ta
g
e
 o
f 
E
x
e
c
u
ti
o
n
 T
im
e

0

2

4

6

8

10

12

14

O
v
e
ra
ll
 E
x
e
c
u
ti
o
n
 T
im
e
 (
s
e
c
o
n
d
s
)

Kernel Execution Memory Copying Memory Allocation Other

Figure 3.4: Impact of different overheads on the execution times of the CUDA implementations
of the tracking stage. Each bar shows, starting at the bottom, the percentage of execution
time due to: executing the CUDA kernels, transferring memory between the CPU and GPU,
allocating memory on the GPU, and executing the other, non-CUDA related code. The line
indicates the overall execution time of each implementation.

tation, Figure 3.4 shows the overall execution time, as well as the fraction of the execution

time devoted to kernel execution, memory copying, memory allocation, and non-CUDA

related code. Note that the optimizations are again cumulative, but unlike in the detection

stage, they are mostly dependent on one other, since they change how and when memory is

allocated and when data is moved to and from the GPU.

Larger Kernel: In the näıve implementation, the Heaviside kernel is called eight times

during each iteration of the solver. In order to reduce the memory allocation and copying

overhead and the number of kernel calls as well as increase the amount of useful work

performed in each kernel call, the entire body of the inner loop was converted into a single

CUDA kernel. As in the previous implementation, each element in the output matrix is

computed by one thread. Applying this optimization yields an overall speedup of 3.1x over

the original C implementation and 8.1x over the previous CUDA implementation. Recall

that the OpenMP implementation is parallelized across the cells being tracked; if we instead
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parallelize it across the individual matrix elements in the iterative solver, as is done here for

the CUDA implementation, the OpenMP implementation actually becomes 24% slower.

Reduced Allocation: Allocating and deallocating memory on the CPU via the C

standard library functions malloc and free is a relatively low overhead operation. Allocating

and deallocating memory on the GPU via the CUDA library functions cudaMalloc and

cudaFree, however, is considerably more expensive. On the system used in this study, we

measured the overhead of cudaMalloc to be approximately 30-40 times greater than the

overhead of malloc (and significantly higher for memory sizes larger than a few megabytes)

and the overhead of cudaFree to be approximately 100 times greater than the overhead of

free. This overhead is readily apparent in Figure 3.4 for both the näıve CUDA and larger

kernel implementations, whose execution times are dominated by memory allocation.

In order to minimize this overhead, instead of allocating and freeing memory on the

GPU once each iteration of the solver, initialization and cleanup functions were added to

allocate memory a single time at the start of the iterative solver and then free memory at

the end. Applying this optimization yields an overall speedup of 12.6x over the original C

implementation and 4.0x over the previous CUDA implementation. Note that even if the C

standard library memory allocation functions were as expensive as the CUDA equivalents,

the overhead would be negligible in the OpenMP implementation because it does not allocate

memory within the iterative solver loop.

Partial Reduction: After each iteration of the solver, the average of the absolute value

of the change of each matrix element is computed in order to check for convergence. In the

previous CUDA implementation, the entire MGVF matrix is copied back after each iteration,

and the reduction is performed entirely on the CPU. In order to improve the performance of

the reduction, the kernel was extended to perform a partial reduction, in which each thread

block6 computes the sum of the absolute value of the change of each matrix element within

that thread block. With a thread block size of N threads, this reduces by a factor of N

6A thread block is the CUDA equivalent of an OpenCL work group.
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both the amount of memory copied from the GPU to the CPU as well as the number of

additions required by the CPU to perform the reduction. Since typical values of N in CUDA

applications are 128 and 256, performing a partial reduction on the GPU can result in a

substantial performance improvement. In this application, applying the optimization yields

an overall speedup of 20.3x over the original C implementation and 1.60x over the previous

CUDA implementation. This and the next two optimizations do not apply to the OpenMP

implementation because it does not transfer data between disjoint memory spaces.

Full Reduction (2 Kernels): In order to further reduce the reduction and memory

copying overheads, a second CUDA kernel was added to complete the reduction on the GPU.

This allows the copying of the partial sums to be replaced by the copying of a single Boolean

value indicating whether or not the computation has converged. However, this approach does

not improve performance significantly because, although it does reduce the amount of data

copied, it does not reduce the number of copies performed. At data sizes less than about four

kilobytes, the latency of a memory transfer is essentially constant regardless of the amount of

data transferred.

Thankfully, performing the entire reduction on the GPU enables a further optimization.

Instead of having the host code on the CPU check the convergence flag after each iteration,

the computation kernel can be modified to check the value of the flag and exit if convergence

has already been achieved. This allows the computation and reduction kernels to be called

as many times as desired without the need to explicitly copy the convergence flag and

without impacting the correctness of the results. In other words, this allows the main

loop of the iteration to be unrolled to an arbitrary degree. In our experiments, performing

about 30 back-to-back kernel calls before copying the convergence flag resulted in the best

performance. Applying these optimizations yields an overall speedup of 26.9x over the original

C implementation and 1.33x over the previous CUDA implementation.

Full Reduction (1 Kernel): Although the previous optimization reduces the overall

execution time, it actually increases the absolute execution time devoted to kernel execution,
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due to both the increase in computation performed by the kernels as well as the doubling of

the number of kernel calls. To reduce the kernel overhead, the computation and reduction

kernels can be merged into a single kernel. However, we must be careful about the ordering

of the computation and reduction in the merged kernel. A seemingly reasonable approach

would be to compute the updated MGVF matrix at the beginning of the kernel and then

perform the reduction at the end of the kernel. Unfortunately, this would require the use of a

global memory fence in order to ensure that all thread blocks had finished their computations

before the reduction was performed, and CUDA does not provide such a fence except across

kernel calls.

To avoid this potential deadlock, in each kernel call we first perform a reduction on the

values produced by the previous kernel call. Only then do we proceed to compute the next

iteration (if the computation has not already converged). Applying this optimization yields

an overall speedup of 30.2x over the original C implementation and 1.12x over the previous

CUDA implementation.

Persistent Thread Block: In the previous implementation, about 24% of the time spent

by the application waiting for kernel execution is due to the overhead of kernel invocation,

with only 76% of the time due to actually performing useful work on the GPU. To reduce

the overhead of kernel execution, we can perform all of the iterations in a single kernel call.

As mentioned earlier, CUDA only provides a per-thread-block memory fence, not a global

memory fence. Thus, in order to perform all of the iterations in a single kernel call, we must

perform all of the computation for one cell within a single thread block. Since a single thread

block can contain no more than 512 threads, and there are more than 3,000 elements in

the MGVF matrix, we must abandon the one-to-one mapping between threads and matrix

elements that is typically used in CUDA kernels. Instead, within each iteration, the single

thread block traverses the entire matrix, computing a subset of the matrix in each step.

For performance reasons, it is desirable to maintain the current state of the matrix in the

fast on-chip shared memory, rather than the slow off-chip global memory. Additionally, for
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programming simplicity, it would be desirable to maintain two matrices, one containing the

old state computed in the previous iteration and the other containing the new state being

computed in the current iteration. These two copies would allow the thread block to produce

the correct result regardless of the order in which it traverses the matrix. Unfortunately,

shared memory on current NVIDIA GPUs is only 16 KB, and the matrix is more than 13

KB, so only one copy of the matrix can be maintained. To ensure that all computations only

read matrix values from the previous iteration, the thread block traverses the matrix from

the top down and writes the new values into a buffer (the size of the buffer is equal to the

number of threads in a thread block). At the end of each step, each thread writes the value

from the buffer into the matrix in the location from the previous step. Thus, the updates to

the matrix are effectively delayed by one step, ensuring that every thread always uses the

correct value from the previous iteration.

If we simply modify the kernel to perform all of the iterations for a cell in a single kernel

call but still process the individual cells sequentially, the application will not effectively take

advantage of the GPU’s parallel computation resources and the resulting performance will

be significantly worse than the previous implementation. However, since each cell now only

requires a single thread block, it makes sense to process all of the cells concurrently, with

one thread block allocated for each cell. The entire tracking stage for one frame can then

be completed with a single kernel call. Implementing this optimization yields an overall

speedup of 105.2x over the original C implementation and 3.5x over the previous CUDA

implementation. Note that the OpenMP parallelization uses essentially the same approach,

but with only a single thread processing each cell rather than an entire thread block.
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Figure 3.5: Overall rates at which the four implementations can detect and track leukocytes.

3.4 Discussion

The final CUDA implementation of the detection and tracking algorithm provides a speedup

of 80.8x over the single-threaded C implementation7. Even assuming perfectly linear scaling,

matching the performance of this CUDA implementation with the OpenMP implementation

would require about 80 CPU cores equivalent to the cores used in our experiments. Given

the choice to obtain the same speedup by purchasing either 20 quad-core processors (and

associated hardware) or a single GPU, the most cost-effective choice is clearly the GPU. Of

course, in practice we have been unable to achieve perfectly linear scaling with OpenMP

on this problem due to the relatively small sizes of the computations involved, and in all

likelihood we would be unable to match the performance of the GPU with any number of

additional CPU cores.

All of the performance results presented so far have been expressed relative to the

performance of other implementations. To provide a sense of how close each implementation

comes to achieving real-time analysis, Figure 3.5 shows the number of frames of video

7To compute the performance of the entire application, we assume that detection is performed once every
ten frames. Thus, the average time to process one frame can be estimated by (D + 9T )/10, where D and T
are the average times to perform detection and tracking, respectively, on a single frame.
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that each implementation can process per second. While the MATLAB, C, and OpenMP

implementations cannot even process a single frame per second, the CUDA implementation

can process more than twenty. Given the increases in GPU performance expected in the next

few years, real-time detection and tracking of leukocytes at 30 FPS appears realizable in the

near future with commodity hardware.

3.4.1 Lessons for Software Developers

Many of the difficulties we encountered in achieving good performance with the GPU were

due to inherent assumptions that we made about the costs of certain operations. These

assumptions break in the context of GPU computing: launching a kernel is approximately

three orders of magnitude more expensive than calling a CPU-side function; GPU memory

allocation functions are around three orders of magnitude slower than their CPU counterparts;

transferring a single byte between the CPU and GPU is as expensive as transferring 8 kilobytes;

global synchronization requires the costly invocation of an entirely new kernel; and slightly

irregular access patterns that would be efficiently captured by a CPUs cache can lead

to disastrous performance on the GPU. Achieving good performance in the face of these

invalidated assumptions can require programmers to make non-trivial changes to the manner

in which an application is parallelized. Later we will suggest ways in which system architects

can significantly reduce or even eliminate some of these bottlenecks, but here we focus

exclusively on techniques that allow CUDA application developers to bypass these bottlenecks

to some extent.

Reduce Kernel Overhead: We have shown earlier that the overhead of launching a

kernel can severely impact the performance of a CUDA application. This is clearly evident

when we compare the performance of the näıve CUDA implementations of the two different

stages of the algorithm. In the detection stage, the most natural decomposition was at

a coarse-grained level, resulting in only two kernel calls per frame. In the tracking stage,

however, the most natural decomposition was at a much finer-grained level, resulting in
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approximately 50,000 kernel calls per frame. As a result, only 0.1% of the time spent

waiting for the execution of the GICOV kernel in the detection stage is caused by the kernel

invocation overhead, with 99.9% of the time spent performing actual computation on the

GPU. Conversely, 73.1% of the time spent waiting for the execution of the Heaviside kernel

in the tracking stage is caused by the kernel overhead, with only 26.9% of the time spent

performing actual computation. Thus, regardless of how much we were able to improve the

performance of the Heaviside kernel, we would not be able to reduce the overall execution

time of the kernel by more than 26.9%. In order to reduce the impact of this overhead,

developers should attempt to make their kernels as coarse-grained as is feasible, thereby

increasing the amount of work performed in each kernel call and reducing the total number

of kernel calls.

There is also a performance advantage due to launching many kernels back-to-back. For

example, in both full reduction implementations of the tracking stage, the overhead of kernel

invocation is significantly more severe without unrolling the iterative solver loop. This is

because, in the most recent versions of the CUDA API, kernel invocations are asynchronous.

With unrolling, multiple kernel calls are batched in the GPU driver, and the application

can overlap kernel execution on the GPU with accessing the driver on the CPU. Without

unrolling, there is an implicit synchronization when the convergence flag is copied back to

the CPU after each kernel call, and there is no overlap between kernel execution and driver

access.

Reduce Memory Management Overhead: As mentioned earlier, cudaMalloc and

cudaFree are approximately 30-40 and 100 times more expensive, respectively, than malloc

and free, their C standard library equivalents. The results for the näıve CUDA and larger

kernel implementations of the tracking stage demonstrate this clearly. Allocating memory on

the GPU consumes approximately 72% and 71%, respectively, of the execution times of those

two implementations. The solution here is straightforward: wherever possible, allocate GPU
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memory once at the beginning of an application and then reuse that memory in each kernel

invocation.

Reduce Memory Transfer Overhead: Another inefficiency caused by the disjoint

address spaces of the CPU and GPU is the need to explicitly transfer data between the two

memories. The transfer overhead can be significant: in the reduced allocation implementation

of the tracking stage, memory copying consumes 56% of the overall execution time. To reduce

the severity of this overhead, developers should attempt to perform as much computation on

the GPU as possible. For example, in the partial reduction implementation, the convergence

condition is partially computed on the GPU in order to reduce the memory transfer overhead.

With this change the number of elements transferred decreases from the number of elements in

the matrix (generally 3,321) to the number of thread blocks (52 in this case). It is important

for developers to understand that accelerating a computation using CUDA does not have to be

an all-or-nothing proposition. Even if an entire computation cannot be (easily) implemented

using CUDA, it is possible that offloading only a part of the computation (e.g., part of the

reduction) may still improve the overall performance.

Note also that moving a computation to the GPU may prove beneficial even if that

computation would be more efficiently executed on the CPU. To further reduce the memory

copying overhead of the partial reduction implementation, the two-kernel full reduction

implementation uses a second kernel to finish summing the partially reduced values produced

by the first kernel. Even though the second kernel is invoked with only a very small number

of threads, which certainly perform the reduction significantly slower than would a CPU

thread, the change improves the application’s overall performance because the reduction in

the memory transfer overhead outweighs the increase in computation time. CUDA implicitly

encourages developers to fill the GPU with thousands of threads, so that they are trained

to think that they are wasting the GPU’s computational resources if they use only a small

number of threads. However, as we have seen here, it is sometimes advantageous to accept

computational inefficiency in exchange for a reduction in memory transfer overhead.
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Understand Memory Access Patterns: CPUs are designed to reduce the effective

memory access latency through extensive caching that leverages the temporal and spatial

locality present in most workloads. Thus, a slightly irregular memory access pattern, such as

the one exhibited by the stencil operation used in the GICOV computation, can be successfully

captured by the CPU’s caches. However, that same access pattern may be irregular enough

to prevent efficient utilization of the GPU’s memory bandwidth, because the restrictions on

access patterns that must be met in order to achieve good memory performance are much

more strict on a GPU than they are on a CPU. This is evident in the GICOV kernel of the

detection stage. In the original implementation, the input matrices are allocated in row-major

order, so access would be most efficient if neighboring threads access neighboring elements

from the same row. However, the access pattern actually exhibited by the kernel is that

neighboring threads access neighboring elements from the same column. This explains why

allocating the input matrices in column-major order provides a 2.8x speedup. The same

change in the CPU version does not significantly impact the execution time because the

caches are large enough to capture the entire stencil regardless of the order of traversal.

These access pattern restrictions can be partially relaxed by taking advantage of the

GPU’s special-purpose address spaces. Both constant and texture memory provide small

on-chip caches that allow threads to take advantage of fine-grained spatial and temporal

locality. In addition, texture memory relaxes the alignment requirements that must be met in

order for multiple memory accesses from within the same warp to be coalesced into a single

memory transaction. Another effective approach is to use the software-controlled shared

memory as an explicitly managed cache, which can significantly improve performance when

data elements are frequently reused among threads in the same thread block.

Tradeoff Computation and Memory Access: The GICOV and dilation kernels used

in the detection stage perform relatively simple computations across a large number of

data elements. Thus, their performance is more a function of the GPU’s memory system

performance than its processing performance. It can be beneficial for such memory-bound
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kernels to decrease the number of memory accesses required by increasing the complexity of

the computation. Such a case arises in the GICOV kernel, which at each pixel and for each

stencil computes the variance of a function across the 150 sample points within that stencil.

The original CUDA implementation computes the variance in two passes. Since computing

each point in the function requires accessing global memory, implementing a single-pass

algorithm for computing the variance essentially halves the number of memory accesses.

Even though the single-pass algorithm significantly increases the complexity of the variance

computation, it provides a 1.4x speedup over the two-pass algorithm because the impact

of the reduction in memory usage far outweighs the impact of the increased computational

complexity. Similar transformations are likely to be possible for other memory-bound kernels.

Avoid Global Memory Fences: As discussed earlier, CUDA does not provide a global,

inter-thread-block memory fence. Thus, if multiple thread blocks need to communicate, they

must do so across kernel calls. This would not present a problem if the overhead of kernel

invocation were not so high. In the two-kernel full reduction implementation of the tracking

stage, a global memory fence is needed in each iteration between the matrix computation

and the convergence check. This fence is implemented by creating separate kernels for the

two steps. Unfortunately, this doubles the number of kernel calls, which limits the overall

performance. As described earlier, one technique for reducing the number of kernel calls

is to switch the order of the two steps and combine them into a single kernel, so that the

convergence check occurs before the matrix computation in each iteration. Although this

introduces redundant computation, since the final step in the reduction is performed by

each thread block instead of by a single thread block, the reduction in the kernel overhead

produces an overall speedup of 1.12x over the two-kernel implementation. This technique is

generally applicable to any iterative solver that uses a convergence criterion for early exit.

Although this approach reduces the number of kernel calls by a factor of two, it still

requires the use of a global memory fence after each iteration. This is because there is

a one-to-one mapping between threads and matrix elements, and the number of matrix
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elements is larger than the maximum size of a thread block. The thread mapping scheme

used here is typical in CUDA programs, because CUDA developers are encouraged to make

their threads as fine-grained as possible in order to fully utilize the GPU’s vast computational

resources. However, abandoning this canonical thread mapping and instead using only a single

thread block allows an arbitrary number of iterations to be computed in a single kernel call

without the need for a global fence. As long as there are enough independent computations

(corresponding to individual cells in this work) to occupy most or all of the cores, this approach

can provide significant speedups. Note also that the performance advantage increases as the

number of iterations of the solver increases. Thus, the slower the computation converges, the

more advantageous it becomes to use a single, persistent thread block for each independent

computational unit.

