
Comparing Doom 3, WarCraft III, PBRT, and MESA Using
Micro-architecturally Independent Characteristics

Jiayuan Meng, Henry Cook, Kevin Skadron, Dee A.B. Weikle
Department of Computer Science

University of Virginia
{jm6dg, hmc3z, skadron, dweikle}@cs.virginia.edu

Technical Report Number: CS-2007-04

February 10, 2007

Abstract

Computer games have become a driving application in
the personal computer industry. For computer architects
designing general purpose microprocessors, understand-
ing the characteristics of this application domain is im-
portant to meet the needs of this growing market demo-
graphic. In addition, games and 3D-graphics applications
are some of the most demanding personal computer pro-
grams. Understanding the characteristics of these appli-
cations is complicated, though, by their competitive mar-
ket. Source code is generally unavailable and benchmarks
are geared more toward performance in the gaming world
than understanding program characteristics important in
architecture. To facilitate our architecture research, we
have performed a characterization of two popular games,
Doom 3 and Warcraft III, and compared them to two pub-
licly available programs, PBRT (Physically Based Ray
Tracer) and MESA, one of the Spec2000 benchmarks for
3D graphics, using microarchitecturally-independent met-
rics. The dynamic execution of the programs was an-
alyzed with modified Macintosh development tools and
a comparison made with principal component analysis
techniques. We found that the characteristics of these
games differ from each other and the publicly available
programs, particularly in memory reference patterns, and
in their use of specialized instructions. From this prelim-
inary investigation, we determine that games have unique
characteristics, but that PBRT is more similar to both than
MESA.

1 Introduction

Understanding the variety and individual characteristics
of application domains is critical to designing high per-
formance architectures for not only the scientific commu-
nity, but for the personal computer market as well. In the
personal computer market, this task is complicated by the
business goals of the companies who write popular soft-
ware. To remain competitive, these companies must keep
private the source code for their applications, along with
any techniques they use to make their programs faster,
more useful, or (as is often the case for games) more ex-
citing and realistic than their competition. This secrecy
makes it very difficult for researchers in computer archi-
tecture, especially those in academia, to understand the
low-level operation of these applications well enough to
design general-purpose architectures to support them.

With current trends toward multi-core architectures, the
research community has a rare opportunity to shape the
essential foundation of the next era of general purpose ar-
chitectures. This opportunity makes it essential to under-
stand the general characteristics of applications, because
with multi-core architectures the number of possible de-
sign solutions increases exponentially making it impossi-
ble to run detailed simulations and experiments that span
the design space. By characterizing applications, the com-
munity as a whole has access to similarities that can be
used to group similar applications and run fewer simula-
tions to predict performance. Micro-architectural metrics
enable new visions of general-purpose designs, by illumi-
nating characteristics of the application, regardless of the
platform on which it is executed. In addition, characteri-
zations of applications can be used to identify new, unique
benchmarks, and combine them in the most efficient ways
possible for architecture experiments and analysis.

1

Computer games are a huge market segment and de-
sign driver in the personal computer industry. They are
computationally intensive, often including artificial intel-
ligence, physical simulation, realistic graphics, and audio
components operating in parallel. In addition, their inter-
active nature introduces real-time latency constraints. As
a result, they stress personal computers more than almost
any other consumer workload. Games today are CPU
bound, not GPU bound. They are also one of the few
workloads likely to scale to multiple cores. Yet, detailed
evaluation of these games for the purpose of architecture
design is largely unexplored in academia. In this paper
we perform a preliminary characterization of two popu-
lar games, Doom 3 and Warcraft III, and compare them to
two publicly available programs, PBRT (Physically Based
Ray Tracer) and MESA, one of the SPEC2000 bench-
marks. Our goal is to find publically available programs
that we could include in a benchmark suite to represent
one or more games. We compare them using the micro-
architecturally independent characteristics described in
Eeckhout, Sampson, and Calder [3]. Each application is
run on a PowerPC G4 processor for as long as possible to
obtain basic block file descriptions as described in Sher-
wood, Perelman, and Calder [11]. Modified Macintosh
development tools [4] and the Turandot [7] simulator are
used to complete the analysis on the best simulation point
as determined by Simpoint [8]. The results are then com-
pared to determine what, if any, similarities exist between
these applications.

The contributions of this paper are:
1) We perform a characterization of sections of Doom

3, Warcraft III, PBRT, and MESA to determine architec-
turally independent similarities.

2) We use a method that does not rely on source code
to perform the characterization, and make the Macintosh
code for this analysis generally available.

3) We show preliminary results of a principal compo-
nent analysis comparing our data to the data obtained by
Eeckhout, Sampson, and Calder [3] on the SPEC2000
benchmark suite using the Alpha instruction set architec-
ture (ISA) where we use the Power ISA. The differences
between the versions of mesa indicate that such a com-
parison may not be completely appropriate, motivating a
need for better methods of comparison for applications
across ISAs.

The rest of this paper is organized as follows: Section 2
explains related work, Section 3 gives background infor-
mation on the different applications being analyzed, Sec-
tion 4 describes the methodology used in depth, Section
5 shows results of the analysis, Section 6 enumerates spe-
cific conclusions, and Section 7 outlines plans for future

work.