3.4.2 Lessons for System Architects

We have demonstrated techniques for avoiding or mitigating many of the performance

bottlenecks that a CUDA developer may encounter. A more effective approach, however,

would be for system designers to reduce the impact of those bottlenecks or avoid introducing

such bottlenecks altogether. We suggest a number of approaches that a system architect

can take, at both the hardware and software levels, to reduce the amount of effort required

for developers to obtain satisfactory performance. Removing some of the barriers to high

performance will help speed the adoption of CUDA and other GPGPU programming models.

Streamline Memory Management: Perhaps the simplest bottleneck to address would

be the slow memory management provided by the CUDA API. As noted earlier, the

cudaMalloc and cudaFree functions are significantly slower than the equivalent C stan-

dard library functions, malloc and free. If the CUDA memory allocation functions were

as fast as the equivalent C standard library functions, the larger kernel implementation of

the tracking stage would provide a 2.5x speedup over the best OpenMP implementation

instead of the 1.2x slowdown that it actually provides. Thus, with a relatively straightforward
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translation to CUDA and without any complex optimizations, this CUDA implementation

would have been adequate to provide better performance than the best CPU implementation.

Reducing the overhead of memory management would both simplify the process of achieving

satisfactory speedups with simple implementations and enable even more impressive speedups

with complex implementations.

The inefficiency of memory allocation may be a byproduct of the fact that most graphics

applications tend to allocate memory both in large chunks and on an infrequent basis. Thus,

there traditionally has been little incentive for the authors of graphics drivers to optimize

the memory management functions. With increased adoption of CUDA and other GPGPU

programming models, it becomes more important to address these inefficiencies.

Provide a Global Memory Fence: CUDA’s lack of an inter-thread-block global

memory fence forced us to use a non-intuitive implementation strategy in order to achieve

the most significant speedup on the tracking stage. The use of a persistent thread block

runs counter to the standard CUDA development strategy of making threads as fine-grained

as possible. If CUDA provided an inter-thread-block memory fence, the full reduction

implementation could have achieved significantly better performance without the need to

abandon the one-to-one mapping between threads and matrix elements. Assuming that the

overhead of the fence would be negligible in comparison to the overhead of the computation

itself, using a memory fence in the full reduction implementation instead of multiple kernel

calls would speed up that implementation by 1.3x.

Without detailed knowledge of the GPU’s microarchitecture, it is difficult to assess the

complexity of implementing a global memory fence. One required change is clear, however.

In the general case, implementing a global fence in CUDA would require thread blocks that

reach the fence to yield to thread blocks that are still waiting to begin execution, in order to

ensure forward progress when there are more thread blocks than can execute concurrently

on the GPU. Yielding a thread block would require each thread to write its current state to

memory. For small numbers of thread blocks, this would be relatively inexpensive. However,
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the CUDA specification allows a kernel to be invoked across more than four billion thread

blocks of up to 512 threads each. Clearly the GPU’s memory would not be large enough to

store the state for so many threads, and thus an application using a global memory fence

would require a much lower limit on the number of threads per kernel invocation. For many

applications, this would be an acceptable tradeoff.

Add Caches: The GPU’s use of on-chip caches for the constant and texture memory

spaces allows developers to achieve good memory performance for some read-only data struc-

tures even with kernels whose memory access patterns are slightly irregular. Unfortunately,

in order to achieve good memory performance with data structures allocated in the global

memory space, the access pattern restrictions are much more severe. Thus, for data structures

that need to be updated and which are unsuitable for the on-chip shared memory, there is a

significant burden placed upon developers to meet those restrictions. The introduction of

a relatively modest amount of on-chip cache for the read-write global memory space would

substantially reduce the burden on developers of ensuring the regularity of a kernel’s memory

accesses, at the expense of raising coherence issues.

Add a Control Processor: A more substantial architectural change would be to add

to the GPU a small control processor that provides higher single-thread performance than

the underlying throughput-oriented cores. If this core were able to launch kernels, then the

overhead of kernel invocation would be significantly decreased since the latency between the

control processor and the parallel substrate would be much lower than the latency between the

CPU and the substrate. Additionally, applications with non-trivial sequential phases could be

efficiently supported in a more straightforward manner. For example, the reduced allocation

implementation of the tracking stage performs one iteration of the solver on the GPU and

then transfers the current state of the matrix back to the CPU to perform the reduction and

check for convergence. Copying the matrix from the GPU to the CPU consumes more time

than the actual kernel execution. If the serial reduction could instead be executed on the

GPU’s control processor, this memory transfer overhead could be avoided.
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3.5 Related Work

The availability of cheap, high-performance GPUs which can be programmed using a familiar

programming abstraction has led a large number of developers to port their applications

to CUDA. Garland et al. [37] provide a good overview of the experiences and speedups

achieved in a number of application domains. Many developers are working with applications

that are more naturally ported to CUDA because they consist of kernels that perform huge

amounts of work. These developers do not encounter many of the overheads associated

with fine-grained kernels that we explore in this work. Only a few have fully explored the

optimizations necessary to obtain significant speedups.

Automating the exploration of CUDA configurations in order to optimize performance

was explored by Ryoo et al. [90]. The authors of that work do not consider mapping major

data structures to different memory spaces in CUDA or reorganizing their memory layout to

achieve higher performance, and do not explore more complex optimizations such as trading

off the amount of computation done on the CPU and on the GPU. The optimization strategies

of multiple applications and the use of CUDA’s rich memory hierarchy were explored by Che

et al. [23]. However, they focus on applications which have a large amount of work per kernel

call, and thus do not have to deal with the system bottlenecks explored in this work.

3.6 Conclusions

We have shown that leukocyte detection and tracking can benefit greatly from using a GPU.

The algorithms used in the detection and tracking stages, namely stencil computations and

iterative solvers, are also used in a wide range of other application domains, which can all

benefit from the optimizations we have discussed. Overall, the best CUDA implementation

provides speedups of 58.5x and 211.3x on the detection and tracking stages, respectively,

over the original MATLAB implementation and 9.4x and 27.5x over the best OpenMP

implementation. While the MATLAB implementation takes more than four and a half hours
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to process one minute of video, the CUDA implementation can process that same video in

less than one and a half minutes. Put another way, while the MATLAB implementation can

detect and track leukocytes at 0.11 FPS, the CUDA implementation operates at 21.6 FPS.

For video recorded at 30 FPS, continued scaling of hardware resources means that real-time

analysis is almost within reach for inexpensive workstations.

While straightforward CUDA implementations can achieve substantial benefits, especially

with a modest amount of tuning, significant programmer effort can be required to make

full use of the GPU’s potential when irregular memory access patterns or small kernels are

present. Despite this extra effort required to realize the potential of the GPU, the benefits

can be dramatic. Our experiences with CUDA show the power of the GPU as a parallel

platform, and help demonstrate how the variety of many-core platforms that we expect to

see in the future will transform computational science.

3.7 Postscript

As noted earlier, the work presented in this chapter was completed in early 2009. Since that

time, NVIDIA has introduced significant hardware and software changes. In 2010, NVIDIA

introduced a new GPU architecture, Fermi, and followed up with another new architecture,

Kepler, in 2012. On the software front, NVIDIA has released three new major versions of

CUDA.

To better understand the impact of the hardware and software improvements that have

taken place over the last four years, we measured the performance of the leukocyte tracking

application on one of the highest-performance CPUs and one of the highest-performance

GPUs available as of early 2013. We ran the application on a 16-core, 2.6-GHz AMD Opteron

6282 SE CPU, which has four times as many cores as the CPU used in the results presented

earlier. The overall CPU performance improved by 2.8x from 0.83 FPS to 2.33 FPS, which

is still 12.9x slower than the 30 FPS required for real-time processing. The improvement
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in CPU performance is due to the increased parallelism (i.e., the larger number of cores);

the performance of the serial C implementation is essentially unchanged. We also ran the

application on a NVIDIA Tesla K20, a Kepler-series GPU. The overall GPU performance

improved by 1.9x from 21.6 FPS to 41.4 FPS, easily achieving real-time processing. Overall,

the GPU’s performance advantage relative to the CPU has narrowed from 26.0x to 17.8x.

Many of the system-level changes we suggested in Section 3.4.2 have since been imple-

mented in one form or another. The changes, and their impact on the optimization strategies

discussed earlier, are as follows:

• A global memory fence instruction8 was introduced in CUDA 2.2.1 in May 2009 [73]. We

can leverage this instruction to complete the tracking stage in a single kernel call (per

cell) without resorting to the relatively complex persistent thread block implementation.

Preliminary investigations suggest that such an implementation can provide significantly

better performance than the fastest non-persistent-thread-block implementation, but is

still significantly slower than the persistent thread block implementation.

• Readable and writeable L1 and L2 caches were introduced in the Fermi architecture and

have persisted in Kepler. The addition of these general-purpose caches has made the

use of the special-purpose address spaces (constant and texture memory) less necessary

for high performance for many kernels.

• Although NVIDIA has not added a control processor to their GPUs, they have added

the ability for one kernel to launch another kernel. This capability could potentially be

leveraged to reduce the overhead of launching many kernels back to back. However,

launching multiple kernels in this way loses one of the advantages of using separate

8Note that this new instruction is not a global barrier, as we assumed when discussing a hypothetical
global memory fence instruction in Section 3.4.2. Instead, once this instruction returns, all of the writes to
global memory by the calling thread are guaranteed to be visible to all other threads. This instruction could
be used in conjuction with other instructions to implement a global barrier, although such an implementation
would be subject to the same limitations we discussed earlier.
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kernel invocations: the implicit global memory fence between successive kernels. This

limitation can be overcome, but it significantly increases the implementation effort.

In addition, a number of architectural changes unrelated to the suggestions we made

earlier have also been introduced. For example, both the Fermi and Kepler architectures

include larger shared memories than previous architectures. The persistent thread block

implementation of the tracking stage could take advantage of this increased capacity to

process larger cells and/or use a more natural double-buffering implementation with two full

copies of its matrix.

A major new version of the PCIe standard, version 3.0, was released in November 2010,

although the first GPU supporting PCIe 3.0 (the AMD Radeon HD 7970) was not released

until January 2012. Relative to PCIe 2.0, PCIe 3.0 approximately doubles the peak transfer

throughput between the CPU and the GPU. The latency for small transfers, however, is

essentially unchanged. Because the leukocyte tracking application mostly uses small transfers,

the benefits of upgrading to a system (motherboard and GPU) supporting PCIe 3.0 would be

minimal. Additionally, the overhead of allocating memory and launching kernels has changed

little in the past few years. Almost all of the advice we provide for developers in Section 3.4.1

is still quite relevant. Much of this advice can now be found in NVIDIA’s Best Practices

Guide [74], which was first published in July 2009.

Most of the overhead of launching a kernel on a GPU is due to software overheads.

A kernel dispatch request must be processed by multiple levels of software: the CUDA

or OpenCL runtime, the user-mode graphics driver, and finally the kernel-mode graphics

driver. Accessing the kernel-mode graphics driver is particularly expensive. The proposed

Heterogeneous System Architecture (HSA), being developed by AMD and other member

companies of the HSA Foundation, aims to reduce this overhead by allowing user-mode kernel

dispatch for integrated GPUs [52]. This change will not help applications running on discrete

GPUs, like the GPU used in this work, but it may make integrated GPUs significantly more

attractive for iterative applications.
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3.8 Publications and Impact

The work presented in this chapter was published at the International Parallel and Distributed

Processing Symposium (IPDPS) in May 2009 [19]. Both CPU and GPU versions of the

leukocyte tracking application have been released as a plugin [13] for the ImageJ image

processing system. Serial, OpenMP, CUDA, and OpenCL versions of the application are

included in the Rodinia benchmark suite [54]. Further analysis of the Rodinia applications,

including the leukocyte tracking application, was published at the International Symposium

on Workload Characterization (IISWC) in both 2009 and 2010 [22,24]. The Rodinia suite

has been downloaded more than 1,000 times and cited by other researchers more than 200

times. The leukocyte tracking application, along with other applications in the Rodinia suite,

has also been identified by the SPEC High-Performance Group (HPG) for potential inclusion

in a proposed accelerator benchmark suite.



Chapter 4

Heterogeneous Load Balancing

Most applications running on heterogeneous, multi-device systems, including the leukocyte

tracking application discussed in the previous chapter, target only the single most powerful

device, leaving other devices idle and potentially wasting much of the available computational

power. Unfortunately, developing an application that can utilize all available devices effectively,

and do so consistently across a wide range of diverse systems, is extremely challenging. In

this chapter, we formulate this challenge as a rate matching problem: we must match the

rate at which we send work to each device to the rate at which each device can complete

that work. What makes this problem especially difficult is that a device’s execution rate can

vary widely, both across different applications and within the same application as the state

of the system changes.

Prior work has developed load-balancing frameworks that automatically divide work across

the available devices with little or no extra programmer effort [50,61]. However, these existing

frameworks either assume that all devices in the system provide equal performance [50] or

require a series of offline training runs to determine their relative performance [61]. In this

chapter, we propose a dynamic scheduling algorithm that supports heterogeneous hardware

and requires no offline training. In addition, our proposed scheduler is able to respond to

dynamic performance fluctuations that occur at run time, such as those caused by changes

49
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to a device’s clock frequency. The algorithm first estimates each device’s execution rate by

scheduling a subset of the available work on each device. It then schedules the remaining work

based on this initial estimate. However, by the time it has enough information to schedule

the remaining work, there will likely be some work already scheduled but not yet completed,

so the algorithm must also predict the expected completion time of this work and take that

into account when scheduling.

We focus our attention on applications that execute a single data-parallel kernel at a time,

with the output of the kernel consumed by the host program. Previous work has described

effective approaches for load-balancing applications with multiple concurrently executing

kernels [9, 12, 32, 38, 98, 103] or applications in which a single kernel is run repeatedly and

consumes its own output [1,26]. The challenge in the former case is determining on which

device to execute the entirety of each kernel, while the challenge in the latter case is refining

the work partition in each iteration while taking into account data locality. Solutions to these

challenges do not help in effectively load-balancing the single-kernel applications that we

consider in this chapter.

Although our approach to load balancing is general enough to apply to applications

implemented in many programming languages, here we explore its utility in the context

of OpenCL. We show that our dynamic approach provides consistently good performance:

compared to the best possible static partition, it is on average 9.6% faster in dynamic

conditions and only 2.2% slower in static conditions, without the costly training required

by a real static approach. We also show that our algorithm outperforms existing dynamic

scheduling algorithms designed for load balancing in multi-processor machines.

4.1 Motivation

To motivate the need for heterogeneous load balancing in general and dynamic load balancing

in particular, we use as a case study two OpenCL applications from the AMD Accelerated
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Configuration Time (s) Efficiency

Integrated GPU 0.95 44%
Discrete GPU 0.74 56%

Load Balancing 0.43 97%

Table 4.1: Average execution time and efficiency of Matrix Multiplication for native single-
device execution and load balancing. Load balancing uses a fixed partition with 56% of the
work assigned to the discrete GPU and 44% to the integrated GPU.

Parallel Processing (APP) SDK [4]: Matrix Multiplication and Discrete Cosine Transform

(DCT).

4.1.1 Need for Heterogeneous Load Balancing

In the traditional GPGPU model, sequential or task-parallel control code is run on the

CPU and performance-critical data-parallel code is run on a single GPU. In a system with a

powerful multi-core CPU or multiple GPUs, this model fails to utilize the available resources

fully and wastes much of the system’s overall performance potential. Such systems are

becoming increasingly common as microprocessor vendors incorporate accelerators onto CPU

dies (e.g., AMD Accelerated Processing Units or APUs and Intel Sandy Bridge) and portable

systems are configured with separate integrated and discrete GPUs to provide a tradeoff

between energy efficiency and performance (e.g., AMD Radeon Dual Graphics and NVIDIA

Optimus).

Table 4.1 shows the performance of Matrix Multiplication running on a machine with two

GPUs, one discrete and one integrated. For single-device execution, the discrete GPU was

23% faster than the integrated GPU but reached only 56% efficiency1. By dividing the work

across both devices, we further improved performance by 42% and reached 97% efficiency.

The potential impact of load balancing depends on the relative performance of the devices in

the system: the smaller the performance gap, the larger the potential benefit. However, even

1We define efficiency as the measured throughput divided by the sum of the throughputs of the devices
when executing separately.
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Figure 4.1: Average native, single-device execution time of DCT as the core clock frequency
of the discrete GPU is adjusted.

with relatively large differences in performance, load balancing can still provide non-trivial

speedups.

4.1.2 Need for Dynamic Load Balancing

The optimal division of work depends on the relative computation rates of the devices in a

system, which can vary significantly at run time due to system- or application-level changes.

For example, power or thermal constraints may force the system to scale down the clock

frequencies of one or more devices, or contention from another application may decrease the

performance of one of the devices. Both throttling and contention may occur more frequently

in systems with multiple computational devices integrated into a single package and sharing

a single memory system and power budget, as is the case in an AMD APU.

To demonstrate the impact of dynamic performance variation, Figure 4.1 shows the native

execution time of DCT as we scaled the core clock frequency of the discrete GPU from 800

MHz to 200 MHz. Over this range, the discrete GPU’s execution time increased by 3.04x.

More importantly, the discrete GPU’s performance relative to the integrated GPU fell from a

1.41x speedup to a 2.16x slowdown.
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Figure 4.2: Optimal partition of work between the discrete and integrated GPUs for DCT
over a range of discrete GPU clock frequencies.

Due to this large variability in relative performance, any fixed partition of work that

provides good performance at one frequency will necessarily perform poorly at a different

frequency. Figure 4.2 shows the optimal partition of work at each frequency, which varies from

62% discrete at the maximum frequency to 32% discrete at the minimum frequency. Note

that these partitions were discovered via exhaustive search; in practice, partitions discovered

via more reasonable means may be less efficient.

Figure 4.3 shows the execution time of three of these partitions across the entire frequency

range, normalized to the execution time of the best partition at each frequency. No partition

did consistently well; the best partition on average was the one optimized for 400 MHz, but

it was 13% slower than the optimal in aggregate and 39% slower in the worst case. If we do

not know a priori what frequency will occur most often, or if the set of expected frequencies

spans a wide range, the partition we choose may be far from optimal.