2 Related Work
Eeckhout, Sampson, and Calder [3], use the
microarchitecturally-independent characteristics out-
lined in Phansalkaal. [9] to analyze the SPEC2000
benchmark suite and describe a method of reducing
simulations with this suite to a subset of the most unique
sections to obtain the most accurate results possible with
the least simulation time. They emphasize the importance
of performing microarchitecturally-independent charac-
terizations to enable applications to drive the architecture
and for unique characteristics of applications to drive
their inclusion in benchmark suites. Phansalkar et al. [9]
uses these characteristics to analyze the similarities of
the SPEC benchmark suites over time and determine
subsets of the SPEC suites to run. They find that there
exists a great deal of similarity across all of the SPEC
suites with the SPEC2000 suite slightly more varied than
previous suites. The main difference over time in these
benchmarks is the increase in the dynamic instruction
count and the increase in poor temporal data locality.
Both Eeckhout and Phansalkar use principal component
analysis as we do here to determine similarity with a
wide-variety of parameters. They use k-means clustering
to determine similar clusters of benchmarks, while we
use a distance measure on the principal components
to compute distance from our target applications. The
only other work using microarchitecturally-independent
metrics we are aware of is the work by Driesen et al. [?]
where they characterize several small familar programs
such as fibonacci, nqueens, tower, quicksort, etc. using
two metrics, footprints and unified prediction profiles for
the memory system. They do show instruction mixes, but
there ends the similarity.

Due to the closed-source nature of games, the architec-
ture research community has not performed many char-
acterizations of these programs. Two papers, Bangun,
Dutkiewicz, and Anido [?] and and Feng, Chang, Feng,
and Walpole [?] characterize the network traffic of popu-
lar on-line multi-player games. Feng et al. emphasize the
importance of the class of games known as ”first-person
shooters” and include Doom in their list of such games.
They demonstrate that the traffic consists of large, highly
periodic, bursts of small packets and it targets the satura-
tion of the narrowest, last-mile link to enable the slowest
player to stay in the game. Bangun et al. focusses on
the distribution of the traffic for different games, noting
that the distributions are dependent on the game, but in
some cases independent of the number of players. Mitra

2

and Chiueh [?] perform a characterization of 3D graphics
workloads with the architectural implications for graphics
processors. They use three sets of benchmarks, including
Viewperf OpenGL performance evaluation benchmarks,
a time-demo of QuakeII, and three VRML 1.0 models.
The characteristics that they evaluate have little relation-
ship to those we use and consist of graphics specific
metrics including single-frame geometry bandwidth, total
primitives, number of vertex/primitive, resolution require-
ments, and rasterization requirements. None of the above
provide the kind of detailed general-purpose analysis we
perform here.

3 Application Descriptions
When considering which applications to include in our
study, we identified games that are representative of the
popular trends in structure, design and graphics. To this
end, we chose two bestselling games from the past three
years available on the Macintosh architecture: Doom 3
and Warcraft III: Reign of Chaos. Doom 3 is a science-
fiction/horror first person shooter (FPS) game. Warcraft
III is a fantasy real-time strategy (RTS) game. Both ap-
plications are are several years old, but they both feature
graphics and game play which were cutting edge at the
time of their release and which still create challenging
workloads for some modern hardware. These two games
present a representative slice of the demands placed on the
workstations of gaming users.

PBRT is an open source physically-based ray tracing
program published by Pharr et al. and Humphreys et al. in
2004 [10]. It is able to produce photo-realistic rendering
results offline rather than in realtime. Nevertheless, it pro-
vides an open reference in the context of physically-based
rendering, which is one of the main interest in modern
games. MESA is a free OpenGL work-alike library. Since
it supports a generic frame buffer, it can be configured to
have no operating system or windowing system depen-
dencies. Any number of client programs can be written to
stress floating point, scalar or memory performance (or a
mix).

There are no good open-source game benchmarks. The
goal in analyzing these open-source programs is to inves-
tigate whether they have similar characteristics to the se-
lected game applications. Without access to source code,
it is difficult to analyze how much computational effort
the games put into rendering and related graphics tasks,
as compared to tasks associated with animation, simula-
tion or artificial intelligence. By comparing the most rep-
resentative phase of these games execution with those of
the open-source rendering programs, we attempt to deter-

mine whether the rendering programs can serve as valid
proxies for their commercial counterparts. Uncovered ar-
chitecturally independent similarities will allow us to have
greater confidence in open-source benchmarks as repre-
sentative of modern industry trends, while any differences
will provide insight into how we can better design exper-
iments characterizing game programs. More details are
provided on each application in the subsections below.

3.1 Doom 3
As mentioned above, Doom 3 is a science-fiction/horror
first person shooter which was developed by id Soft-
ware and published by Activision in August 2004;
the Macintosh version was released in March 2005.
(See http://www.doom3.com/) Like most modern games,
Doom 3 uses multiple threads to accomplish the differ-
ent tasks involved in managing and presenting the game.
These tasks include artificial intelligence strategies both
to assist and oppose the player, receiving and processing
user input, score and record keeping calculations, and re-
alistic image creation and rendering.

Doom 3 is famous for not only its custom-built graphics
engine, but also for the way this engine is employed to cre-
ate surprisingly immersive and life-like environments and
characters [5]. Games from the first person shooter genre
generally emphasize fast-paced action, requiring quick re-
flexes and high levels of hand-eye coordination on the
part of the user, and Doom 3 is no exception. For this
reason, popular benchmarks frequently use statistics such
as ”frames per second’ to measure a game’s performance
on a particular hardware system [1]. For the user to re-
main satisfied with the virtual experience provided, a min-
imal apparent speed of execution and interactivity must be
maintained. However, statistics like frames per second are
more indicative of the capabilities of a specific hardware
configuration than they are helpful to us in understanding
the underlying characteristics of a given application.