In principle, we could attempt to construct a model that predicts the optimal partition

based on the current clock frequency. Unfortunately, this further increases the training

overhead (and may assume capabilities, such as the ability to adjust clock frequencies, that

are inaccessible to the training infrastructure). Also, frequency scaling is just one source of

performance variability, and it may be difficult or impossible to anticipate all other sources.
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Figure 4.3: Average execution time of DCT for three fixed partitions optimized for different
frequencies, normalized to the best partition at each frequency.

Even sources that we do anticipate (such as contention from other applications) may be

significantly more difficult than frequency scaling to measure and account for.

Instead, we propose a dynamic load-balancing approach in Section 4.3 that can respond

to performance variability regardless of its underlying cause. We show in Section 4.5.2 that

such a dynamic approach can effectively respond to frequency scaling without any special

knowledge or awareness of the underlying cause of the performance variability.

4.2 Related Work

Previous approaches to load-balancing a single kernel differ significantly in the amount of

training they require. The simplest approaches, such as those proposed by Kim et al. [50] and

Moerschell and Owens [66], require no training because they target systems with homogeneous
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GPUs and therefore use a fixed, homogeneous work partition. At the other extreme, Wang

and Ren [105] proposed trying a large number of different work distributions across a CPU

and a GPU to find the most efficient from either a performance or energy perspective. Other

approaches, like Qilin [61] and systems proposed by Shei et al. [95] and Nere et al. [70], use

more modest amounts of training to select the work partition.

All of these approaches generate static work partitions and are unable to respond to

dynamic performance variability. Chen et al. [26] proposed a dynamic approach that uses a

centralized task queue to load-balance across multiple GPUs. However, they focused only on

load-balancing computation, not data; they copied all of the input data to each device and

did not account for this overhead in their results.

Numerous dynamic load balancing approaches for cluster computing exist, such as Dynamic

Resource Utilization Model (DRUM) [100] and Parallel Framework for Unstructured Meshes

(ParFUM) [110]. However, adapting them for use in modern heterogeneous systems would

be non-trivial because they assume that work can be migrated from one processing unit to

another at any time, even after it has begun execution. This assumption fails in the context

of GPU computing, where we must explicitly decide how much work a device will complete

before we can make our next scheduling decision.

A number of recently proposed load-balancing systems support applications with multiple

concurrent kernels [9,12,32,38,59,98,103]. These systems attempt to maximize performance by

determining the best kernel-to-device mapping, either automatically or through programmer

directives, but do not support dividing a single kernel across multiple devices. Our proposed

system, on the other hand, supports either single- or multi-kernel applications. Acosta et al.

and Ma et al. [1,62] have proposed load-balancing systems for iterative applications, in which

the work partition is refined gradually over many iterations of an application. Both systems

always begins with a homogeneous partition and thus do not efficiently support applications

with only a single kernel invocation.
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Many existing load-balancing approaches rely heavily on manual intervention by the

programmer. Extensions to Cg and GLSL (Zippy [35]), CUDA (CUDASA [67]), Intel

Threading Building Blocks (Merge [58]), and OpenCL (Sun et al. [98]) simplify the process

of dividing either a single or multiple kernels across multiple devices, but all require the

programmer to manually specify the work partition. Same Program for All Processors [44]

partitions work semi-automatically, but still requires the programmer to specify manually

the expected relative performance of the devices in the system for a given application. Our

proposed load-balancing algorithm does not require the programmer to aid in partitioning.

Another possible approach to heterogeneous scheduling would be to leverage self-scheduling

algorithms, which were originally proposed for load balancing in large-scale multi-processor

machines. In a self-scheduling algorithm, each processor or device dynamically claims a chunks

of work; once it completes one chunk, it claims another chunk, repeating this process until

no work remains. The self-scheduling algorithms differ in how the size of the chunks of work

change over time: chunk self-scheduling [51] uses a fixed chunk size, guided self-scheduling [80]

uses an exponentially decreasing chunk size, and trapezoid self-scheduling [104] uses a linearly

decreasing chunk size. All three assume that the underlying hardware is homogeneous and

that the primary source of performance heterogeneity is the workload itself. In this chapter,

we consider applications and systems in which the heterogeneity of the hardware vastly

outweighs any heterogeneity in the workload, and our proposed scheduling algorithm is

designed explicitly to account for this. In Section 4.5, we compare the performance of these

self-scheduling algorithms to the performance of our proposed algorithm.

AMD’s CrossFire [5] and NVIDIA’s SLI [72] support the automatic load balancing of

graphics applications across two or more GPUs. With these approaches, each GPU either

renders alternate frames or a portion of each frame (e.g., the top half or the bottom half).

These approaches take advantage of special properties of graphics applications and typically

rely on special hardware connections between the GPUs to achieve maximum performance.

They also are limited in the amount of heterogeneity they can support: they typically do not



4.3 Dynamic Load Balancing 57

support GPUs from different generations nor GPUs from different market segments within

the same generation (e.g., a high-end and a low-end GPU). These approaches do not support

general-purpose kernels, and the algorithms they employ for load balancing are likely too

special-purpose to be worthwhile adapting for general-purpose use.

4.3 Dynamic Load Balancing

Given an OpenCL application and kernel targeting a single compute device, the goal of

our proposed load-balancing approach is to partition the kernel efficiently into chunks of

contiguous work groups and schedule those chunks for execution across multiple devices.

Previous work described the necessary mechanisms for intercepting and transforming OpenCL

API calls to support multi-device execution, automatically determining which data is required

by a given subset of the kernel, and determining in which dimension to partition a multi-

dimensional domain [50]. Here we are concerned only with the actual scheduling of the kernel

executions and data transfers that comprise a chunk.

Informally, our scheduling algorithm works by sending a small portion of the available

work to each device and then using the execution time of that initial work to partition the

remaining work. Before presenting the details of the algorithm in Section 4.3.2, we first

derive equations for estimating the optimal partition of the remaining work based on the

performance of the initial chunks. We focus on load balancing across two devices; however,

the analysis presented in this section is easily extended to more than two devices.

4.3.1 Optimal Partition

To estimate the optimal partition, we must be able to predict the time that will be required

to complete the remaining, unscheduled work as well as the time required to complete any

work that has already been scheduled but has not yet completed. For both quantities, the
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critical parameter is the execution time per work group2 for device i, denoted Ωi. We assume

that the performance observed for the most recently completed chunk is a good predictor of

the performance expected for the next chunk because the amount of work per work group is

constant in most GPU kernels; Section 4.5.3 explores the accuracy of this assumption. Thus,

we compute Ωi as the total execution time (including data transfer time) of the most recently

completed chunk divided by the number of work groups in that chunk. We assume that the

amount of data transferred and data transfer time is the same across all work groups; the

algorithm could be trivially extended to support applications in which this assumption fails.

Assuming there is a chunk currently executing on device i, if Ui is the number of work

groups in the uncompleted chunk and Ti is the elapsed time since that chunk began execution,

we can estimate the remaining time before the chunk completes, λi, as λi = ΩiUi − Ti. If

there are no chunks currently executing, then λi = 0.

Let W be the total number of work groups remaining to be scheduled and Wi the optimal

number of work groups to schedule on device i. Assuming that we schedule all of the remaining

work, then W = W1 +W2; solving for W2 yields:

W2 = W −W1 (4.1)

To minimize execution time, we want both devices to complete at the same time, satisfying

the following3:

Ω1W1 + λ1 = Ω2W2 + λ2 (4.2)

Substituting Equation 4.1 into Equation 4.2 and solving for W1 yields:

W1 =
λ2 − λ1 + Ω2W

Ω1 + Ω2

(4.3)

2For performance reasons, the minimum scheduling granularity is actually much larger than an individual
work group. To simplify the discussion, we compute the optimal partition in terms of work groups.

3To extend this algorithm to N > 2 devices, this single equality would be expanded into a system of N − 1
equalities.
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The number of work groups must be an integer, so instead of W1 we must use dW1e or

bW1c. In extreme cases, the difference in performance between the two partitions may be

large, so we compute the expected completion time for both and use whichever we expect to

finish earlier.

4.3.2 Scheduling Algorithm

We now present the complete scheduling algorithm, parameterized by the variables shown in

Table 4.2:

1. Launch one chunk of size β on each device.

2. When a chunk completes execution on device D:

(a) If all devices have completed at least γ chunks, proceed to step 3.

(b) Otherwise, launch another chunk on D, increasing the chunk size by a factor of δ;

return to step 2.

3. Partition the remaining work using Equations 4.1 and 4.3, sending W1 work groups to

device 1 and W2 work groups to device 2.

The goal of the scheduling algorithm is two-fold: to determine quickly and accurately the

relative performance rates in cases when devices provide similar levels of performance, and

allow the faster device to execute a large amount of work (or even all of the work) without

waiting for the slower device in cases when the devices are significantly imbalanced. The

algorithm begins with relatively small chunks to address the former concern but exponentially

increases the chunk size to address the latter concern. For both cases, we would like to

use a small number of chunks, because, as we saw in the previous chapter, the overhead of

scheduling many small data transfers and kernel invocations would be prohibitive.

For the results presented in this chapter, we set the initial chunk size, β, to 7% of the

total work and the chunk growth rate, δ, to 1.5x; in Section 4.5.4, we explore the impact of
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Parameter Value

β Initial chunk size (fraction of total work) 7%
γ Minimum completed chunks per device 2
δ Chunk growth rate 1.5x

Table 4.2: Load-balancing algorithm parameters.

the initial chunk size and the growth rate on the overall performance. We set the minimum

number of completed chunks per device, γ, to 2 because the performance of the first chunk

is often slightly worse than later chunks and is thus a less accurate predictor of expected

performance.

Current GPUs are non-preemptive, so a kernel cannot begin execution until all previously

scheduled kernels have completed. Thus, any scheduling algorithm that blindly sends a fixed

amount of work to all available devices may wait an unbounded amount of time for that

work to complete. A lack of observed forward progress may be due to a number of different

causes: starvation caused by another kernel, temporary or permanent unresponsiveness due

to software or hardware failures, or a severe performance anomaly. To deal with all of these

scenarios effectively, we extend our algorithm slightly. In the second step of the algorithm, if

device A claims all of the remaining work and device B has not yet completed a single chunk,

we send all of the uncompleted work (including the work already sent to device B) to device

A and no longer wait for device B to complete its work4. We explore the effectiveness of this

approach in Section 4.5.6.

4.3.3 Scheduler Implementation

The previous discussion described the scheduling algorithm at an abstract level. Now we

describe at a more practical level what it means to schedule a chunk on a device.

4In this context, it would be useful to have a mechanism by which an enqueued OpenCL operation that
has not begun execution could be canceled. In the absence of such functionality, we simply “forget” about
the unwanted operations; they may execute at some point in the future but the application’s progress is no
longer gated by their completion.
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Before a set of work groups in a chunk can begin execution on a device, we must ensure

that the input data needed by the work groups is present in the device’s memory. Similarly,

after execution completes, we must ensure that the output data generated by the work groups

is copied back to host memory (assuming that the data is consumed by the host program).

When the scheduler decides to assign a chunk to a given device, it first determines the set

of input and output data consumed and produced by the chunk (this can be accomplished

by analyzing the kernel source code as described by Kim et al. [50]). The scheduler then

enqueues commands to copy any required input data, launch the relevant subset of the kernel,

and copy any generated output data. A callback is registered on the final operation in the

chunk so that the scheduler is re-invoked once that operation completes.

4.3.4 Example Schedule

Figure 4.4 shows a real example of the sequence of operations scheduled by the dynamic load

balancer while running DCT [4]. Here we describe, in chronological order, the steps taken by

the scheduler:

1. The scheduler begins by sending an initial chunk to each device, each representing 7%

of the total work groups available. Each chunk comprises three operations: transferring

input data to the device, invoking a subset of the kernel, and transferring output data

back to host memory.

2. Because the discrete GPU provides higher performance on this application, it completes

its first chunk earliest, at 16 milliseconds. The scheduler sends it a new chunk that is

1.5x as large as the initial chunk.

3. The integrated GPU completes its first chunk at 23 milliseconds. The scheduler sends

a new, larger chunk to the integrated GPU.
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Figure 4.4: Example schedule generated by the dynamic load balancer for the application
DCT. The left and right edges of a box represent the start and end time, respectively, of
a given operation. Upticks indicate the time an operation was enqueued by the scheduler;
downticks represent the time an operation was submitted to a device by the OpenCL runtime.
Each kernel execution is labeled with the percentage of total work groups scheduled in that
chunk.
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Figure 4.5: Optimal static schedule for DCT, discovered via an exhaustive search of all
partitions.
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4. The discrete GPU completes its second chunk at 39 milliseconds. Because the integrated

GPU has not yet completed its second chunk, the scheduler sends a third, even larger

chunk to the discrete GPU.

5. The integrated GPU completes execution of its second chunk at approximately 56

milliseconds. Both devices have now finished two chunks and the scheduler has enough

information to schedule the remaining work. It took the integrated and discrete GPUs

an average of 51 and 35 microseconds, respectively, to finish each work group (including

data transfers and kernel execution) in the most recently completed chunk. Based on

this information alone, we would conclude that we should schedule 59% of the remaining

work on the discrete GPU. But this ignores the time required to complete the chunk

that the discrete GPU is already executing. The scheduler estimates that this chunk

will take 34 milliseconds in total; because 17 milliseconds have already elapsed since

that chunk began execution, the scheduler estimates that the chunk will take another

17 milliseconds to complete. Using Equation 4.3, the scheduler decides to send 47% of

the remaining work (23% of the total work) to the integrated GPU and the rest to the

discrete GPU.

6. This scheduling decision proves to be nearly optimal: both devices complete execution

of their final chunks about 1 millisecond apart, at around 136 milliseconds.

For comparison, Figure 4.5 shows the equivalent static schedule for the same application.

4.4 Experimental Setup

We characterized the performance of our proposed load-balancing approach using the six

OpenCL applications shown in Table 4.3. Five of the applications are from version 2.7 of the

AMD Accelerated Parallel Processing (APP) SDK [4] and one (K-Means) is from version

2.1 of the Rodinia benchmark suite [22]. Each application executes a single kernel at a time,
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Application Data Set

Black-Scholes 12.8M samples
Discrete Cosine Transform (DCT) 6K x 6K matrix
Fast Fourier Transform (FFT) 32K 1K-element vectors
Matrix Multiplication 4K x 4K matrices
Mersenne Twister 29M random numbers
K-Means 800K 34-dimensional points

Table 4.3: Benchmarks and data sets used for evaluation.

and the host program consumes the output of the kernel.5 For each application, we chose

a data-set size close to the maximum size supported by our system. The original version

of FFT supports the processing of only a single vector of 1K elements. To achieve more

reasonable execution times, we modified FFT to support an arbitrary number of vectors.

Although we envision our proposed load-balancing technique being applied in an automated

fashion, as suggested by prior work [50], for this study we manually modified each application

to add support for load balancing. We measured all performance results using the same

version of the application, which can execute natively on a single device or load-balance using

our dynamic scheduling algorithm, the three self-scheduling algorithms discussed earlier, or a

fixed partition.

We define the execution time for a single run as the total time required to transfer input

data to the GPU(s), complete execution of the entire kernel, and transfer output data back

to host memory. Unless otherwise stated, all results represent the average (arithmetic mean)

across 25 runs, with 2 preliminary runs ignored to avoid initialization overheads. Because

K-Means inherently requires multiple kernel invocations, we first averaged its performance

across all of the invocations for a single run and then averaged across 25 separate runs; the

data set we used converges after 20 invocations.

We measured all performance results on a system with an AMD A8-3850 APU (a 2.9-GHz

quad-core CPU and an integrated AMD Radeon HD 6550D GPU) and a discrete AMD Radeon

5K-Means requires multiple invocations of its kernel to converge on a solution, but the output of one
kernel invocation is not directly consumed by the next invocation.
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HD 6670 GPU; we use only the two GPUs for kernel execution. We compiled the benchmarks

with Microsoft Visual Studio 2010 version 10.0.303191.1 and executed them in Windows 7 with

AMD Catalyst version 12.8. All benchmarks use single-precision floating-point arithmetic.

Unless otherwise stated, we ran both GPUs at their default frequencies.

4.4.1 Filtering Performance Anomalies

In the course of our measurements, we frequently observed performance anomalies that caused

unexplained slowdowns of up to an order of magnitude or more for data transfers and, less

frequently, kernel execution. These anomalies occurred most frequently with the dynamic

scheduler, but also occurred repeatedly with the static scheduler and even native execution.

Of course, some performance degradation due to load balancing is expected, especially for

concurrent data transfers that compete for the host memory system. However, we do not

believe these anomalies were caused by contention for three reasons. First, the slowdowns

were significantly more severe than the slowdowns that would be expected (and that we

observed) from memory contention. Second, the anomalies never occurred in FFT, which is

the most transfer-bound application we studied and thus the one in which we would most

expect contention to matter. Third, as noted earlier, the anomalies occurred even during

native execution of some applications, when contention from another device does not occur.

Our investigations strongly suggested that these slowdowns were due to inefficient interactions

among the operating system, graphics driver, and OpenCL runtime.

To ensure that our results reflect differences due to scheduling strategies rather than issues

with constantly evolving systems software, we ignored any runs in which these performance

anomalies occurred. To determine objectively when such an event occurred, we first computed

the transfer and compute throughput6 of each device for each run with a given configuration.

We then determined the best transfer and compute throughput for each device across all

6We compare throughputs instead of execution times because the dynamic scheduler may send different
amounts of work to a given device on different runs, and thus we would expect changes in execution time
even in the absence of fluctuations in the underlying performance.
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Figure 4.6: Normalized throughput of kernel execution and data transfer for the integrated
and discrete GPUs during 100 runs of dynamic load balancing of Black-Scholes. Each of the
four metrics is independently sorted in descending order from left to right; thus, points at
the same location on the X-axis may not correspond to the same run. Using a threshold of
2x, runs in which at least one of the four metrics falls below 0.5 would be thrown out.

runs with a given configuration and discarded any runs in which the compute or transfer

throughput of a device was more than 2x worse than in the best case. We applied this filtering

consistently, regardless of whether we were measuring the performance of dynamic or static

load balancing or native execution.