Due to our machines’ capabilities, and to place maxi-
mal load on the processor, rather than the graphics card,
the program is run with the graphical quality set to ”Low”
but with all image quality features enabled. These settings
were also the ones recommended for the specific hard-
ware, and represent the setup which would likely be cho-
sen by a theoretical user. Generally the effects of a ”Low”
quality graphics setting consist of compressed mapping
and textures [1].

3.2 Warcraft III
Warcraft III is a fantasy real-time strategy (RTS) game
produced and developed by Blizzard Entertainment which

3

was released in July 2002. Real-time strategy games place
the user in control of entire armies or cities over course
of extended tactical encounters and conflicts. Warcraft
III is also a multi-threaded application, and must perform
tasks similar to those outlined for Doom 3 above. Due the
scale and perspective of its gameplay, Warcraft III places
less emphasis on immersive or realistic graphics, but the
sheer number of units needing to be rendered and man-
aged still can create heavy workloads. For this reason,
frames per second is still the favored performance mea-
surment among industry benchmarkers ([2], for exam-
ple). We choose to run Warcraft with the default graphical
settings for our hardware configuration.

While Doom 3’s core gameplay is based on forcing the
user to make frequent high-speed decisions, in the War-
craft gameplay paradigm the user is primarily in charge
of macromanagement, or the long-term planning and tac-
tical aspects of the game. The individual actions of units
controlled by both players and computer opponents are all
directed on a second-to-second scale by the game’s artifi-
cial intelligence functionality. In general, this creates an
environment where user input affects the flow of applica-
tion execution only over longer time scales, but consistent
and rapid feedback rates are still required for user satis-
faction.

3.3 PBRT

Ray tracing is a long-standing fundamental technique in
computer graphics. This technique works to render a
3D scene by casting rays of light from the camera, trac-
ing their paths (which might be reflected or bent by in-
tervening objects and surfaces), and computing the final
color of each ray. We chose PBRT (Physically Based Ray
Tracer) [10] as a representative ray tracing program due to
its open source accessibility, broad coverage of ray trac-
ing techniques, and well-designed infrastructure. PBRT
is a photo-realistic rendering program written by Pharr
and Humphreys for their book, Physically-Based Ren-
dering [10]. The techniques included in PBRT include
camera simulation, ray-object intersections, light distri-
butions, visibility, surface scattering, recursive ray trac-
ing, and ray propagation. Sampling theory and the Monte
Carlo integration method are two significant components
of its operation.

PBRT’s main rendering loop contains four main com-
ponents: the sampler, the camera, the integrators and the
film. It takes as input a scene file, which contains informa-
tion for the 3D model (mainly triangle lists), light source
information, camera position, etc. The sampler then cre-
ates a set of sample points on the film plane. Stratified

sampling is often used to generate the sampling patterns.
For each sample point, the camera generates a ray, which
travels from the film through the lens to the object world.
The ray then passes through several physically modeled
processes. It is tested for intersection with 3D objects. On
an intersection, one or multiple new rays are generated
for reflection and refraction. When the ray passes through
translucent volumes such as jade or smode, scattering will
also take place.

Radiance is calculated by the integrators according to
the light source, object material, and other physical con-
straints during any intersections or along the ray’s path.
Occlusion tests are also made in order to generate shad-
ows. Integration is the key operation in rendering tasks
such as volume scattering and soft shadows from area
light. Monte Carlo integration is a method for using
random sampling to estimate the values of the integrals,
which generally do not have analytic solutions.

Finally, the integrators send the sample ray and its asso-
ciated radiance to the film, which stores the contribution
for that ray in the image. When all the samples are pro-
cessed, the final image is generated. The output image
is in OpenEXR format, which preserves the image’s high
dynamic range information. The format developers’ web
site, www.openexr.org, has full details on the image file
format.

3.4 Mesa
MESA is a free OpenGL work-alike 3-D graphics library
authored by Brian E. Paul and written in ANSI C. Since
it supports a generic frame buffer it can be configured to
have no operating system or windowing system depen-
dencies. Any number of client programs can bewritten
to stress floating point, scalar or memory performance
(or a mix thereof). Output can be written to image files
for verification. The input data is a 2D scalar field. The
scalar data is mapped to height, creating a 3D object with
explicit vertex normals. Contour lines are mapped onto
the object as a 1D texture. The output is a 2D image
file in PNG format. More information can be found at
http://www.mesa3d.org/.

4 Methodology
All applications are run on an Apple Macintosh Mini
with a 1.5 GHz PowerPC G4 7447A processor and a
Radeon9200 graphics card. We use a modified version
of the Macintosh tracing tool Amber, called AmberBBV,
to trace as many instructions as possible in each appli-
cation while collecting basic block vectors (bbv) as de-

4

scribed in Sherwood, Perelman and, Calder [11]. The ini-
tial block size used is 100M. This detailed basic block
information is then translated to a BBV file for 600M
intervals. Since our comparison and characterization in-
volve games, which can run forever, it is not feasible to
analyze every interval and use clustering analysis as de-
scribed in [3]. Therefore, we analyze only the most rep-
resentative 600M interval in the trace with 30 billion in-
structions - the longest trace we are able to capture. Sim-
Point [8] is used for phase analysis to determine the start-
ing simulation point for the highest weighted 600M inter-
val. In the final tracing step Amber is used again to trace
this interval. We use the Macintosh tool acid and Tu-
randot(a PowerPC architecture simulator [7]) to capture
all of the microarchitecturally-independent characteristics
described below. Instruction mix, working set and data
stream strides can be retrieved from acid, which produces
memory access information at both instruction level and
program level. A modified version of Turandot is used
to capture information about register traffic, branch pre-
dictability and instruction-level parallelism.