Figure 4.6 shows the distribution of kernel and transfer throughputs for 100 separate

runs of the worst case: Black-Scholes using dynamic load balancing. The distribution of the

poorly performing metrics is clearly bimodal. The upper-left cluster most likely represents

fundamental performance losses due to contention or other load balancing-related overheads,

while the lower-right cluster represents the performance anomalies we wish to filter out. For

all configurations and applications, including those not shown here, a threshold of 2x reliably
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Native Execution Load Balancing
Application Integrated Discrete Static Dynamic

Black-Scholes 0 0 0 69
DCT 0 0 0 0
FFT 0 0 0 0

K-Means 0 0 0 18
Matrix Mult. 0 0 1 32

Mersenne 35 0 37 35

Table 4.4: Of 100 runs, number of runs discarded using a threshold of 2x.

divides these two clusters; however, some significant performance reductions may not be

filtered out. For example, the transfer throughput to the integrated GPU in Black-Scholes

drops by up to 30% during dynamic load balancing, but any runs with such poor performance

would be filtered out only if one of the three other metrics were below the threshold.

Table 4.4 shows, out of 100 runs, the number of runs for each application and configuration

discarded using a 2x threshold. For DCT and FFT, no results were filtered out, while for

Black-Scholes, K-Means, and Matrix Multiplication, runs were filtered out only for dynamic

load balancing (with the exception of a single anomalous run for the static load balancer on

Matrix Multiplication). For Mersenne Twister, all configurations except native execution on

the discrete GPU were affected essentially equally by filtering. To ensure that we always had

25 runs across which to average, we collected data for more than 25 runs but used only the

first 25 runs that remained after filtering.

4.5 Results

We measured the effectiveness of our proposed dynamic approach to load balancing by

comparing it against the optimal fixed partitions7 in two different cases, in which the

performance of the underlying devices remains fixed or varies. We also compared our dynamic

7More precisely, we mean the optimal fixed partition that schedules at most one chunk on each device. It
is possible that using multiple chunks per device could slightly improve performance in some cases, although
it is more likely to hurt performance if applied indiscriminately. This consideration is outside the scope of
this chapter, and notably has not been considered by prior work that uses fixed partitions.
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approach to the self-scheduling approaches identified earlier. We then characterized the

quality of the dynamic scheduler’s prediction as well as the scheduler’s sensitivity to both

the algorithmic parameters discussed earlier and the data-set size. Finally, we evaluated the

scheduling algorithm’s ability to respond to extreme performance imbalances.

4.5.1 Load Balancing without Variability

We first present results measured with no performance variability; that is, with the performance

of each device fixed. We compare our proposed dynamic approach to the best fixed work

partitioning, discovered via an exhaustive search of all partitions from 0% to 100% in

increments of 1%. This represents an upper bound on the performance of static load

balancing.

Comparison to Static Scheduling

Figure 4.7 shows the overall speedup of both dynamic and static load balancing relative to

single-device execution on the fastest device in the system (the discrete GPU). Overall, the

dynamic scheduler was only 2.2% slower on average than the static optimal across all six

applications. The dynamic scheduler provided an average speedup of 1.48x relative to native

execution, compared to the optimal fixed partition’s average speedup of 1.51x. The dynamic

scheduler’s performance on individual applications fell into three categories:

Faster: The dynamic approach was 6.6% faster on DCT due to better transfer performance.

In a fixed partition, the data transfers occur only at the beginning and end of execution,

meaning that the data transfers to and from the two devices are likely to occur concurrently

and thus be slowed by contention. The dynamic scheduler, on the other hand, spreads out

the data transfers, leading to less contention. This difference in behavior is readily apparent

in Figures 4.4 and 4.5. The two devices transferred data simultaneously 73% of the time for

the fixed partition but only 25% of the time for the dynamic scheduler.
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Figure 4.7: Speedup of dynamic and static load balancing relative to single-device execution
on the discrete GPU. The static load balancer uses the optimal partition, discovered via
exhaustive search. Error bars show the minimum and maximum speedups observed.

Same: The dynamic approach was marginally slower on Black-Scholes and K-Means, by

0.2% and 1.1%, respectively.

Slower: The dynamic approach was slower on FFT, Matrix Multiplication, and Mersenne

Twister, by an average of 6.2%. FFT and Mersenne Twister are highly transfer-bound,

which limits the benefits of load balancing in general: these two applications achieved the

lowest speedups in both the static and dynamic cases. Transfers to the discrete GPU were

significantly slower in FFT and Mersenne Twister for the dynamic scheduler than for the

fixed partitions (by 17% and 20%, respectively) because transfer performance suffers more

than kernel performance when breaking an operation across multiple chunks. Additionally,

for all three of these applications, particularly Matrix Multiplication, the performance of
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Sequential Concurrent
Application Training Training

Black-Scholes 1,806 887
DCT - -
FFT 63 19
K-Means 275 132
Matrix Multiplication 37 16
Mersenne Twister 26 9

Overall (Actual) 738 330
Overall (Normalized) 702 300

Table 4.5: Number of times each kernel must be run before the static approach can overcome
its training overhead and reduce the total execution time relative the dynamic scheduler. We
consider two hypothetical approaches to training: Sequential executes a kernel natively on
each device, one after the other; Concurrent executes a kernel natively on each device at the
same time.

larger chunks is difficult to predict from the performance of smaller chunks, which led to less

efficient dynamic partitioning. This issue is discussed further in Section 4.5.3.

Training Overhead

The raw performance data alone does not tell the whole story. One of the principal advantages

of our proposed dynamic scheduler is that it requires no training. A static scheduler, on the

other hand, must be trained the first time a given application is executed. For the results

shown here, we trained the static scheduler using an exhaustive search of all partitions to

provide an upper limit on the performance of static load balancing. In practice, less costly

training methods would be used, which may result in less optimal fixed partitions. Because of

this training overhead, even when static load balancing is faster than dynamic load balancing,

the static approach may require many runs of the same application before it can overcome

its initial training overhead to provide a lower overall execution time.

Table 4.5 shows the number of runs of each kernel that would be required for the optimal

fixed partition to outperform the dynamic approach if we take into account training overhead.

We consider two hypothetical training strategies, in which the complete kernel (including
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requisite data transfers) is either run sequentially or concurrently8 on the two devices. We

conservatively assume that both training strategies are able to find the same fixed partition

found by the exhaustive search (i.e., the optimal partition). Because the dynamic scheduler

provides better performance on DCT, there is no point at which the static scheduler breaks

even.

The second to last row in Table 4.5 shows the total number of kernel executions that

would be required for the optimal fixed partitions to outperform the dynamic scheduler if we

assume that all six kernels are run the same number of times. Because the different kernels

have execution times that differ by as much as 7x, the overall result is heavily weighted by

the performance on the two longest-running kernels, Black-Scholes and Matrix Multiplication.

To address this, the last row shows how many total kernel executions would be required if all

six kernels had the same (statically partitioned) execution time. In both cases, static load

balancing makes sense only when we are sure that we will run applications hundreds of times.

Comparison to Self-scheduling

Figure 4.8 shows the performance loss, relative to our dynamic scheduler, of the three dynamic

self-scheduling algorithms described in Section 4.2: chunk self-scheduling (CSS) [51], guided

self-scheduling (GSS) [80], and trapezoid self-scheduling (TSS) [104]. For all three algorithms,

we swept either the chunk size (CSS) or the minimum chunk size (GSS and TSS) from 1% to

25% of the total work, in increments of 1%, and report results only for the best parameter

value. Relative to our proposed algorithm, CSS with a chunk size of 21% was on average

3.4% slower, GSS with a minimum chunk size of 22% was 11.2% slower, and TSS with a

minimum chunk size of 4% was 2.7% slower. Artificially increasing the number of processors

in the GSS algorithm (from two to four) to decrease the chunk size, as suggested by Tzen

8We conservatively assume that executing on both devices concurrently does not cause contention. In
practice, contention will slow both devices, resulting in a larger training overhead. Note also that concurrent
training may make the slower device appear faster than it will actually be during load balancing, because
during the end of its execution there will be no contention from the already-completed faster device. Thus,
concurrent training will most likely result in less optimal fixed partitions than sequential training.
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Figure 4.8: Performance loss of self-scheduling algorithms relative to our dynamic algorithm.

and Ni [104], improved the average slowdown of GSS to 3.0% (with a minimum chunk size of

16%).

4.5.2 Load Balancing with Variability

To measure the impact of performance variability, we varied the discrete GPU’s core clock

frequency from its nominal value of 800 MHz down to a minimum of 200 MHz, in increments

of 100 MHz. Although frequency scaling itself may be an important source of performance

variability, it can also be considered a proxy for other sources of performance variability, such

as contention. We used frequency scaling in these experiments because it easily controllable

and repeatable.

We first discovered, via exhaustive search, the optimal fixed partition for each application

at each frequency. We then measured the performance of these fixed partitions as well as
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the dynamic scheduler across the entire range of frequencies. We used as a baseline a static

oracle that always selects the optimal fixed partition at each frequency.

Average Performance

Figure 4.9 shows the execution time for three fixed partitions and the dynamic scheduler, first

normalized to the execution time of the static oracle and then averaged across all frequencies.

The first two fixed partitions are those optimized for the minimum and maximum frequencies,

respectively; the other partition is the one that provides the best average performance (decided

on a per-application basis9).

For Black-Scholes, DCT, and K-Means, the dynamic scheduler provided significantly

better average performance (14% to 20% better) than even the best fixed partition. The

advantage was more modest for Matrix Multiplication and FFT: the dynamic scheduler

was 6.3% and 1.2% faster, respectively. The dynamic scheduler performed the worst on

Mersenne Twister, where it was 3.9% slower than the best fixed partition. With the exception

of Mersenne Twister, the dynamic scheduler was always better on average than the fixed

partition optimized for the discrete GPU’s nominal frequency (800 MHz). Across all six

applications, the dynamic scheduler was on average 9.6% faster than the best fixed partition

and 15% faster than the fixed partition optimized for the nominal frequency.

As mentioned earlier, the execution times of both FFT and Mersenne Twister are

dominated by the time required to transfer data between host and device memory. Because

transfer time is much less sensitive to frequency than is kernel execution, neither application’s

performance suffered significantly when the frequency was reduced. For both applications,

the best static execution time at 200 MHz was only about 16% slower than at 800 MHz,

leaving little room for the dynamic scheduler to improve on the fixed partitions.

9The best overall partition for Black-Scholes, K-Means, and Matrix Multiplication was the one optimized
for 500 MHz; for DCT and FFT, it was the one optimized for 400 MHz; and for Mersenne Twister, it was the
one optimized for 300 MHz.
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Figure 4.9: Average normalized execution time across a range of discrete GPU core frequencies
for three fixed partitions and the dynamic scheduler, relative to the static oracle. The three
fixed partitions are the one optimized for the minimum frequency (200 MHz), the one
optimized for the nominal frequency (800 MHz), and the one that provides the best average
performance.

Across the entire range of frequencies, the dynamic scheduler was never slower than native

execution on the fastest device in the system. The same cannot be said for all of the fixed

partitions. When the discrete GPU was running at 200 MHz, the fixed partition optimized

for the nominal frequency was slower than native execution on the integrated GPU for all six

applications. In fact, for four of the applications, at 200 MHz the partitions optimized for

800 MHz down to 400 MHz were all slower than native execution.

Figure 4.10 shows more detailed results for two fixed partitions and the dynamic scheduler

for DCT. The fixed partitions are a subset of those shown in Figure 4.3. We can see clearly

that while the performance of each fixed partition varied widely over the complete frequency
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Figure 4.10: Average execution time of DCT for two fixed partitions and the dynamic
scheduler, normalized to the best fixed partition at each frequency. The two fixed partitions
are the one that provides the best average performance and the one optimized for the nominal
frequency (800 MHz).

range, the dynamic scheduler provided a much more consistent level of performance. To

achieve good performance with a static approach, we must accurately predict at which

frequency the GPU will typically run to choose an appropriate partition. The dynamic

approach frees us from this burden because it provides good performance regardless of the

specific frequency or, more generally, the relative performance of the underlying devices.

Worst-case Performance

Our analysis so far has focused on average performance. In some scenarios, however, such

as when attempting to meet a real-time target or quality-of-service constraint, we may care

only about the execution time at whichever clock frequency produces the worst performance.
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Figure 4.11: Maximum normalized execution time across a range of discrete GPU core
frequencies for three fixed partitions and the dynamic scheduler, relative to the static oracle.
The three fixed partitions are the one optimized for the minimum frequency (200 MHz), the
one optimized for the nominal frequency (800 MHz), and the one that provides the best
worst-case performance.

Figure 4.11 shows the highest average normalized execution time for static and dynamic

configurations across the entire range of clock frequencies. The best fixed partition in this case

is the one with the lowest maximum normalized execution time, which for all applications was

different from the partition that minimized the average time. For four of the applications, the

dynamic scheduler provided significantly better worst-case execution time than the best fixed

partition (19% to 33% better). Performance was less impressive for the two transfer-dominated

applications: the dynamic scheduler’s worst-case performance was only 2.4% better than the

best fixed partition for FFT and 4.3% worse for Mersenne Twister. Overall, the dynamic

scheduler was on average 20% faster in the worst case than the best fixed partition. And for
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Figure 4.12: Performance loss of self-scheduling algorithms relative to our dynamic algorithm
across a range of discrete GPU frequencies.

all six applications, the dynamic scheduler provided better worst-case performance than the

fixed partition optimized for the nominal frequency.

Comparison to Self-scheduling

Figure 4.12 shows the performance loss in the presence of frequency scaling, relative to

our dynamic scheduler, of the three self-scheduling algorithms. As we did for our dynamic

scheduler, we used the same parameter values for the self-scheduling algorithms as we did

in the results presented in Section 4.5.1 (i.e., we used the chunk sizes that yielded the best

average performance at the default frequencies). Relative to our algorithm, CSS was on

average 8.2% slower, GSS was 5.0% slower, and TSS was 4.0% slower. Artificially increasing

the number of processors in the GSS algorithm (from two to four) to decrease the initial
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Figure 4.13: Speedup of the discrete GPU relative to the integrated GPU as a function of
chunk size.

chunk size significantly increased the performance consistency across the applications and

decreased the overall average slowdown to 4.4%.

4.5.3 Prediction Quality

The ability of the load balancer to make efficient scheduling decisions relies on a key assump-

tion: that the relative performance we observe on the small, initial chunks is predictive of the

relative performance of the larger, final chunks. To measure how well this assumption holds

in practice, Figure 4.13 shows the speedup of the discrete GPU relative to the integrated

GPU over a range of chunk sizes.10 For some applications (Black-Scholes, K-Means, and

10Note that this data was measured with the devices executing one at a time rather than concurrently.
Thus, the impact of contention between the devices is missing, and the trends we observe here may be slightly
different than what the dynamic scheduler must contend with in practice, especially for the transfer-dominated
applications (FFT and Mersenne Twister).
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Figure 4.14: Time between the first and second devices finishing execution for the dynamic
load balancer, as a fraction of the total execution time.

DCT), the speedup remained relatively constant, and thus we would expect our load balancer

to generate efficient schedules. For the other applications (Mersenne Twister, FFT, and

Matrix Multiplication), the speedup varied significantly, which we would expect to produce

less efficient schedules.

The goal of the dynamic scheduler is for both devices to complete execution at the same

time. To demonstrate how close the scheduler came to achieving this goal, Figure 4.14

shows for each application the average time that one device was idle at the end of execution,

expressed as a fraction of the application’s total execution time. The applications we identified

earlier as most predictable (those maintaining consistent speedups across different chunk sizes)

had the shortest idle times, averaging 0.7%. The less predictable applications, on the other

hand, had longer idle times, averaging 4.2%. This has a direct correlation with performance:

the three applications with the lowest idle times also provided the best performance relative

to static load balancing.

4.5.4 Sensitivity to Chunk Size and Growth Rate

To determine the optimal parameters for the scheduling algorithm, we measured the perfor-

mance of each application over a range of initial chunk sizes and chunk growth rates. Note
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Figure 4.15: Average slowdown across all six applications relative to the optimal parameter
values for each individual application. The area of each circle is proportional to the percent
slowdown for that combination of chunk size and growth rate. The minimum slowdown,
marked with a square, occurs with an initial chunk size of 7% and a growth rate of 1.5x.

that a large chunk size and/or a large growth rate can cause all of work to be assigned to

devices in the initial phase of the algorithm, leaving no work for the scheduler to partition in

the final phase. To avoid this, we explored all combinations of initial chunk size (in increments

of 1%) and chunk growth rate (in increments of 0.25) that resulted in at least 25% of the

total work available for the scheduler to partition.11

Figure 4.15 shows the performance of each pair of chunk size and growth rate, expressed

as the average slowdown across all six applications relative to the optimal configuration for

each application. The best overall performance, with an average slowdown of only 1.7%,

11We assume that the slower device has completed two initial chunks and the faster device has completed
two and started on a third initial chunk before the remaining work is partitioned. This will always be the
case when the performance gap between the two devices is no more than 1.5x for the smallest growth rate
and 7.6x for the largest growth rate.
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Figure 4.16: Distribution of execution times for each application across the range of initial
chunk sizes and chunk growth rates shown in Figure 4.15, normalized to the minimum observed
execution time. The horizontal displacement of a data point within a given application has
no meaning and is done solely to reduce overlap.

was achieved with an initial chunk size of 7% and a growth rate of 1.5x. Figure 4.16 show

the distribution of normalized execution time for each application. Most applications were

relatively insensitive to changes in these parameters, with the worst-case slowdown for DCT,

FFT, K-means, and Mersenne Twister ranging from 11% to 16%. Matrix Multiplication

exhibited similar behavior except for a few outliers. Black-Scholes was the most sensitive,

with a worst-case slowdown of 56%.

4.5.5 Sensitivity to Data Size

Our results so far have focused on relatively large data sizes. We now focus on how well

the dynamic scheduler performs at smaller data sizes. There are two important effects that

we would expect to observe as we scale down the data size. First, for some applications,
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Figure 4.17: Speedup of dynamic load balancing relative to static load balancing for a range
of data sizes. Values greater than one indicate that dynamic load balancing is faster than
static. N is the default data size specified in Table 4.3.

the optimal partition of work between the two devices will change. This may benefit the

dynamic scheduler because it can potentially do a better job of partitioning the work evenly

across the two devices. Second, the overhead of using a specific number of chunks remains

essentially fixed with decreasing data size even as the total execution time decreases. This

means that the relative overhead of using more chunks will increase, benefiting the static

approach because it uses fewer chunks. Note also that this overhead is more pronounced for

data transfers than for kernel executions.