Several aspects of this process are explained in more
detail in the subsections below. Section 4.1 outlines the
specific characteristics identified and how our method
may differ from that of Eeckhout, Sampson, and Calder
[3]. Section 4.2 describes the issues and methods behind
capturing traces from the interactive game applications.
Section 4.3 details the changes made to the Macintosh de-
velopment tools and the Turandot simulator to capture the
microarchitecturally-independent characteristics used for
our evaluation. Finally, section 4.4 gives an overview of
the statistical analysis methods used to analyze the gath-
ered data.

4.1 Characteristics

The microarchitecturally-independent characteristics
used in our evaluation consist of instruction mix,
instruction-level parallelism, register traffic, working set
size, data stream strides, and branch-predictability. We
attempt to match the measures used by Eeckhout, Samp-
son, and Calder [3] and Phansalkar, Joshi, Eeckhout,
and John [9]as closely as possible. A brief description
of these characteristics is included here, but for details
please refer to the original papers.

Instruction mix. Our focus is on games and rendering
programs where there are often a significant number of
vector operations. Therefore, we slightly modified Eeck-
hout et al.’s approach and include the percentage of loads,
stores, branches, integer operations, floating-point opera-
tions, cache control instructions, and vector operations.

Instruction-level parallelism (ILP). To quantify the
amount of ILP, we consider an idealized out-of-order pro-
cessor model where only the window size is limited. We
compute the number of independent instructions there are
within the current window for window sizes of 32, 64, 128
and 256 in-flight instructions. No-ops are not counted as
independent instructions. Moreover, when measuring de-
pendence due to memory access, we assume that reads
and writes are performed in blocks of 32 bytes.

Register traffic. The register characteristics collected
include the average number of input operands to an in-
struction, the average degree of use, and register depen-
dency distance statistics. The average degree of use is de-
fined as the average number of times a register instance is
read since it is written. The register dependency distance
is the number of dynamic instructions between writing a
register and reading it.

Working set. The working set size is computed sepa-
rately for the instruction and data streams. The number of
unique 32-byte blocks touched and the number of unique
4KB pages touched for both instruction and data accesses
are recorded for each execution interval (600M instruc-
tions).

Data stream strides. Data stream strides are either con-
sidered local or global. Local strides are determined by
capturing the distribution of strides exhibited by each in-
dividual load or store in the program, i.e. the distances be-
tween the successive memory accesses of that instruction.
Frequency counts for are maintained for certain stride dis-
tances (i.e. the count a local load is < 8, < 64, < 512
etc.) Global strides are similar to local strides, but instead
of keeping track of the stride of each load or store in the
program, we keep track of the stride between temporally
adjacent memory accesses (loads and stores are tracked
separately). These vectors can become very large so mem-
ory vectors are not allowed to grow beyond 200,000 ele-
ments. All indices are then calculated modulo the max
vector size. [6]

Branch predictability The most important characteris-
tic of branch predictability is the dynamic predictor per-
formance for the program during execution. To capture
branch predictability in a micro-architecturally indepen-
dent fashion we use the same PPM predictors as Eeckhout
et al. [3]. Eeckhout et al. consider four variations of the
PPM predictor: GAg, PAg, GAs and PAs. G means global
branch history, whereas P stands for per-address or local
branch history; g means one global predictor table shared
by all branches, and s means separate tables per branch.
They emphasize the view that the PPM predictor is a the-
oretical basis for branch-prediction because it attains the
upper-limit performance of current branch predictors. In

5

our experiment, we set the order of the PPM predictor to
13, which is sufficiently large to satisfy the upper bound
requirement.

4.2 Interactive Complications

One of the major challenges to performing the kind of
phase analysis provided by SimPoint is capturing a rep-
resentative fraction of the application’s execution phases.
When there is no set run time for a program because the
period of execution is dependent on the whims of a user,
the selection of starting and ending trace points could be-
come arbitrary choices within an infinite stream of in-
structions and unknown number of phases. To capture a
representative area of execution, we use the ’Quick Load’
feature of the game applications to script the loading of an
interesting game state and used further scripting to ensure
that tracing occurred a measurable distance after the load-
ing process began. For Doom 3, 30 billion instructions
proves to be about the longest possible trace lengths from
a purely practical point of view, and 500 million instruc-
tions are initially skipped in attempt to bypass the initial
loading state.

Another challenge specific to the user interactive ap-
plications domain is the dichotomy between ensuring ex-
perimental repeatability and providing reasonable input to
the application so as to generate realistic behavior. This
contrasts with the deterministic nature of tasks such as
rendering (i.e. PBRT and MESA). In general, script-
ing user input is a valid solution to this problem, but in
the case of our very real-time behavior dependent appli-
cations (games) we encounter problems. For basic in-
application control and input we use AppleScript, but due
to the massive slowdown experienced by traced applica-
tions, it is impossible to provide timed inputs to match the
input capabilities of the traced application and still pro-
duce ’realistic behavior’ (i.e. spatial navigation through a
Doom 3 level). In general, we compensate for this by sim-
ply choosing to trace a game state not dependent solely
on user input for interesting behavior. If graphical de-
mands, artificial intelligence, and automatic services are
active enough at certain point in game play, the effect of
a brief lack of user input on execution is negligible. To
accomplish this, the game is navigated manually to an in-
teresting state (the conclusion of a cinematic with an en-
emy attack in the case of Doom 3), and then the ’quick
save’ and ’quick load’ features are used to allow tracing
to begin with the game in same the precise state every
time. Thus we preserve repeatability while still capturing
an interesting and realistic slice of program execution.