We measured the performance of native execution and load balancing across a range of

data sizes. We define the data size of an application to be the total amount of data written
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Figure 4.18: Performance of the dynamic load balancer when one device is blocked, normalized
to an oracle that sends all work to the unblocked device.

to and read from the GPU during native execution12. We set N to the default data size used

in previous experiments (and listed in Table 4.3) and swept the data size from N down to

1
4
N in increments of 1

4
N .

Figure 4.17 shows the speedup of dynamic load balancing relative to static for each

data size across all six applications. The dynamic approach performed worst on the two

transfer-dominated applications, FFT and Mersenne Twister. This is because the relative

overhead of using multiple chunks is larger for data transfers than for kernel execution.

Averaging across the four other applications, the dynamic scheduler was actually slightly

faster than the static load balancer. Averaging across all six applications, the overall trend

was for dynamic load balancing to get slower relative to static load balancing as the data size

decreased: dynamic was 2.2% slower at the largest data size but 7.5% slower at the smallest

data size. At a data size of 1
2
N , however, the dynamic scheduler essentially matched the

performance of static load balancing, with an average slowdown of only 0.3%.



Chapter 4 Heterogeneous Load Balancing 84

4.5.6 Severe Performance Imbalances

As described earlier, GPUs are non-preemptive and thus an application may wait an un-

bounded amount of time for a chunk to begin execution on a particular device. We measured

the performance of the dynamic load-balancing algorithm when one GPU makes no forward

progress; we achieved this by forcing commands sent to that GPU to wait on an event that will

never finish. Figure 4.18 shows the normalized execution time of the dynamic load-balancing

algorithm relative to an oracle that simply sends all of the work to the unblocked GPU. Any

purely static load balancer would be forced to wait arbitrarily long for the blocked device

to become free, and would thus become deadlocked in this case. The dynamic approach

performed worst on the two transfer-bound applications, FFT and Mersenne Twister, because

the use of multiple (five in this particular case) relatively small chunks had a much larger

impact on transfer performance than it is does on kernel performance. Overall, the dynamic

algorithm was only 3.6% slower on average than the oracle.

4.6 Conclusions and Future Work

Load balancing in heterogeneous systems can provide substantial performance improvements,

but only with appropriately chosen work partitions. Existing partitioning approaches require

offline training and generate fixed partitions. Using a fixed partition can lead to suboptimal

performance as the state of the system or application changes; in some cases, it can lead

to worse performance than would be achieved with native execution. To guard against

this, we have presented a dynamic load-balancing algorithm that can respond effectively to

relative performance changes with no training and with no special knowledge of the source of

performance fluctuations. We have demonstrated that our algorithm can provide consistent

performance results even in the face of inconsistent system behavior.

12We explicitly define data size based on the application’s behavior during native execution because the
amount of data copied to and from the GPU(s) is larger during load balancing for some applications.
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In static performance conditions, our dynamic scheduler was only 2.2% slower than the

optimal fixed partition and still 47% faster than native execution. A real static scheduler,

even if it were able to find the optimal partitions, would still require hundreds of separate

kernel executions before it would be able to overcome its training overhead. Under dynamic

performance conditions, our dynamic scheduler was 9.6% faster than the best fixed partition

on average and 20% faster in the worst case. And, unlike fixed partitions, our dynamic

scheduler was never slower than native execution, even when the performance of one of the

underlying devices changed by a factor of nearly four. Our proposed algorithm can also deal

effectively with more extreme scenarios, such as when a device becomes unresponsive. In

such a scenario, our scheduler was only 3.6% slower than an oracle that only sends work to

the functioning device.

One avenue for future work is to explore a hybrid approach to load balancing that, like

a dynamic approach, does not require an offline training phase but, like a static approach,

can leverage past performance information for improved partitioning. For example, if Matrix

Multiplication were run multiple times, such a hybrid approach might gradually improve

its ability to predict the kernel’s performance and thereby generate increasingly efficient

partitions.

Another obvious direction for future work would be to evaluate our scheduling algorithm

on a larger set of applications and hardware systems. Earlier, we hinted at the possibility

of load balancing across a CPU and a GPU. Unfortunately, current OpenCL CPU runtime

systems provide lackluster performance relative to other CPU programming models (e.g.,

OpenMP). Improving OpenCL CPU performance is an area of active research [40, 96], so

there is hope that CPU-GPU load balancing of OpenCL applications will be an attractive

option in the near future.

We initially planned to implement another, even more dynamic scheduling algorithm

which involved each device claiming work from a centralized work queue. Some preliminary

investigations suggested that this technique might be able to provide even better and more



Chapter 4 Heterogeneous Load Balancing 86

consistent performance. In addition, this technique should be able to respond effectively to

dynamic performance variation that occurs during kernel execution, unlike the algorithm

presented earlier. Unfortunately, we discovered that sharing data between kernels on different

devices in this way actually violates the OpenCL specification [49] and is not guaranteed to

produce correct results. In the future, however, this technique may become viable on platforms

supporting the Heterogeneous System Architecture (HSA) standard, which “embraces a fully

coherent shared memory model” and allows “developers to write applications that closely

couple [CPU] and [GPU] codes” [52].

4.7 Publications

The work presented in this chapter will be published at the Conference on Computing Frontiers

in May 2013 [18]. A preliminary version of the work was presented at SRC TECHCON in

2012 [15]. Related work was also presented at SRC TECHCON in 2011 and 2010 [16,17] and

at the AMD Fusion Developer Summit in 2011 [14].



Chapter 5

GPU Frequency Scaling

In previous chapters, we have primarily focused on the benefits of using GPUs, namely their

enormous potential to increase performance. In this chapter, we instead focus on one of the

potential downsides of using GPUs: their massive power consumption. A high-end GPU can

consume as much as twice the power of a high-end CPU, and in many systems the GPU

consumes the majority of the total system power. Because of these large power requirements,

GPUs represent a ripe target for energy reduction techniques.

One of the most widely used techniques for reducing the energy consumption of a CPU is

dynamic voltage and frequency scaling (DVFS) [106], in which the CPU voltage and frequency

are increased or decreased in response to workload demands, rather than always running the

CPU at its maximum voltage and frequency. Widespread hardware support for frequency

scaling in CPUs has led to a large body of work on software techniques for choosing the most

energy-efficient frequency. Although GPUs also support frequency scaling, there has been

little research on leveraging that capability for energy savings.

An application running on either a CPU or a GPU is typically either compute-bound or

memory-bound, meaning that the performance is limited by either the compute cores or the

memory system. One useful way to characterize an application as compute- or memory-bound

is to consider the rate of memory requests being sent from the cores to the memory. If the

87
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cores are generating memory requests faster than the memory system can complete them, the

application is memory-bound. If instead the memory system is completing requests faster

than the cores can generate them, the application is compute-bound. Changing the frequency

of the cores or memory should change the request or completion rate, respectively.

In a CPU, the frequency of the memory system is typically fixed, so the goal of DVFS for

memory-bound applications is to adjust the CPU frequency such that the request rate of the

CPU cores matches the completion rate of memory. In a GPU, however, we can control the

frequency of both the cores and memory. Thus, the goal of DVFS for GPUs is to determine

which component is the bottleneck, and reduce the frequency of the other component to

match the rate of the slowest component. This extra degree of freedom complicates the rate

matching problem, but also allows DVFS to potentially reduce energy for both memory- and

compute-bound applications.

In this chapter, we show that the only previously proposed DVFS algorithm for GPUs [62]

performs poorly on modern GPUs; in fact, it results in higher energy consumption than

simply leaving the GPU’s frequencies at their default values! To address this problem, we

propose a simple heuristic for selecting near-optimal clock frequencies that is based on the

observation that good performance and low energy are fundamentally related: in other words,

we must maintain high performance to minimize energy consumption. Using actual power

measurements from a real system, we show that this heuristic works well across multiple

GPU generations.

We focus on using DVFS to minimize the total energy consumption of the system while

the GPU is actively executing a kernel, as this is typically the dominant energy cost for

applications that leverage GPUs. More specifically, we leverage DVFS to reduce the energy

consumption of both the GPU and the CPU during GPU kernel execution. Reducing CPU

energy consumption in this way was mentioned briefly in prior work [62] but has not been

fully explored nor tested on a real system. We present results for the energy savings of a

single system, but our techniques could also be applied to individual nodes of a large-scale
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system (e.g., a cluster or supercomputer), which would yield even more substantial energy

savings.

The rest of this chapter is organized as follows. In Section 5.1, we provide background

information on what DVFS is and how it has been applied to both CPUs and GPUs. In

Section 5.2, we describe the workloads and hardware systems we used in our experiments.

In Section 5.3, we explore the limits of GPU frequency scaling by determining how much

energy can be saved if we have access to actual power measurements. In Section 5.4, we

present a novel heuristic for approximating the optimal frequencies without access to power

measurements, thereby enabling DVFS to be applied effectively in more realistic conditions.

In Section 5.5, we discuss techniques for reducing the CPU energy consumption during GPU

computation. In Section 5.6, we discuss related work on reducing the energy consumption of

GPUs. Finally, we conclude in Section 5.7.

5.1 Background

In this section, we describe the state of the art in both CPU and GPU frequency scaling.

5.1.1 CPU Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is a popular technique for reducing CPU

power consumption, dating back to as early as 1994 [106]. Because the energy consumption of

a processor is typically not proportional to its utilization (i.e., it is not energy proportional),

it is often beneficial during periods of low CPU utilization to reduce the CPU voltage and

frequency from their default levels. Ideally, this reduces power consumption with minimal

performance loss. Depending on the situation, the reduction of power may be the primary

goal or it may be used as a means of reducing energy consumption. The two goals are related

but distinct, because, in the absence of performance improvements, reducing power is a

necessary but not sufficient condition for reducing energy. If the overall goal is to save energy,
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then power consumption must either be reduced without hurting performance or be reduced

by more than execution time is increased.

In principle, the voltage and frequency of a processor can be adjusted independently.

Frequency scaling without voltage scaling is much less effective than the other way around,

because the dynamic power consumption of an integrated circuit depends only linearly

on frequency but quadratically on voltage, and the static power consumption depends

quadratically on the voltage but does not depend on the frequency. In practice, the voltage

and frequency are typically varied together; each ACPI P-state, for example, typically

corresponds to a frequency/voltage pair. This is because increasing the frequency often

requires an increase in the voltage to guarantee reliable operation, while reducing the frequency

typically means that the voltage can be safely reduced, and not doing so wastes power. In a

system where there is a one-to-one mapping between frequencies and voltages, the distinction

between setting the frequency and setting the voltage is purely a semantic one. But it is the

change in frequency that directly impacts software, and so it is often more useful to think

about frequency scaling than voltage scaling. In the remainder of this chapter, we focus on

frequency scaling but assume that voltage scales along with frequency, and therefore use the

terms frequency scaling and DVFS interchangeably.

Traditionally, adjusting the processor frequency was an extremely expensive operation as it

required rebooting a system and adjusting its BIOS settings. Hardware support for changing

the frequency at run time first appeared in low-power embedded and laptop processors but

has since migrated to high-performance desktop and server processors, marketed under the

brand names AMD PowerNow! or Cool’n’Quiet and Intel SpeedStep or Enhanced SpeedStep.

Modern CPUs support a small handful of clock frequencies (e.g., three to ten for a range

of AMD and Intel desktop and server CPUs that we surveyed), with the minimum clock

frequency typically around half the maximum clock frequency and the other frequencies

distributed evenly in-between. The latency of switching between different frequencies is on

the order of tens of microseconds [79].
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Frequency scaling must be supported by the hardware, but is typically controlled by

the operating system or other software. Early approaches to applying DVFS to commodity

systems, such as the performance and powersave governors in Linux [79], were simplistic: the

frequency was either set to its maximum value, to ensure maximum performance, or to its

minimum value, to improve battery life1 by reducing power consumption. More advanced

approaches have since been developed, such as the ondemand governor in Linux [79], which

attempts to scale the frequency based on utilization. The ondemand governor is widely used

in practice, in part because it is the default governor for popular Linux distributions like

Ubuntu.

There are two primary challenges in leveraging DVFS for energy reduction2: choosing

when to change the frequency and choosing what frequency to use. Many algorithms have

been proposed to address these problems, and Beloglazov et al. [11] provide a good overview of

this body of work. The algorithms can be broadly divided into three categories, based on the

granularity at which they operate: interval-based, inter-task, and intra-task. Interval-based

algorithms use the overall CPU utilization level (or other metrics) during a previous, fixed-

length interval to predict the optimal frequency for the next interval; the ondemand governor

mentioned earlier is one example. Inter-task algorithms attempt to assign different frequencies

to different tasks or processes running on a system, based on static properties derived from

the source code or dynamic properties measured using profiling or hardware performance

counters. Intra-task algorithms attempt to assign different frequencies to different phases of

a single task or process. The majority of inter-task and intra-task algorithms target real-time

systems, in which each task must be completed by a specific deadline and both the deadlines

and set of tasks typically are known a priori. The goal in such systems is to minimize energy

without missing any deadlines, and there is no direct benefit to improving performance

beyond what is needed to satisfy the deadlines.

1Note that improving battery life and improving energy efficiency are not equivalent. Battery life is a
measure of how long the system can run, but not how much work it can complete for a given amount of
energy.

2Leveraging DVFS for power reduction is trivial: simply choose the minimum clock frequency.
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A major challenge in automatically adjusting clock frequencies for arbitrary applications

is the identification and characterization of distinct phases in the application, which is useful

because different phases often have different optimal frequencies. Some researchers have

proposed complex dynamic schemes for identifying phases while others have relied on manual

identification [43]. Phases in OpenCL applications are, for the most part, explicitly defined

by the set of OpenCL API calls made by the application; previous work has exploited a

similar property of MPI programs [57,88,89] and other parallel programs [56].

5.1.2 GPU Frequency Scaling

Most modern discrete GPUs provide hardware support for DVFS. Unlike CPUs, however,

GPUs typically expose two frequencies, one regulating the compute cores and one regulating

the memory system.3 GPUs also offer a larger range of frequencies and much finer control

over the frequency, allowing changes in increments as small as a single MHz. As with CPUs,

frequency scaling is controlled by software, with two notable exceptions: AMD’s PowerTune

Technology With Boost and NVIDIA’s GPU Boost, implemented in the latest high-end

GPUs, allow the hardware to dynamically increase the core clock frequency above the default

frequency when sufficient power is available. Similar technologies exist for the CPU, namely

AMD’s Turbo CORE and Intel’s Turbo Boost.

For high-powered discrete GPUs, the ability to adjust frequencies traditionally has been

used by consumers to increase frequencies from their default values in order to maximize

performance. A typical approach is to increase either the core or the memory frequency

by some relatively small margin and then test the stability of the system using a stress

test. This process continues until the maximum stable frequencies have been found, and

occurs completely offline; once the maximum frequencies are found, they are not adjusted

dynamically at runtime, except perhaps when the GPU enters an idle state and automatically

3In some systems, the frequency of the CPU’s memory system can also be adjusted, although typically
with one of two important restrictions: either the frequency cannot be adjusted at run time and instead
requires a reboot of the system, or the frequency cannot be adjusted independently from the core frequency
(i.e., each core frequency has an associated memory frequency).
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drops its frequencies to their minimum values. For systems in which maximizing performance

is not the primary goal, GPU frequencies may instead be decreased in an effort to decrease

power consumption and thereby decrease fan noise (by decreasing temperature), improve

stability, or increase battery life. Note, however, that the goal of reducing frequencies is

typically not to improve energy efficiency.

Prior work has shown that, as we might expect, reducing the memory clock frequency

for compute-bound kernels and the core clock frequency for memory-bound kernels has a

negligible impact on performance [39] and can thus provide energy savings with little or

no performance penalty. Given this capability, an obvious question is how to apply DVFS

effectively to a real application running on a GPU. Existing DVFS algorithms for CPUs

are not directly applicable to GPUs for three primary reasons. First, most of them target

real-time or interactive systems, in which the primary goal is to meet deadlines and ensure

responsiveness rather than maximize performance. Second, most CPU algorithms rely on the

existence of hardware performance counters that are not available on GPUs. Third, most

CPU algorithms need to select only a single frequency, whereas a GPU algorithm must select

both a core and a memory frequency. We are aware of no existing CPU DVFS algorithm

that does not suffer from at least one of these three limitations.

The DVFS capabilities of modern GPUs have been leveraged in a number of ways in prior

work. Lee et al. [55] used frequency scaling to improve the throughput of a GPU, but did not

consider the energy implications. Cebŕıan et al. [21] explored the energy impact of DVFS on

GPUs, but did not propose how to achieve energy savings in practice. Liu et al. [59] proposed

a DVFS algorithm for real-time applications running on CPU-GPU systems. If sufficient slack

exists in the schedule to allow for significantly increasing execution time without missing

any deadlines, their algorithm reduces the voltage and frequency of the GPU (or CPU) to

consume the slack and thereby save energy. We focus on high-performance computing (HPC)

applications, for which significantly increasing execution time is not tolerated and thus no



Chapter 5 GPU Frequency Scaling 94

slack exists; the DVFS algorithm proposed by Liu et al. would be unable to save any energy

in such a scenario.

The most relevant prior work is GreenGPU, a GPU DVFS algorithm4 proposed by Ma

et al. [62]. GreenGPU extends an existing CPU DVFS algorithm proposed by Dhiman

and Rosing [31], and was evaluated in the context of a single NVIDIA GPU released in

2006. In Section 5.4.4, we evaluate GreenGPU on two modern AMD GPUs and compare its

performance to that of our own algorithm.

5.2 Experimental Setup

To study the benefits of applying DVFS to GPUs, we used 24 OpenCL applications, taken

from version 2.7 of the AMD Accelerated Parallel Processing (APP) SDK [4] and version

2.1 of the Rodinia benchmark suite [22] and shown in Tables 5.1. Due to limitations of our

power measurement infrastructure, we were only able to analyze applications that kept the

GPU occupied for tens of seconds. We therefore specifically selected applications that either

had this property natively or had kernels that were idempotent and could therefore be run

repeatedly without changing the application or kernel’s behavior. Both the justification and

implementation of this repetition are described in greater detail in Section 5.2.1.

We performed all of our experiments on a machine with a 2.6-GHz, 16-core AMD Opteron

6282 SE CPU, a motherboard supporting PCIe 2, 32 GB of RAM, and a 1.2 kW power supply.

The machine ran Ubuntu 10.04.4 with AMD Catalyst 13.1. We compiled the applications

with GCC 4.4.3. Unless otherwise noted, CPU frequency scaling was controlled automatically

by the default governor (ondemand) running at its default settings.