Our approach to extracting traces Warcraft’s execution

is nearly identical to the method used with Doom 3 as
outlined above. The actual tracing parameters are pre-
cisely the same, and only minor modifications are needed
to the script in charge of setting up the application state
and providing user input. As discussed in 3.2, one benefit
of Warcraft III’s game play paradigm over that of Doom
3 in this situation is that the user is mainly in charge
of macromanagement. Individual units’ actions are all
mostly controlled by the game’s artificial intelligence al-
gorithms. For this reason, given a complex game state ex-
amined over a scale of several seconds, there is no reason
to require any user input at all (this behavior may even be
considered typical). By customizing a multi-player sce-
nario it is possible to create a game state as complex as
may be desired. However, in the specific trace analyzed
in this paper, we choose to use a default scenario pro-
vided by the manufacturers for scripting simplicity; we
deem it complicated enough to meet our phase coverage
requirements. As with Doom 3, we automate the pro-
cess of opening the application and loading the desired
state, whereupon tracing automatically begins. 30 billion
instructions are traced. Again, as with Doom 3, a fixed
window of 500 million instructions corresponding to the
loading phase are skipped. The resulting basic block vec-
tor is processed in the same way, resulting a detailed trace
of the block associated with the execution phase weighted
highest by our SimPoint analysis.

4.3 Analyzing Software

AmberBBV is an extension based on the external library
of Amber, a performance analyzing tool for the PowerPC
architecture designed to trace program instructions. The
external library provides an interface for analyzing the
trace. The trace data is then parsed and fed to the BBV
module which produces the BBV profile. To identify a
basic block, the programs simply check each parsed in-
struction to see whether it is a branch instruction. If so,
then we have reached the end of a basic block and must
begin a new basic block. The address of the first instruc-
tion in a basic block is used as the identifier for that block.
We keep all the basic block records in a hash table and in-
crement the counter of a specific basic block when an in-
struction in that basic block is executed. Our BBV module
is based on BBTracker, which was released by Calder et
al. for producing BBV data with SimpleScalar [11]. The
BBV file can then be used for phase analysis and to pro-
duce weighted simulation points. The extended features
of AmberBBV include:

1. Parsing the trace on the fly to generate BBV records.
AmberBBV analyzes the trace data to produce BBV

6

records. Since traces are usually huge in size, and some-
times all we need is the BBV record file, users can decide
whether or not to save the trace while producing the BBV
file. A BBV file is produced for each thread.

2. Configuring the trace options for different threads.
When examining the traces from games, the significant
phases of execution may occur at different times for dif-
ferent threads. However, Amber doesn’t distinguish con-
figurations between threads, hence it is hard to monitor the
trace progress of a particular thread. To provide more so-
phisticated per thread analysis, AmberBBV keeps a sepa-
rate record for each thread, and users can specify the num-
ber of skipped instructions for each thread explicitly.

Acid is a Macintosh development tool that analyzes the
trace files [4]. From an instruction trace it can record and
calculate the instruction mix, assembly code, static branch
misprediction rates, memory access profiles for both in-
struction and data, etc. Although Turandot can also be
used for gathering information about working set and data
stream strides, we directly process acid’s output for sim-
plicity. The assembly code produced by acid is used for
verification purposes.

Turandot is a PowerPC processor simulator [7]. It
parses a PowerPC instruction trace and simulates the ex-
ecution of the traced instructions on a user configured ar-
chitecture. Since we are measuring the microarchitecture
independent characteristics, we treat Turandot mainly as
a trace parser, which feeds our module with each instruc-
tion’s type, address, input and output. Our module then
works separately to analyze the ILP, register traffic, and
branch predictability for the trace. To ensure the instruc-
tions are fetched in the correct order, we turned on per-
fect branch prediction in Turandot and simulate the PPM
branch predictor in our own module.

4.4 Statistical Analysis Methods

To compare our selected applications’ characteristics in a
fair and unbiased way, we need an analysis method which
removes variable correlation from our data set. To this
end we find it appropriate to follow in the footsteps of
Eeckhout et al. [3] and use Principal Components Analy-
sis (PCA). PCA is ideal because it allows us to eliminate
any variable correlations which would otherwise skew our
similarity analysis, while additionally providing a tech-
nique for reducing dataset dimensionality with controlled
information loss. The second aspect is less critical to our
work than it was to Eeckhout et al.’s because we are deal-
ing with only six representative intervals rather than tens
of thousands of intervals representing a complete trace of
all applications, but it is still a useful property for creating

a simple comparison metric.

PCA can best be summarized as a measure of variance
for a dataset containing data for many variables. Each
member of the the dataset is called a case, and PCA will
provide a way to measure the relative similarity of the
cases, based on the variances of the variables across the
cases. In our analysis, each case represents one of our
traced, SimPoint-selected intervals. (Note in our example
we have traced only one interval for each program thread:
two Doom, two Warcraft, one PBRT, and one MESA for
a total of 6 intervals.) Each variable represents one of the
microarchitecturally-independent characteristics detailed
in section 4.1.