We used two different GPUs in our experiments, an AMD Radeon HD 5870 and an AMD

Radeon HD 7970. The HD 5870 was AMD’s highest performing single-GPU graphics card

4GreenGPU also incorporates CPU-GPU load balancing (and was discussed briefly in Section 4.2), but
here we only consider the DVFS portion of the work.
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Iterations
Application Data Set HD 5870 HD 7970

AES Decrypt 9K x 9K bitmap 15 60
AES Encrypt 9K x 9K bitmap 15 60
Binary Search 123M elements 10,000 13,000
Binomial Option 2M samples - 5

Bitonic Sort
16M elements (5870) - -
48M elements (7970) - -

Black-Scholes 12.8M samples 1,000 1,500
Black-Scholes DP 64M samples 75 500
Discrete Cosine Transform (DCT) 6K x 6K matrix 60 900
Eigen Value 128K diagonal length - 50
Floyd-Warshall 6K nodes - -
Fluid Simulation 2D 2K x 2K grid 500 1,250
Gaussian Noise 11K x 11K bitmap 250 600
Gaussian Noise GL 11K x 11K bitmap 400 600
Histogram 11K x 11K array 750 3,000

LU Decomposition
5K x 5K matrix (5870) - -
7K x 7K matrix (7970) - -

Mandelbrot 11K x 11K image 200 75
Matrix Multiplication 4K x 4K matrices 10 20
Matrix Transpose 11K x 11K matrix 750 2,000
Mersenne Twister 29M random numbers 50 500
Monte Carlo Asian 6K x 3K samples 200 250
N-body 128K particles 10 50
Quasi-Random Sequence (QRS) 8K dimensions 10,000 10000

(a) AMD APP SDK benchmarks.

Iterations
Application Data Set HD 5870 HD 7970

CFD 200K particles - -
Lava MD 32 x 32 x 32 boxes 12 30

(b) Rodinia benchmarks.

Table 5.1: Benchmarks and data sets from the (a) AMD APP SDK [4] and (b) Rodinia
benchmark suite [22]. The iterations columns specify the number of times our interposing
program repeated the execution of a single kernel.
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from its release in 2010 until the release of the HD 7970 in 2012.5 We also had access to three

high-end NVIDIA GPUs, one from each of the last three generations: a Tesla C1060, a Tesla

C2050, and a Tesla K20. We originally planned to include these GPUs in our experiments,

but NVIDIA has recently disabled frequency scaling under Linux.6

To characterize energy efficiency, the most obvious metric to use is the total energy

consumed by the system during the execution of an application. Ultimately, this is the metric

that we want to minimize in the real world. However, it is also worthwhile characterizing how

much extra energy a system consumes while computing, beyond the energy that it would

have consumed over the same time period if it was idle. To avoid biasing our results in the

favor of slower, longer-running configurations, we define the idle energy for each application

as the energy consumed by the idling system over a time period equal to the execution time

running at the default frequencies.7 We then define the compute energy to be the total energy

consumption of the system minus the idle energy. Although we attempt to state clearly which

metric we are using throughout the rest of this chapter, the reader may safely assume that we

are using the compute energy except where explicitly stated otherwise. Note that, because of

the way we have defined compute energy, if one configuration consumes less compute energy

than another, then it necessarily also consumes less total energy.

5.2.1 Measuring Power Consumption and Execution Time

Because energy is the product of power and time, to determine a system’s energy consump-

tion while executing a given application, we need to measure the system’s average power

consumption and the application’s execution time. Measuring the former is significantly more

challenging than measuring the latter.

5The HD 7970 was itself surpassed by the AMD Radeon HD 7970 GHz Edition, released later in 2012; the
two GPUs are architecturally equivalent but have different default core and memory clock frequencies.

6NVIDIA still supports frequency scaling under Windows, but from a high-performance computing (HPC)
perspective, this is effectively useless: as of November 2012, only 3 of the top 500 supercomputers in the
world ran Windows [102].

7Defining the idle energy based on the default execution time makes sense if, once the current application
finishes execution, the system will start running another application. We assume this to be the case in most
HPC settings.
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Techniques for measuring the power consumption of just the GPU have been used

effectively in prior work [68, 97]. Unfortunately, these techniques relied on measurement

equipment that was unavailable to us. We instead measured the total AC power consumption

of the system using a Watts up? PRO power meter, which is accurate to plus or minus 1.5%

plus 0.3 Watts8. Measuring the power in this way had two important limitations. First,

we were unable to determine accurately the power or energy consumption of any individual

component in the system, including the GPU. Second, due to inefficiencies in the power

supply, the AC power consumption of the entire system was greater than the sum of the DC

power consumptions of each individual component. In the real world, however, our goal is to

reduce the total system energy consumption, including any extra energy consumed by the

power supply itself, and so we believe this is a reasonable approach.

Using the same measurement equipment that we used, Ma et al. [62] attempted to more

directly measure the power consumption of the GPU: they powered the GPU from one power

supply and powered the rest of the system (e.g., the CPU and motherboard) from a second,

independent power supply, and measured the power consumption of each power supply

separately. Two problems exist with this approach. First, a GPU can draw a non-trivial

amount of power (up to 75 W9) from the motherboard through the PCIe slot, and this power

would be attributed incorrectly to the non-GPU part of the system. Second, power supplies

are less efficient at smaller loads, so assuming that a single power supply is replaced with

two equivalent power supplies, the total measured power consumption would increase by a

potentially non-trivial amount.

The major limitation of the power meter we used is that it measures the instantaneous

power consumption only once per second.10 In order to reduce the effect of random power

fluctuations and generate repeatable results, for each experiment we attempted to obtain at

8For example, at 100 Watts, the meter is accurate to plus or minus 1.8 Watts.
9This is approximately half of the maximum power consumption of the GPU used in their study.

10The power meter actually samples the instantaneous power consumption 2,500 times per second. It uses
all of the samples when reporting the energy consumption, but it only uses one of the samples when reporting
the power consumption. Unfortunately, the energy consumption is reported with too little accuracy (tenths
of a kWh) to be useful in this work.
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least 15 measurements of the total system power during kernel execution. Thus, we needed to

ensure that the GPU was actively running kernels for at least 16 consecutive seconds. For the

few applications we studied that have extremely long-running kernels, this was not a problem.

However, most of the applications have kernels that run for less than one second, with some

kernels running for less than a millisecond. For the applications that are inherently iterative,

we set the number of iterations sufficiently high to keep the GPU occupied for the desired

amount of time. For the other, non-iterative applications, we artificially forced a single kernel

invocation to be repeated many times in rapid succession, with the number or repetitions

dependent on the length of the kernel. We accomplished this using a program that interposed

between the application and the OpenCL runtime. The program intercepted calls to the

OpenCL function that launches a single kernel on the GPU (clEnqueueNDRangeKernel) and

instead launched the kernel multiple times.

For each experiment, which consisted of running a single application with a fixed pair

of core and memory frequencies, we first reset the power meter, then ran the application to

completion, and finally downloaded the stored power measurements from the power meter. For

most of our experiments, we were only interested in the average system power consumption

during kernel execution, and so we needed to ignore power measurements that occurred

either before or after the kernel executed. This process was greatly simplified by the fact that

the maximum system power consumption occurred when the GPU was actively executing a

kernel. Thus, to determine the average power consumption we first determined the number of

seconds, N , that the GPU was actively executing and averaged the N−2 largest power values,

after discarding the maximum value because it was extremely noisy. Manual inspection of

power traces from a number of different applications confirmed the validity of this approach.

We determined the average execution time by dividing the total kernel execution time by

the number of kernel invocations. For iterative applications, the total kernel execution time

was reported by the application itself11, while for the non-iterative applications the GPU

11For many applications, this time also included data transfer time. However, given the length of time that
the kernels executed, the data transfer time was negligible for all applications.
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execution time of each kernel invocation was reported by our interposing program. Once we

obtained the average power consumption, P , and the average execution time, t, we computed

the energy consumption as E = Pt.

5.2.2 Controlling for Temperature

Because the static (leakage) power of a processor is exponentially dependent on temperature,

the power consumption of the GPU while executing a kernel does not solely depend on the

properties of the kernel itself, but also on the initial temperature of the GPU. To ensure

that our results were repeatable and represented a fair comparison of different frequencies,

we ensured that the GPU temperature was the same before every experiment, where an

experiment represented a single application running at fixed core and memory frequencies.

For simplicity, we used as the default temperature the GPU’s idle temperature, which we

defined as the steady-state temperature of the GPU after it had remained idle for an indefinite

period of time. The idle temperatures for the HD 5870 and HD 7970 were 38 ◦C and 42 ◦C,

respectively. Throughout the experiments, the system was housed in a well-ventilated room

in which the ambient temperature was maintained at a consistent 21 ◦C.

The idle temperature can be influenced by adjusting the GPU’s fan speed, which is

specified as a percentage of its maximum speed. By default the fan speed is increased or

decreased automatically in response to changes in temperature. For both GPUs we used, the

default fan speed when the GPU was at its idle temperature was 20%. Even after running

under high load for a few minutes (during which the GPU temperature increased by as

much 40 ◦C) we never observed a fan speed greater than 50%. For all of our experiments,

we manually set the fan speed to 30%. To reduce the time spent between experiments

waiting for the GPU to cool down, after each experiment ended we temporarily set the fan

speed to 100% and then reset it to 30% once the GPU reached its idle temperature. For

long-running applications, preliminary investigations suggest that manually setting the fan

speed to 100% can yield non-trivial energy savings, because the decrease in leakage power
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GPU Domain Frequencies (MHz)

HD 5870
Core 350 450 550 650 750 850
Memory 200 300 500 600 700 800 900 1,000 1,100 1,200

HD 7970
Core 325 425 525 625 725 825 925
Memory 175 275 375 475 575 675 775 875 975 1,075 1,175 1,275 1,375

Table 5.2: Core and memory clock frequencies used for frequency scaling.

due to the decreased temperature outweighs the extra 10 to 15 W consumed by the fan itself.

We leave further explorations of this tradeoff to future work.

5.3 Reducing GPU Energy Consumption: Potential

In this section, we demonstrate the potential energy savings of applying DVFS to GPUs

by trying many pairs of core and memory frequencies and measuring the impact on energy

consumption. For the purposes of this study, we only considered decreasing the frequencies

from their default values, because increasing the frequencies can cause instability. Even so,

the number of possible frequencies is enormous. On the HD 7970, for example, the core

frequency can be set to any value in the range of 300 MHz to 925 MHz, while the memory

frequency can be set to any value in the range of 150 MHz to 1375 MHz. If we were to

consider every possible frequency, we would need to test 767,476 different frequency pairs.

To make the problem tractable, we only decreased the frequencies from their default values

in increments of 100 MHz. This left 61 and 91 frequency pairs for the HD 5870 and HD 7970,

respectively. The frequencies we used are shown in Table 5.2.12

As a concrete example of the impact of changing frequencies, we will consider Bitonic Sort,

a highly compute-bound application. Figure 5.1 shows Bitonic Sort’s execution time, power

consumption, and energy consumption on both GPUs as either the core or memory frequency

was reduced. In later results, we explore all combinations of core and memory frequencies,

but here we only vary one frequency at a time for simplicity. On both devices, reducing

12For the HD 5870, a memory frequency of 400 MHz caused system instability and was not used.
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(c) Energy consumption.

Figure 5.1: Impact of varying the core and memory frequencies on the (a) execution time,
(b) power consumption, and (c) energy consumption of Bitonic Sort running on the HD 5870
(left) and HD 7970 (right). The minimum energy configuration is circled.
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the memory frequency had no impact on performance, while reducing the core frequency

increased execution time by a little more than 2x in the worst case.13 On the HD 5870,

reducing either the core or memory frequency had a similar impact on power consumption,

while on the HD 7970, the power consumption was significantly less sensitive to memory

frequency, with consumption becoming effectively constant at memory frequencies below

about half the default frequency. Because Bitonic Sort is compute-bound, this diminished

sensitivity reduced the achievable energy savings to 5.2%, down from the 14.8% savings

achievable with the HD 5870. For both GPUs, the energy savings from choosing the best

frequency were much smaller than the energy increase from choosing the worst frequency:

the worst frequencies for the HD 5870 and HD 7970 increased the energy consumption by

117% and 95%, respectively. Thus, it is entirely possible for a poorly constructed DVFS

algorithm to increase rather than decrease the energy consumption of a system.

There are two strange phenomena present in the HD 7970 results in Figure 5.1: the power

consumption’s lack of sensitivity to changes in the memory frequency below 800 MHz, and the

reversal of the execution time’s upward trend (and the power consumption’s downward trend)

at the lowest core frequency. These data strongly suggest that, for low memory frequencies

and the lowest core frequency, the GPU is not actually operating at the requested frequencies.

Data from other applications, including those with memory-bound kernels, also supports

this hypothesis. Unfortunately, there does not seem to be any way to directly confirm this

assertion: when queried, the GPU reports that it is running at the requested frequencies.

To characterize the overall impact of changing frequencies, we measured the average

execution time and power consumption of each application running at each frequency pair

on both GPUs. Figure 5.2 shows the correlation between execution time and both core and

memory frequency for the two GPUs. In both plots, points towards the upper-left corner

represent compute-bound applications while points towards the lower-right corner represent

memory-bound applications. Applications were well distributed between these two extremes

13Note that the two GPUs used different data sizes for Bitonic Sort, so the execution time and energy
consumption cannot be directly compared.
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Figure 5.2: Pearson’s correlation between execution time and the two frequencies for each
application on the (a) HD 5870 and (b) HD 7970. The square represents the arithmetic mean
across all applications. Note that all correlations are negative, because decreasing either the
core or memory frequency logically only increases the execution time.

on the HD 5870, although on average they were around twice as sensitive to core frequency as

they were to memory frequency. Overall, most applications were even more compute-bound

on the HD 7970 and on average were four times as sensitive to core frequency as they were

to memory frequency.

Figure 5.3 shows the correlation between power consumption and both core and memory

frequency for the two GPUs. On the HD 5870, the power consumption of most applications

was fairly sensitive to both frequencies and on average was slightly more sensitive to memory

frequency. On the HD 7970, however, power consumption was on average about twice as

sensitive to core frequency as it was to memory frequency.

Figure 5.4a shows the best observed reduction in compute energy for each application

on the HD 5870, using three different approaches: allowing only the core frequency to vary,

allowing only the memory frequency to vary, or allowing both frequencies to vary. The amount

of energy savings varied significantly across different applications. For some applications,

no energy savings were possible, while for other applications, the compute energy could be
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Figure 5.3: Pearson’s correlation between total power consumption and the two frequencies for
each application on the (a) HD 5870 and (b) HD 7970. The square represents the arithmetic
mean across all applications. Note that all correlations are positive, because decreasing the
core or memory frequency decreases the power consumption.

reduced by more than 30%. We saw earlier that, on average, the HD 5870’s performance

was most sensitive to core frequency while its power consumption was most sensitive to

memory frequency. Thus, it should come as no surprise that varying the memory frequency

provided much better energy savings than varying the core frequency. In fact, varying only

the memory frequency was sufficient to obtain 95% of the optimal energy savings on average,

while varying just the core frequency only provided 6% of the optimal savings. With the

exception of Mersenne Twister, which achieved a negligible compute energy savings of 0.8%,

no applications achieved their optimal savings by only varying the core frequency, while 18

applications achieved their optimal savings by only varying the memory frequency.

Figure 5.4b shows the optimal compute energy savings for the HD 7970. Although a few

applications achieved greater energy savings than on the HD 5870, for most applications the

achievable energy savings decreased. The number of applications which derived no benefit

from DVFS increased from two to six, and overall the average energy savings decreased by

1.86x. We primarily attribute this change to the reduced sensitivity of power consumption to
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Figure 5.4: The optimal compute energy savings due to DVFS for the (a) HD 5870 and
(b) HD 7970. The optimal savings are presented for three different approaches: only the
core frequency is allowed to vary, only the memory frequency is allowed to vary, or both
frequencies are allowed to vary. Note the different scales on the Y-axes.
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the memory frequency that we described earlier. Despite this decreased sensitivity, adjusting

memory frequency was still more useful than adjusting core frequency: varying only the

memory frequency was sufficient to obtain 74% of the optimal energy savings, while varying

only the core frequency provided 23% of the optimal savings. The increased benefits of

adjusting the core frequency were primarily due to two extremely memory-bound applications,

Binary Search and Matrix Transpose, which achieved larger energy savings than all but one

other application. These two applications were clearly the exception: they were the only

two that achieved their optimal energy savings by varying only the core frequency, while 13

applications achieved their optimal savings by only varying the memory frequency.

Figure 5.5 shows the optimal clock frequencies for all applications on both GPUs. These

results are consistent with our earlier observation that reducing the memory frequency was

more effective than reducing the core frequency for most applications. For the 5870, the

pair of frequencies preferred by the largest number of applications was the maximum core

frequency and the minimum memory frequency. For the 7970, on the other hand, the largest

number of applications preferred the default frequencies (and therefore achieved no energy

savings).

5.4 Reducing GPU Energy Consumption: Algorithms

The results presented so far have demonstrated the potential energy savings due to applying

DVFS to GPUs. In this section, we explore techniques for applying DVFS in practice. In

particular, the selection of the optimal frequency in the previous section relied on knowing

the energy consumption of each configuration, which in turn required knowing the power

consumption. In practice, it is unreasonable to assume that we will have access to accurate

power consumption data, because this typically requires the existence of an external power

meter. Even if a power meter exists, using it to get accurate power information can require

changing an application’s behavior in non-trivial ways (e.g., forcing a single kernel invocation
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Figure 5.5: Optimal clock frequencies for each application on the (a) HD 5870 and (b) HD 7970.
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to be repeated many times). Some newer NVIDIA GPUs, such as the Tesla K20, allow

software to query the GPU’s current power consumption. However, the measurements are

only accurate to plus or minus five percent [76]14, which is significantly less accurate than

measurements provided by stand-alone meters. Also, many of the implementation details,

such as the sampling rate of the measurements and whether or not the power can be read

concurrently with kernel execution, are left unspecified. Whether or not GPU-provided power

measurements are sufficient for a DVFS algorithm is an open question, but one that will only

be worth answering once hardware support is more widespread.

In this section, we first describe in detail the only existing DVFS algorithm for GPUs,

GreenGPU. Then, to overcome the fundamental limitations of GreenGPU, we propose a new

heuristic for selecting the most energy efficient clock frequencies, based on insights gleaned

from the performance and energy data presented in the previous section.

5.4.1 GreenGPU

In prior work, Ma et al. [62] proposed GreenGPU, an online DVFS algorithm that attempts

to gradually converge on the optimal core and memory frequencies based on the utilization

levels reported by the GPU. The intuition behind the algorithm is that the frequency of a

given component should scale with its utilization: as the utilization of the cores decreases, for

example, reducing the core frequency should reduce power consumption without significantly

impacting performance, thereby saving energy.

As mentioned earlier, the GreenGPU algorithm extends an existing CPU DVFS algo-

rithm [31]. We first describe the original CPU version of the algorithm before explaining how

the algorithm was extended in order to support GPUs. The CPU algorithm uses hardware

performance counters to estimate the CPU utilization (or “CPU-intensiveness”) of an appli-

cation over a given interval, and assumes that the utilization level that can be supported is a

linear function of the frequency. More specifically, the algorithm assumes that the maximum

14NVIDIA’s documentation is inconsistent on the accuracy: another source claims an accuracy of plus or
minus five Watts [75].
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frequency can support a utilization of 100%, the minimum frequency can support a utilization

of 0%15, and the intermediate frequencies map linearly to intermediate utilization levels

between 0% and 100%. Then, for each available frequency f , there are two cases. If the

actual utilization is above the supported utilization of f , then setting the CPU’s frequency

to f would presumably increase execution time. If instead the actual utilization is below the

supported utilization of f , then setting the CPU’s frequency to f would presumably increase

power consumption without improving performance, thereby increasing energy consumption.

The theoretical performance loss and energy loss values (one if which must be zero) are

combined into a single, overall loss value, based on a parameter, α, that determines the

relative importance of performance and energy. The algorithm maintains a weight for each

frequency, which is updated after each interval based on the overall loss value. In order

to filter out the impact of transient events, the new weight is a function of both the old

weight and the new loss value, and depends on a parameter, β, that controls the amount of

hysteresis. The frequency with the best weight is chosen to be used in the next interval, and

the process is repeated at the end of each interval.

GreenGPU extends this CPU algorithm to GPUs by computing the overall loss value

for the cores and the memory separately16 based on the core and memory utilizations, and

then combining them together using a parameter, φ, that controls the relative importance

of the cores and memory. All of the parameter values used in the GreenGPU results (αC ,

αM , β, and φ) were derived experimentally. The GreenGPU algorithm was developed and

evaluated using an NVIDIA GeForce 8800 GTX GPU, which was released in 2006. The

core and memory utilization values were measured using an NVIDIA tool, nvidia-smi, that

reports the average utilizations at a one second granularity [75].17 No equivalent tool is

15Mapping the minimum frequency to zero utilization seems like a strange choice; it might make more
sense to map a frequency of zero to zero utilization. One result of this choice is that, on two platforms
that are identical with the exception of the minimum allowable clock frequency, the algorithm may behave
significantly differently.

16This requires separate values of α for the cores and memory, denoted αC and αM , respectively.
17In actuality, nvidia-smi does not report core utilization. What Ma et al. interpreted as the core utilization

was actually the overall GPU utilization, which measures the fraction of time in the past second that the GPU
was running a kernel. The two utilizations are not related in a meaningful way (except that core utilization
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available for AMD GPUs, although similar information can be obtained for a single kernel

invocation (rather than an arbitrary one-second interval) using AMD’s APP Profiler, which

reports various statistics based on hardware performance counters. Unfortunately, there is

no mechanism to invoke the profiler at run time on a per-kernel basis. Instead, the entire

application must be run through the profiler, and every kernel invocation is profiled, with

the profiling data output to a file. To prevent this limitation from negatively impacting

GreenGPU, we assumed that the profiling data can be acquired at run time with no overhead.

Although GreenGPU was proposed as an online algorithm that converges on a specific

frequency pair over time, for the purposes of this study we were only interested in the

frequency pair on which it eventually converged. To simulate the operation of the algorithm,

we collected profiling data, using the AMD APP Profiler, for all applications and frequency

pairs. At each iteration of the algorithm, GreenGPU requires two values, the core utilization

and the memory utilization. For the core utilization, we used the ALUBusy counter on the HD

5870 and the VALUBusy counter on the HD 7970, which measure the percentage of time that a

core18 is processing non-memory (vector) instructions.19 Measuring the memory utilization is

more problematic, because AMD GPUs do not have any (publicly acknowledged) performance

counters in the memory system. Our only alternative was to use performance counters in the

core to approximate the memory system utilization: we used the FetchUnitBusy counter on

the HD 5870 and the MemUnitBusy counter on the HD 7970, which measure the percentage

of time that a core’s fetch or memory unit is active, including stall time.

One might complain that the AMD performance counters are not a perfect match for the

NVIDIA counters used in the original GreenGPU work. While such a complaint has merit,

can never exceed GPU utilization): running a compute-bound and a memory-bound kernel for the same
amount of time would yield a vastly different core utilization but exactly the same GPU utilization. Because
Ma et al. did not compare to the optimal savings, it is difficult to estimate how much this misunderstanding
negatively impacted their results.

18Although the AMD APP Profiler documentation does not specify, we assume that the reported values
are based on the performance counters of a single core (or compute unit, to use AMD’s terminology).

19The ALUBusy counter on the HD 5870 never exceeded 50%, even for synthetic benchmarks. When
simulating the GreenGPU algorithm, we scaled the value of this counter by a factor of two in order to make
the peak utilization approximately 100%. This modification significantly improved GreenGPU’s results.
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it misses the bigger picture. What this discrepancy in available counters really highlights

is the dangers of crafting an algorithm that relies too heavily on the features provided by

a specific platform. The algorithm that we will propose in Section 5.4.3 only requires the

execution time of the kernel, which, for OpenCL applications, is guaranteed to be provided

by any OpenCL-compliant platform [49], and, for non-OpenCL applications, can easily be

measured directly by the application itself.

5.4.2 Energy-Performance Tradeoff

Much of the prior work on CPU DVFS algorithms has claimed that there is a fundamental

tradeoff between performance and energy, and that increasing the maximum tolerated loss

in performance will typically increase the possible energy savings. For example, the four

applications studied by Dhiman and Rosing [31] all had their largest energy savings with

a performance loss of 25% or more, while the five applications studied by Choi et al. [27]

all had their largest energy savings with a performance loss of around 30%. Both studies

further claimed that the energy savings scaled roughly linearly with the tolerated performance

loss. Dhiman and Rosing’s results were based on the CPU DVFS algorithm [31] that was

later extended by GreenGPU. The GreenGPU algorithm also assumes the validity of this

energy-performance tradeoff20 by incorporating a parameter (α) for explicitly controlling the

relative importance of energy and performance.

Our findings indicate that high performance and low energy are inextricably linked for

most GPU applications. Figure 5.6 plots, for each application, the increase in execution time

versus the decrease in compute energy of the energy-optimal frequency pair. For the vast

majority of applications, the optimal frequency pair increased execution time by less than five

20Ma et al. [62] actually contradict themselves on this point. On the one hand, they claim that “sometimes
a DVFS setting with very low power consumption but a long execution time can be selected if its energy is
the lowest” and that they therefore include the parameter α “to prevent this situation,” specifically stating
that “a larger α [emphasis added] directs the algorithm to favor energy saving.” On the other hand, they also
claim that “since energy increases when performance degrades . . . we give a higher weight to performance
by setting” α to an extremely low value. In other words, in order to optimize for energy, rather than using
their algorithm’s expressly-designed capability to prioritize energy consumption, they instead instruct their
algorithm to prioritize performance over energy.
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Figure 5.6: Increase in execution time versus decrease in compute energy for each optimal
frequency pair on the (a) HD 5870 and (b) HD 7970.

percent. For the HD 5870, the arithmetic mean performance loss was 4.5%. Without the two

outliers whose loss exceeded 30%, the average loss dropped to 2.3%. For the HD 7970, the

arithmetic mean performance loss was only 0.4%. Excluding the applications that achieved

no energy savings, and whose performance loss was by definition zero, the average loss was

still only 0.6%.21 For most applications, if our goal is to minimize energy consumption, we

do not need to (and often cannot) tolerate large losses in performance.

5.4.3 ICE-AGE

We leverage this insight to design a simple but effective DVFS heuristic, which we call

Ice-Age22. The goal of Ice-Age is to select the optimal frequency pair based only on the

measured execution time for each pair. The two steps of the algorithm can be summarized

succinctly as follows. First, throw out any frequency pair that results in an increase in

21The one outlier in the lower right corner of Figure 5.6b is Matrix Transpose, which is highly memory-bound
but actually achieved slightly better performance when the core frequency was decreased.

22Ice-Age is an acronym which stands for “Increasing Compute Efficiency Automatically in GPU
Environments.”
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execution time that is greater than some cutoff (e.g., 5%). Then, from the remaining

frequency pairs, choose the one that has the lowest frequencies.

More formally, the algorithm is parameterized by a single value, C, which represents the

performance cutoff. We define the execution time for a given core frequency fC and memory

frequency fM to be t (fC , fM). If the default frequencies are dC and dM , then we can compute

the relative increase in execution time, ∆t, using the following equation:

∆t (fC , fM) =
t (fC , fM)− t (dC , dM)

t (dC , dM)
=
t (fC , fM)

t (dC , dM)
− 1 (5.1)

We throw out any pair (fC , fM) with ∆t (fC , fM) > C. In order to select a “minimum”

pair of frequencies from the remaining pairs, we must guarantee that a minimum always

exist by defining a total ordering on the set of frequency pairs. In most cases, the minimum

of the remaining frequency pairs is obvious; for example, clearly (550, 900) < (750, 1100)

because 550 < 750 and 900 < 1100. Similarly, (550, 900) < (550, 1100) because 550 ≤ 550

and 900 < 1100. In rare cases, however, there is no obvious minimum frequency pair; for

example, it is not immediately clear which of (550, 900) and (750, 600) should be considered

smaller. To break ties in such cases, we choose the frequency pair with the smallest sum of

frequencies; if that is still not sufficient, we choose the frequency pair with the minimum

memory frequency. In practice, the specific method used to break ties has no impact on the

final results, but we present it here for completeness.

5.4.4 Results

We compared our proposed DVFS algorithm to both GreenGPU and the best possible energy

savings achievable with complete access to power data. Although GreenGPU was designed

to be used online, we assumed that both algorithms were used offline. Thus, we only cared

about the frequency pair selected by each algorithm, and the energy savings achieved by an

algorithm was simply the energy savings of its chosen frequency pair.
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To derive the optimal values of GreenGPU’s algorithmic parameters, we simulated the

algorithm for all values of αC , αM , and φ between 0.00 and 1.00 (inclusive) in increments

of 0.01, and chose the values that produced the best average energy savings across all

applications. For both GPUs, the best values were αC = 0.00 and φ = 0.61. The best values

of αM were 0.00 for the HD 5870 and 0.01 for the HD 7970. Assuming that the algorithm

works as designed, these values make little sense because a value of α = 1 optimizes for energy

whereas a value of α = 0 optimizes for performance. However, these values are consistent with

the relatively low values used by Ma et al. [62] in their results (αC = 0.15 and αM = 0.02).

Because we simulated the algorithm offline and were only interested in the frequency pair

that the algorithm converged on, the precise value of β, which controls the hysteresis or rate

of change of the weights, was essentially meaningless. We used the same value (0.2) as was

used in the original GreenGPU results [62]. For each application, we simulated GreenGPU

for 1,000 intervals, where each interval corresponded to a single kernel invocation. For most

applications, the algorithm converged on a frequency pair within the first 10 intervals, but

for a few applications it oscillated between two pairs.

The primary challenge in applying Ice-Age is selecting an appropriate value of C. Making

the cutoff too low will exclude the most energy-efficient frequency pairs, while making the

cutoff too high will include less energy-efficient pairs (which may be selected instead of the

optimal pair if they use lower frequencies). To determine the optimal cutoff for a given GPU,

we exhaustively tried a range of cutoffs from 0% to 15% in increments of 0.1% and chose the

one that maximized the arithmetic mean energy savings across all applications. To reduce the

chance of overfitting, we used leave-one-out cross validation. For each of the N applications,

we computed its cutoff value C based on only the energy and performance data from the

other N − 1 applications.

Figure 5.7a shows the compute energy savings achieved by GreenGPU and Ice-Age

compared to the optimal energy savings on the HD 5870. Ice-Age provided better energy

savings than GreenGPU for nineteen of the twenty-four applications, while GreenGPU only
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Figure 5.7: Reduction in compute energy achieved by GreenGPU, Ice-Age, and the optimal
for the (a) HD 5870 and (b) HD 7970, relative to running at the default frequencies. A
negative value represents an increase in energy relative to the default frequencies.
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bested Ice-Age for one application (and even then only by a negligible amount). Ice-Age

matched the optimal savings on half of the applications, while GreenGPU matched the

optimal on only two applications. The average compute energy savings for Ice-Age was

12.3%, while GreenGPU’s average savings was -24.5%. In other words, GreenGPU consumed

more energy than simply running the GPU at its default frequencies. While Ice-Age only

increased energy consumption for two applications (and even then by only 3.9% in the worst

case), GreenGPU increased the energy consumption for half of the applications. In the worst

case, GreenGPU increased the energy consumption of Mersenne Twister by 181%.

Figure 5.7b shows the compute energy savings of the three approaches on the HD 7970.

Ice-Age again significantly outperformed GreenGPU: Ice-Age provided better energy

savings for seventeen of the applications, while GreenGPU only provided better energy

savings for six applications (and only by a small amount for five of those six applications).

GreenGPU’s average savings was -8.0%, meaning that once again GreenGPU performed worse

than simply running the GPU at its default frequencies. While Ice-Age increased energy

consumption for only one application, GreenGPU increased energy for ten of the applications.

On average, Ice-Age reduced the compute energy by 5.2%, versus an optimal savings of

7.2%. If we exclude the six applications for which even the optimal could not save energy,

the average savings of Ice-Age and the optimal climbed to 7.0% and 9.6%, respectively.

Ice-Age was primarily hurt by its performance on two applications, Mandelbrot and Matrix

Transpose, which had the highest optimal energy savings but for which Ice-Age achieved

more modest savings. The reduced savings for the latter two applications were due to a poor

choice of the performance cutoff C. Those two applications were the only ones for which the

leave-one-out cross validation selected a performance cutoff other than C = 1.4%; using that

cutoff for those two applications would have yielded much more substantial energy savings.

It is worth noting that, for both GPUs, GreenGPU’s poor average energy savings were

not purely due its large negative energy savings for some applications. Even if we artificially

set all negative energy savings to zero, GreenGPU’s average energy savings would still only
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Figure 5.8: Ratio of actual energy savings to optimal energy savings as a function of the
performance cutoff C.

be slightly less than half of the savings of Ice-Age for the HD 5870 and slightly more than

half for the HD 7970.

As a measure of the sensitivity of Ice-Age to the performance cutoff C, Figure 5.8 shows

the ratio of the average energy savings to the optimal energy savings for performance cutoffs

ranging from 0% to 10%. A fairly large range of cutoffs yielded near-optimal savings for the

HD 5870: any cutoff from 2.0% up to 4.9% allowed Ice-Age to achieve at least 90% of the

optimal savings, and values as low as 1.0% allowed Ice-Age to reach at least 85% of the

optimal. The maximum savings of 94% of the optimal occurred with cutoffs of 3.6% to 3.8%.

The savings on the HD 7970 were much more sensitive to the performance cutoff, but there

was still a substantial range of cutoffs that provided significant savings: Ice-Age achieved

savings of at least 80% of the optimal for all cutoffs from 0.6% to 2.0%. The maximum

savings of 83% of the optimal occurred at cutoffs of 1.4% to 2.0%. Although the shapes of

the curves for the two GPUs are somewhat different, there is sufficient overlap between their
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regions of highest savings to allow us to use a single cutoff value for both devices without

sacrificing much of the achievable energy savings. Using a cutoff of 2.0% for both the HD 5870

and the HD 7970 yields energy savings of 90% and 83%, respectively. It is worth reiterating

here that the performance cutoff represents the maximum tolerated performance loss; in

practice, the actual performance loss was smaller. For example, using a cutoff of 2.0%, the

average increase in execution time was only 0.89% for the HD 5870. For the HD 7970, the

average increase in execution time was -0.02%, or 0.33% if we exclude Matrix Transpose.

5.5 Reducing CPU Energy Consumption

The GPU is the most obvious target for energy reduction techniques because it is the

largest single power consumer in many systems. But during many phases of a GPU-enabled

application, including GPU kernel execution, we can also apply frequency scaling to the

CPU to obtain substantial energy savings. These energy savings are independent from and

complementary to the GPU energy savings presented earlier. In fact, the potential energy

savings for the CPU during kernel execution are often even larger than they are for the

GPU. The energy savings achievable with GPU DVFS techniques are limited by the fact that

reducing the GPU frequencies beyond a certain point has a direct impact on performance; in

contrast, we can often drastically reduce the CPU’s clock frequency without any significant

performance consequences.

In most applications, when the GPU is actively executing a kernel, the CPU is simply

waiting for the kernel to finish executing. Although waiting may not sound like a particularly

power-hungry operation, it actually can be quite energy inefficient depending on whether

it is implemented with blocking or non-blocking synchronization. Blocking synchronization

means that the waiting CPU thread yields, allowing the CPU to either run other threads or

idle, depending on whether other runnable threads are available. Then, at some point after

the kernel completes, the CPU thread is awoken and can resume execution. Non-blocking



5.5 Reducing CPU Energy Consumption 119

synchronization or busy waiting means that the CPU thread repeatedly checks if the kernel

has completed. This typically lead to 100% CPU utilization, even though the CPU is not

doing any useful work. Even worse, Linux’s ondemand governor typically responds to this

high utilization by increasing the CPU clock frequency to its maximum value. Whether

blocking or busy waiting is better depends on the particular application as well as the

metric being optimized. For short-running kernels, busy waiting can lead to significantly

better performance, while for long-running kernels, the performance difference is minimal but

blocking can significantly reduce power consumption.

OpenCL provides two functions explicitly for the purpose of waiting for a kernel (or other

operations) to complete: clFinish, which returns once all of the operations in a specified

command queue have completed, and clWaitForEvents, which returns once a specified event

or list of events has completed. In AMD’s OpenCL implementation, both functions appear

to use blocking synchronization23 and appear to be equivalent in terms of both performance

and power consumption. Instead of using the built-in OpenCL functions, most of the AMD

APP SDK applications use busy waiting by repeatedly checking the status of the kernel until

the kernel completes. This choice has significant power and energy implications.