By creating Principal Components (PCs) from linear
combinations of the original variables, we remove the ef-
fect of correlations between the variables. This makes it
possible to analyze the data without fear that it has been
skewed by any inter-variable relationships. Initially, we
form as many PCs as there are original variables. By cal-
culating the variance in the dataset accounted for by each
PC, it is then possible to eliminate from further consid-
eration those PCs which do contribute significantly to the
total system variance. This is how we can reduce dataset
dimensionality while quantitatively controlling informa-
tion loss. By examining the way in which each variable
contributes to the retained PCs, in terms of the coefficient
associated with a variable in a given PC’s formative linear
combination, it is possible to give a meaningful interpreta-
tion to the PCs in terms of the original microarchitectural
characteristics. Further details of the PCA process are de-
scribed below.

As in Eeckhout et al. [3], we put all the data into a
matrix, with each row representing a traced interval, and
each column representing a variable (i.e. a characteristic).
Each variable column is normalized to a mean of 0 and
a variance of 1. The purpose of this is to avoid variables
with large variance due to their innate scale having undue
influence on our results. The resulting matrix is then oper-
ated on by the PCA. The output of PCA is another matrix,
with each row representing a case and each column repre-
senting a Principal Component. We will refer to the PC in
the first column as PC1, and the PC in the second column
as PC2, etc. The PCs are ordered according to their vari-
ance in descending order. Consequently, we know PC1
provides the most information about the variance within
our data set, followed by PC2, and so on. By setting a
desired retained variance lower-bound threshold we can
eliminate the majority of the PCs. For example, from the
PCA of our six traces (PCAnalysis I), we select the first 2
PCs because they contribute to at least 70%of the variance
of all the variables.

7

We normalize the selected PCs to a have variance of
1 to complete the removal of any variable correlation ef-
fects. We can then represent each case (or traced interval)
as a vector, with each retained PC as a component of the
vector. Euclidean distance can then be used to compare
their similarity. Unlike Eeckhout et al. [3], we do not fur-
ther the process with clustering techniques on our PCA
data; instead we use the selected Principal Components to
compare the representative intervals directly.

To provide further insight into the domain space and
analysis technique we perform a second PCA analysis
(PCAnalysis II). This time we incorporate not only our six
new traces, but also data from fifteen of the cases stud-
ied in Eeckhout et al. [3]. These additional cases were
gathered from the SPECCPU2000 benchmark suite. We
choose to include all the floating point benchmarks so
as to provide a wide spread of program behavior domain
space against which we can compare our own traces. To
produce valid comparisons between the two data sets, we
choose a subset of 41 of the original characteristics which
we believe should not affected by the differences in our
methodology as compared to Eeckhout et al. [3]. Specif-
ically, we were not able to directly compare working set
and some instruction mix statistics. In this case, our PCA
indicates that we should retain the first 4 PCs, which ac-
count for 70% of the variance across all the variables.

It is important to realize that the similarity metric pro-
vided by PCA is not absolute, but instead a relative mea-
sure. That is, the distance between the same data point
pair in two different PCAs will be different if the other
cases included in the PCA are changed. This is because
each PCA provides a metric only in terms of those cases
which are included in that PCA. The power of PCA is that
it allows us to determine which cases are most or least
similiar, while simultaneously gaining insight into which
variables are the root cause of said similarity.

5 Results
First we show selected results for each category in section
4.1 and compare those results individually. Then we per-
form a PCA (PCAnalysis I) to show the composite simi-
larities across our six threads. In the final PCA (PCAnal-
ysis II), we include results from Eeckhout et al. [3].

5.1 Instruction Mix
Figure 1 shows a breakdown of the instruction mix used
by each of our six threads. By far integer operations are
the most common for all threads. MESA and PBRT in-
clude the largest amount of floating point operations -

much more than either of the game threads. This may
be due to the use of the graphics processors by the game
programs. Probably for the same reason, the games make
a much greater use of vector and cache control operations
as well.

5.2 Instruction-level Parallelism (ILP)

Figure 2 shows that all threads exhibit relatively large
amounts of ILP. The differences seem relatively small
when considering the 32B window size, but as the win-
dow size grows, the Doom threads seem to hit a limit,
indicating a relatively lower level of ILP than any of the
other 4 threads.

5.3 Register Traffic

Register traffic characteristics include the average num-
ber of input operands to an instruction, the average de-
gree of use, and the register dependency distance. The
average number of input operands was similar for each
thread, ranging from 1.30 for Doom 3 Thread 2 to 1.57
for MESA. The average degree of use varied slightly more
from 1.11 for Doom 3 Thread 1 to 1.73 for PBRT.

The register dependency distance results are shown in
Figure 3. Once the distance exceeds 2, the shape of the bar
graphs and their relationship is very similar, with a small
switch between MESA and PBRT in the < 8 column. It
should be noted that there are still a fair number of ref-
erences that have a register dependency distance greater
than 64 for all of the threads, especially Doom 3 Thread 1,
which seems to reach a limit somewhere just above 40%.

5.4 Working Set

The working set comparison shown in Figure 4 illustrates
some of the biggest differences between the applications.
Doom 3 Thread 2 is clearly performing most of the mem-
ory accesses in both the instruction and data caches. Also,
Doom 3 Thread 2 and MESA clearly have significantly
larger working set sizes than any of the other threads.

5.5 Data Stream Strides

Figure 6 shows the relationship between global and lo-
cal data strides for each thread. Doom 3 Thread 1 has a
majority of its global load strides at 64 or less, while the
other threads have only 60% of their global load strides
at 4K or less. The majority of global store strides are 64
or less, with MESA standing out as having global store
strides that keep rising. Almost 80% of local load strides

8

are 64 or less for all programs, but to reach the 80% mark
for local store strides requires a stride of 512 or less.

5.6 Branch Predictability
All of the threads are very predictable as demonstrated in
Figure 5. The GAg predictor gets the highest mispredic-
tion rates because there are more conflicts in this predic-
tor. Doom 3 Thread 2 is least predictable of the threads by
a relatively large amount, but is still very predictable with
its worst misprediction rate just above 1%.

5.7 PCA I: Doom, Warcraft, PBRT, MESA
Figure 7 shows the comparison of the vectors represent-
ing 6 threads; one each for PBRT and MESA, and two
each for Doom and Warcraft. Only the comparison in
the PC1 and PC2 domain space is shown here because
they account for at least 70% of the variability accord-
ing to the PCA. The coefficients of each PC are shown in
Figure 8. Because two of the components capture such
a high amount of the variability, the relative ”difference”
between these applications is captured in the distance they
are apart in the graph.

Our results indicate that Doom 3 and Warcraft III are
the least similar of our traced applications. Even the way
work is divided between the major threads appears to be
disparate: while both Warcraft threads exhibit very simi-
lar characteristics, the two Doom threads are furthest apart
when plotted in PC1/PC2 space. This dichotomy likely
springs from the huge difference between the Doom 3
threads in terms of their use of vector operations as well
as their widely ranging working set sizes.

MESA, PBRT, and both Warcraft threads appear to be
nearly identical with regard to our first principal compo-
nent, and more divergent in terms of the second. This
reflects a similarity between the programs’ characteristics
which are assigned a large coefficient value by the PCA.
Compared to Doom 3 and MESA, PBRT is most similar
in its behavior to WarCraft III. However, Doom 3’s behav-
ior is not similar to either PBRT or MESA. One possible
explanation is that Doom 3 succeeds in implementing al-
most all graphical computations on the GPU, and is mak-
ing heavy use of vector operations.

PCA enables us to see relative values for several char-
acteristics of a particular thread by inspecting the coef-
ficient graph. As an example, consider MESA. It has a
very high PC2 value, which means it has low mispredic-
tion rates, high levels of ILP at larger window sizes, large
numbers of input operands and degree of use, many float-
ing point operations but few vector or cache operations,
small global store strides, large local strides, and small

working set sizes other than data32B. (All considered rel-
ative to the other threads included in the analysis.) The
sign of the coefficient means larger or smaller raw data
values, and the size of the coefficient indicates the degree
of largeness or smallness.

5.8 PCA II: Including SPEC2000, Alpha-
ISA Data

Because of the relative nature of PCA, we thought it use-
ful to attempt to compare a number of other benchmarks
to those used in this study. We also wanted to see how
our results compared to those in the previous literature,
specifically those presented in Eeckhout et al. There were
several concerns when attempting this comparison. First,
the data we have from Eeckhout et al. is aggregate data
over many intervals of 100M instructions, where our data
is over one large 600M interval. To compensate for this
we removed characteristics that were influenced by the in-
terval size, and depended on the Simpoint methodology to
have identified a representative point in our applications.
Second, we are analyzing traces from a dynamic run of
the applications in question, where Eeckhout et al. are
simulating large portions of the programs. Third, we are
using a different instruction set architecture, and compiler
than Eeckhout et al. In the final analysis, we determined
that these latter two issues dominate the comparison be-
low. This determination is largely because of the great
disparity between our MESA and Eeckhout’s MESA in
the PCA. We did compute the distance in the four PC di-
mensions between our game threads and all of the other
data points. It is true that the open source thread clos-
est to three of the game threads is PBRT. The exception
is Doom 3 thread 1 which is relatively far away from all
other threads, but closest to one of Eeckhout’s data points
for a SPEC benchmark. This leads us to believe that, if
the differences that do exist are taken into consideration,
PBRT performance has the most potential of these pro-
grams for shedding light on micro-architecture enhance-
ments for these games (particularly Warcraft). The lack
of compatibility between the MESA results highlights
the benefit of continued research for charcteristics and
methodologies that can be used across ISAs, compilers,
and ideally, tracing and simulation methodologies.

6 Summary and Conclusions

This paper identifies salient characteristics of two games,
Doom 3 and Warcraft II, and compares them to two open-
source programs, PBRT and MESA of the SPEC2000

9

Loads Stores Branches Vector Int Ops FP Ops Control
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Instruction Types

P
er

ce
nt

ag
e

Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 1: Instruction Mix

32 64 128 256
0

2

4

6

8

10

12

14

16

18

Window Size

IL
P

Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 2: Instruction Level Parallelism

=1 <2 <4 <8 <16 <32 <64
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Register Dependency Distance

P
er

ce
nt

ag
e

Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 3: Register Dependencies

Instruction 32B Instruction 4KB Data 32B Data 4KB
0

1

2

3

4

5

6

Memory Access Category

B
lo

ck
s

T
ou

ch
ed

 (
lo

g
ba

se
 1

0)
Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 4: Working Set Comparison

GAg PAg GAs PAs
0

0.002

0.004

0.006

0.008

0.01

0.012

Predictor Type

M
is

pr
ed

ic
tio

n
R

at
e

Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 5: Prediction Comparison

10

Figure 6: Data Stream Stride Comparison

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

PC 1

P
C

 2

Doom 3 Thread 1
Doom 3 Thread 2
WarCraft III Thread 1
WarCraft III Thread 2
MESA
PBRT

Figure 7: PCAnalysis I: Doom, Warcraft, PBRT, and MESA

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Branch

Pred.