For an application that uses busy waiting, we can use two approaches to reduce its power

consumption. First, and most obviously, we can replace its busy waiting with blocking; here

we use a call to clFinish. Second, we can reduce the maximum allowable CPU frequency24

to limit the impact of high CPU utilization. Figure 5.9 shows the impact of these approaches

on applications with vastly different kernel execution times, Bitonic Sort and CFD.

Each kernel invocation in Bitonic Sort executes for a relatively long time (approximately

80 milliseconds), which means that both approaches had a negligible impact on performance,

increasing execution time by less than 0.4% in the worst case. At the same time, reducing the

maximum CPU frequency from 2.6 GHz to 1.4 GHz reduced the average power consumption

23During a long-running kernel, the CPU utilization is essentially zero when using clFinish or
clWaitForEvents.

24This is easily achieved in Linux by simply writing the desired maximum frequency to a specific file.
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(a) Execution time.
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(b) Power consumption.
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(c) Energy consumption.

Figure 5.9: Impact of different waiting methods and maximum CPU frequencies on the
(a) execution time, (b) power consumption, and (c) energy consumption of Bitonic Sort (left)
and CFD (right) running on the HD 5870. All metrics are normalized to busy waiting with a
maximum CPU frequency of 2.6 GHz.



5.5 Reducing CPU Energy Consumption 121

by 12%, while blocking instead of busy waiting reduced the power consumption by 22%

irrespective of the maximum CPU frequency. Because of the negligible performance impact,

the reduction in power of each approach led to an almost equivalent reduction in energy:

minimizing the frequency reduced energy by 11% while using blocking reduced energy by

21%.

Unlike Bitonic Sort, CFD’s kernels execute for an extremely short time (hundres of

microseconds), and thus the impact of these techniques on performance was much greater.

Reducing the maximum frequency to 1.4 GHz increased execution time by 17%, while

switching to blocking increased execution time by 26% (once again, irrespective of frequency).

Making matters worse, the reduction in power consumption due to switching to blocking

was 15%, less than the reduction of 22% for Bitonic Sort. Overall, decreasing the maximum

frequency to 1.4 GHz or switching to blocking both increased the total energy consumption,

by 1.4% and 7.5%, respectively. However, reducing the maximum frequency by a smaller

amount did result in energy savings: a maximum frequency of 2.3 GHz yielded a 3.2%

reduction in energy consumption.

Due to the limitations of our power measurement infrastructure described in Section 5.2.1,

the analysis shown above was not appropriate for all of the applications presented earlier.

For example, a single kernel invocation in Black-Scholes executed for approximately 15 ms;

to achieve an overall GPU execution time of approximately 15 seconds, we needed to invoke

the kernel 1,000 times. Switching from waiting for the completion of one 15 milliseconds

kernel to waiting for the completion of one thousand 15 milliseconds kernels is likely to have

a non-negligible impact on the behavior of the CPU, especially with regards to automatic

frequency scaling. Thus, for the experimental results presented in this section, we only

considered applications for which long execution times represented a realistic use case. These

applications fell into one of three categories: they were natively iterative (Bitonic Sort,

CFD, Floyd-Warshall, and LU Decomposition), they naturally lent themselves to iterative

behavior despite their lack of native support (Fluid Simulation 2D, LavaMD, Mandelbrot, and
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N-Body25), or their kernel execution time was large enough that the small number of repeated

kernel invocations had no meaningful impact on the CPU behavior (Binomial Option, Eigen

Value, and Matrix Multiplication).

Figure 5.10a shows the compute energy savings achievable with the two CPU power

reduction techniques, relative to busy waiting at the default maximum frequency, when using

the HD 5870. For each application, we show the energy savings for four approaches: busy

waiting with the maximum frequency set to its minimum value (1.4 GHz), blocking with the

maximum frequency set to its default value (2.6 GHz), and both busy waiting and blocking

at whichever maximum frequency yielded the greatest savings. For all applications except

CFD, blocking provided better energy savings than simply reducing the maximum frequency.

On average, blocking decreased compute energy by 22% while busy waiting with a reduced

maximum frequency decreased compute energy by 11%. For some applications, using a

maximum frequency less than 2.6 GHz improved the energy savings of blocking. Averaging

across all of the applications, however, a maximum frequency of 2.6 GHz provided the best

savings for blocking. Similarly, busy waiting with the maximum frequency set to 1.4 GHz

provided better average savings than busy waiting at any other frequency, even though a

different maximum frequency was more energy efficient for some applications.

Figure 5.10b shows the compute energy savings achievable when using the HD 7970.

For almost all of the applications, the savings decreased relative to the HD 5870, for two

reasons. First, switching to the HD 7970 reduced the kernel execution time for all applications,

meaning that the negative performance impact of using these techniques increased. Second,

the HD 7970 typically consumed more power than the HD 5870, so the relative power savings

from using these techniques was reduced. Reducing the maximum frequency to 1.4 GHz

while busy waiting significantly increased energy consumption for CFD and Floyd Warshall.

Blocking at the default maximum frequency significantly increased energy consumption for

25Fluid Simulation 2D, Mandelbrot, and N-Body actually do support iteration natively, but they transfer
data back to the CPU (unnecessarily) between each pair of successive kernel invocations. We avoided these
extraneous data transfers by using our interposing program to achieve the iterative behavior, rather than
using the native iterative support directly.
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Figure 5.10: Compute energy savings for two waiting methods and different maximum CPU
frequencies, relative to busy waiting with a maximum frequency of 2.6 GHz, when using the
(a) HD 5870 or (b) HD 7970.
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those two applications as well, and also slightly increased energy consumption for Eigen Value.

For most applications, however, either reducing the maximum frequency while busy waiting

or switching to blocking yielded significant energy savings, with blocking typically providing

greater savings. Averaging across all of the applications, reducing the maximum frequency

while busy waiting increased energy consumption by a negligible amount (0.4%) and blocking

reduced energy consumption by 4.3%. In practice, of course, it would not make sense to use

these techniques if they increase energy. Averaging across just the applications where these

techniques were beneficial, reducing the maximum frequency and blocking reduced energy

consumption by 11% and 18%, respectively. Interestingly, for both busy waiting and blocking,

using a maximum frequency of 2.0 GHz provided the best average savings.

5.6 Related Work

The energy efficiency of GPUs has been studied from many different perspectives. A number

of researchers have characterized the energy efficiency of specific applications running on

GPU-enabled systems to determine whether it is more energy efficient to run the application

on a CPU or a GPU [22, 41, 45, 46, 48, 53, 85, 86]. Takizawa et al. proposed automating

this decision-making process with SPRAT, a method for automatically choosing the most

energy efficient processor in a heterogeneous system at run time [99]. Other researchers have

explored ways to improve the energy efficiency of GPU applications. Rather than considering

the CPU and GPU as mutually exclusive choices, Ren and Suda manually divided a matrix

multiply application across a CPU and multiple GPUs and characterized the impact on

energy efficiency [83]. Ma et al. leveraged a previously developed statistical model to improve

the energy efficiency of a kernel by automatically modifying its source code [64]. Zhang et al.

measured the power consumption of different operations within a GPU application, including

different types of data transfers, with the goal of providing application developers insight

into the relative energy costs of different operations [108].
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A number of statistical models have been developed for predicting a GPU’s power

consumption based on hardware performance counters [63, 68,109]. With sufficient accuracy,

we could leverage these models to improve our ability to predict which core and memory

frequencies are the the most energy efficient. However, these models are targeted at hardware

designers rather than application developers, and are too inaccurate to be of much practical

benefit. More importantly, each model is highly tuned for a specific GPU and relies on

performance counters that may not be available on other devices. We explicitly designed

Ice-Age to be portable across multiple platforms.

Researchers have also developed more detailed GPU power models designed for use with

architectural simulators [25, 42, 65, 93, 94]. They have used these models to estimate the

impact of proposed GPU hardware changes on energy efficiency. We have instead focused

our efforts on improving the energy efficiency of existing systems by leveraging capabilities

(i.e., frequency scaling) that are already widely available.

5.7 Conclusions and Future Work

The use of DVFS to reduce CPU energy consumption has been an area of active research for

nearly twenty years. Support for DVFS has become widely available in commodity hardware,

and DVFS algorithms have sufficiently matured to be incorporated into major operating

systems. The use of DVFS to reduce GPU energy, by contrast, is still a nascent area of

research. The only previously proposed GPU DVFS algorithm relies on specific features

provided by a particular vendor’s GPUs; generalizing the algorithm to other platforms is

both non-trivial and not effective.

We have proposed and evaluated a platform-independent DVFS algorithm for GPUs

called Ice-Age, which is based on the observation that, for almost all applications, the best

energy savings cannot be achieved without maintaining high performance. We have evaluated

both the potential savings of DVFS and the actual savings achieved by Ice-Age using 24
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diverse applications, the most powerful GPUs from two generations of AMD GPUs, and

actual power measurements from a real system. We have shown that DVFS can reduce the

compute energy for the two GPUs by up to 33% and 19%, respectively, in the best case and

by 13% and 7%, respectively, on average. We have also shown that Ice-Age can achieve 94%

and 83% of these optimal energy savings, respectively. Ice-Age is parameterized by only a

single value, the performance cutoff or maximum tolerated performance loss. Although the

optimal performance cutoff is slightly different for the two GPUs, using a performance cutoff

of 2.0% for both devices is sufficient to achieve 87% of the optimal energy savings.

We have also demonstrated that the behavior of the CPU during GPU kernel execution

can have a significant impact on the overall energy efficiency. Using a less power-hungry

method of waiting for kernel completion (blocking rather than busy waiting) can reduce the

compute energy for the two GPUs by 22% and 4%, respectively. Applying this technique more

judiciously, only to applications where it provides a benefit, can increase the average compute

energy savings to 25% and 13%, respectively. Automating the decision of when to use this

technique and when not to use it is one obvious direction for future work. Another useful

line of inquiry would be to study the impact of reducing the frequencies of both the GPU

and CPU during data transfers between CPU and GPU memory. Preliminary investigations

suggest that doing so can significantly reduce energy consumption.

For Ice-Age, we envision three primary directions for future work: measuring the

effectiveness of Ice-Age across a wider range of GPUs, applying Ice-Age in an online rather

than offline setting, and improving the ability of Ice-Age to predict the optimal frequency

pair. We discuss of each of these directions in more detail below.

We claimed earlier that Ice-Age has been shown to work well on a wider range of GPUs

than the only previously proposed GPU DVFS algorithm, GreenGPU [62]. This is certainly

true, but is based on an extremely small sample size: GreenGPU has been evaluated on

three GPUs, and shown to work well on only one, while Ice-Age has been evaluated on

only two GPUs, but shown to work well on both. It would be worthwhile determining
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whether or not Ice-Age also works well on a larger set of GPUs, including GPUs from a

manufacturer other than AMD (i.e., NVIDIA). Unlike GreenGPU, Ice-Age does not rely

on any platform-specific features in order to function; this is not to say, however, that is

guaranteed to perform well on any platform. The fundamental question in evaluating the

generality of Ice-Age is whether or not the link between high performance and low energy

discussed in Section 5.4.2 holds true across a wide range of platforms.

We have evaluated Ice-Age in an offline context, in which we assumed that we had

access to the execution time of the kernel of interest for all possible frequency pairs. In many

cases it would be more useful to apply Ice-Age online to automatically adjust frequencies at

run time. To make Ice-Age appropriate for online use, it would be necessary to decrease the

number of frequency pairs that must be tested. This process is simplified by the observation

that, in the vast majority of cases, execution time is a monotonically decreasing function

of clock frequency. In other words, decreasing one of the clock frequencies almost never

improves performance. Thus, if reducing the core frequency from 925 MHz to 825 MHz

increases execution time by 5%, and our performance cutoff is 2%, there is no reason to

consider decreasing the core frequency any further. For an application like Bitonic Sort, this

insight alone reduces the number of frequency pairs that we would need to considered on the

HD 7970 from 91 to 15.

Another promising approach for reducing the space of frequency pairs to be explored would

be to use static analysis to determine whether a kernel is compute-bound or memory-bound.

This information could be used to directly predict the optimal frequency pair or to narrow

the number of frequency pairs to be tested. The determination of compute- or memory-

boundedness could, for example, be based on a metric like the ratio of compute instructions

to memory instructions. Of course, determining such a metric statically is not possible in the

general case for an arbitrary kernel [84]. In practice, however, statically determining such a

metric is possible for the vast majority of real-world kernels. As a proof-of-concept, rather

than performing actual static analysis, we could leverage the dynamic profiling information



Chapter 5 GPU Frequency Scaling 128

that we have already collected, using only the subset of statistics which conceivably could be

collected statically. This would help us decide whether the approach holds promise and is

worth pursuing further.

One of the goals of Ice-Age is to not rely on the features or capabilities specific to any

particular platform. However, it is reasonable to assume that an algorithm that does leverage

platform-specific information can outperform an algorithm that does not. It is likely that

we could optimize the general, platform-independent form of the Ice-Age algorithm for a

specific platform by augmenting it with platform-specific information. For example, when

running on a system with an NVIDIA GPU, perhaps Ice-Age could leverage the memory

utilization value used by GreenGPU to improve its frequency prediction.

Although in principle DVFS should be able to provide non-trivial energy savings for any

GPU, in practice our ability to leverage DVFS for energy savings is dependent on vendor

support. Vendors can choose to enable large energy savings by allowing scaling over a large

frequency range, as AMD has done with the HD 5870. Vendors can also choose to limit the

achievable energy savings by only allowing scaling over a narrower frequency range, as AMD

appears to have done for the particular HD 7970 that we used. Finally, vendors can choose

to completely prevent energy savings by disallowing frequency scaling altogether, as NVIDIA

has done. By demonstrating the potential energy efficiency benefits of enabling DVFS, we

hope to convince vendors to more fully support DVFS.



Chapter 6

Conclusions

Over the past decade, the semiconductor industry has come to rely heavily on improving

performance through increased parallelism. Uniprocessors have given way to multi-core

processors and modestly parallel GPUs have given way to massively parallel GPUs. As a

result, leveraging concurrency has become critical for software to benefit from hardware

improvements. Because graphics applications are inherently parallel, GPUs have benefited

more than CPUs from the trend towards greater parallelism, at least as measured by peak

throughput. As the gap in peak performance between CPUs and GPUs has grown, interest

in leveraging GPUs for non-graphics applications has increased significantly. In response,

manufacturers have made their GPUs increasingly general purpose and developed more

programmer-friendly software interfaces. The performance, programmability, and ubiquity of

GPUs has made them an attractive target for many high-performance applications.

Most applications that target GPUs do not efficiently use all of the available resources in

a heterogeneous system. Applications might not utilize a resource at all; for example, in a

system with two GPUs, a typical kernel would only execute on one of them. Or applications

might utilize a resource, but not to its full potential; for example, a compute-bound kernel

would underutilize the GPU’s memory system. This underutilization hurts performance

in the former case and hurts energy efficiency in the latter case. In this dissertation, we

129
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have presented and evaluated techniques for addressing three different manifestations of this

underutilization problem in the context of heterogeneous CPU-GPU systems.

In Chapter 3, we presented a comprehensive overview of the steps we took to accelerate

a computationally demanding systems biology application, the detection and tracking of

leukocytes. We observed that our initial implementations of the tracking algorithm were

unable to keep the GPU fully utilized due to the overhead of launching so many separate

kernels. Our solution was to abandon the canonical GPU parallelization approach in favor of

a novel persistent kernel technique, thereby reducing the number of kernel calls dramatically

and keeping the GPU fully utilized. We evaluated the application on a system with a high-end

CPU and a high-end GPU, and showed that our GPU implementation was able to provide 26

times higher performance than our parallel CPU implementation. Based on our experiences,

we presented a set of general guidelines for optimizing GPU applications. We also presented

a set of recommendations for system-level changes that would simplify the development of

high-performance GPU applications.

To improve the performance of GPU systems, in Chapter 4 we proposed an algorithm for

automatically dividing the execution of an OpenCL kernel across multiple computational

devices, so that existing and future OpenCL applications can better leverage all of the

available devices in a heterogeneous system without significant programmer effort. Our

proposed algorithm begins by scheduling a small subset of the available work on all devices

to estimate their relative performance. It then schedules the remaining work based on this

initial estimate, while taking into account any work that has already been scheduled but not

yet completed.

We evaluated our algorithm using OpenCL applications from the AMD APP SDK and

the Rodinia benchmark suite, running on a real hardware system with both an integrated

and a discrete GPU. We compared the performance of our algorithm to that of the best

possible fixed partition of work, which in practice would require extensive offline training to

discover. Our scheduler nearly matched the average performance of this unrealistic upper
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bound, without requiring any offline training. And when the performance of the underlying

devices changed, our scheduler beat the best fixed partition by 10% on average and 20% in

the worst case. Our scheduler can also provide resilience in the face of extreme performance

imbalances caused by transient or permanent hardware or software failures.

To improve the energy efficiency of GPU systems, in Chapter 5 we explored the use

of frequency scaling to slow down underutilized resources. We first showed that, with the

ability to directly measure power consumption, non-trivial energy savings were achievable

for two high-end AMD GPUs. However, it is unrealistic to assume access to power data

in an arbitrary system. To overcome this limitation, we proposed Ice-Age, an algorithm

for predicting the energy-optimal frequencies for an arbitrary kernel based solely on the

execution times of the kernel at different frequencies. The design of Ice-Age was based

on the observation that maintaining high performance is necessary for maximizing energy

efficiency. Ice-Age first throws out any frequencies that result in a performance loss higher

than some (small) cutoff, and then chooses the lowest frequency pair from the remaining

frequencies. Using a single cutoff value across both GPUs, we showed that Ice-Age was

able to achieve an average of 87% of the optimal compute energy savings.

We also showed that the CPU wastes considerable energy during GPU computation,

by inefficiently busy waiting until the GPU completes execution. Reducing the CPU’s

clock frequency or forcing the CPU thread to block instead of busy wait can result in

significant energy savings. However, these techniques can also increase energy consumption

for applications with extremely short-lived kernels, so they must be applied with care.

As computer systems become more heterogeneous and diverse, keeping resources fully

utilized becomes increasingly challenging. This places an ever greater burden on programmers,

who must contend with differences among resources both within a single system and across

multiple systems. As the trends towards greater heterogeneity continue for the foreseeable

future, the types of automatic techniques for improving utilization that we presented in this

dissertation will become increasingly crucial for software to realize the full benefits of future
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hardware improvements. Thus, it is important that we work to both verify and improve the

generality of these techniques across diverse software workloads and hardware systems.
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