ILP Reg. Traff ic Inst. Mix Data Strides Working

Set

Characteristics

P
C

F
a

c
to

r
L

o
a

d
in

g
s

PC1

PC2

Figure 8: PCAnalyis I: Coefficients for PC1 and PC2

11

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

PC 1

P
C

 2

Meng et al. Doom 3 Thread 1

Meng et al. Doom 3 Thread 2

Meng et al. WarCraft III Thread 1

Meng et al. WarCraft III Thread 2

Meng et al. MESA

Meng et al. PBRT

Eeckhout et al. MESA

Eeckhout et al. SPEC

Figure 9: PCAnalysis II: Combined Meng, Eeckhout data
PC1 and PC2 only

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

PC 1

P
C

 2

Meng et al. Doom 3 Thread 1

Meng et al. Doom 3 Thread 2

Meng et al. WarCraft III Thread 1

Meng et al. WarCraft III Thread 2

Meng et al. MESA

Meng et al. PBRT

Eeckhout et al. MESA

Eeckhout et al. SPEC

Figure 10: PCAnalysis II: Combined Meng, Eeckhout data
PC3 and PC4 only

benchmark suite. Since the game programs are multi-
threaded, we analyze two threads from each game and one
thread from the others. Detailed comparisons are given on
each of six main categories of micro-architectural charac-
teristics. A few highlights are: 1) The game programs
use more specialized instructions than MESA and PBRT,
probably because they are better optimized for the archi-
tecture. 2) All threads show a fair amount of ILP, but as
window size grows the Doom threads seem to hit a limit
around 10. 3) All of the threads have register dependen-
cies that exceed 64 instructions. 4) The Doom threads are
highly dissimilar, while the Warcraft threads are very sim-
ilar. For example, nearly all the memory blocks touched
by Doom are touched by thread 2, in both the instruc-
tion and data accesses, while the memory blocks touched
by the Warcraft threads are more comparable and much
smaller in number. 5)Global load and local store strides
are bigger, in general, for all threads than global store
and local load strides. 6)All threads are very predictable
in theory, with Doom 3 Thread 2 being the least pre-
dictable. Our Principal Component Analysis shows the
most commonality between PBRT and the Warcraft III
threads, and the largest disparity between MESA and the
Doom 3 threads.

In the final analysis, we determine that the games are
different enough from our two initial candidates to war-
rant analyzing more games and more open-source pro-
grams to track down similarities. There is almost an in-
finite variety within the game genre itself, including first-
person shooters vs. real-time strategy vs. sports simu-
lations, different types of game logic, different amounts
of physical simulation, different amounts of GPU offload,
different amounts of optimization, etc.

The similarity between Mesa/PBRT and the games,
compared to the diversity among the game threads, sug-
gests just how noisy this space is. This difference seems
similar to the variance among games, and PBRT, espe-
cially, seems much more similar to these games than any
other SPEC benchmarks, suggesting that optimizing for
Mesa/PBRT is at least going to lead architects in the right
direction. It certainly illustrates the need to understand
this space better and develop better benchmarks. No one
benchmark or even a small set will be representative of
the game space: it will require many benchmarks.

Games are fundamentally important in the marketplace
and a major design driver for CPUs, not just GPUs, yet
academic architects are mostly unable to study them be-
cause we lack benchmarks and hence lack any insight into
games’ requirements. This is a first step to addressing
this shortfall and elucidating some research directions that
would allow academics to play a relevant role in this ex-
panding market.

7 Future Work

Future work in this area falls into three general categories;
work on evaluating more games and more benchmarks to
discover similarities, refining characteristics and method-
ology to allow comparisons across ISAs and compilers,
and expanding these results by using full-speed dynamic
runs with performance counters to collect pertinent data.

12

Acknowledgments
This work is supported in part by the National Sci-
ence Foundation under grant nos. NSF CAREER award
CCR-0133634, and CNS-0340813, and a grant from In-
tel MRL. Great appreciation goes to Lieven Eeckhout for
the use of his SPEC2000 data and many clarifications.
We would also like to thank Yingmin Li and Karthik
Sankaranarayanan for assisting us with Turandot, and
Greg Humphreys for his helpful input.

8 Appendix A: Raw Data
of Microarchitecturally-
independent Characteristics

See Figure 11.

9 Appendix B: BBV file format

A BBV file contains per interval and per basic block sta-
tistical information of each thread.

Each line represents an interval. After a T as the begin-
ning flag, each line is divided into several word blocks in
the format :B:N, each word block shows the number of in-
structions executed in this basic block during the current
interval. B is the basic block ID and N is the number of
instructions for this basic block. The basic block infor-
mation is sorted in ascending order according to the block
ID. A typical line in BBV with interval 100:

T:1:34 :3:12 :4:54

10 Appendix C: AmberBBV Speci-
fications

AmberBBV entitles the user to generate a BBV file on
the fly, with a specified interval length. The BBV file
can then be used for phase analysis to generate simpoints.
AmberBBV configures and generates BBV files per each
thread and is named in the same way as the trace files.
Each BBV file contains lines of intervals with basic block
statistics.

AmberBBV contains 3 modules:
Interface with the amber kernel, which initialize the

AmberBBV according to the user commands and also ac-
cept trace data from the amber kernel.

Trace Parser takes in the trace data from the amber ker-
nel, analysis it based on the opcode, gather statistic infor-
mation for each thread, and pass the information to BBV
tracker. The statistical information and its usage are as
follows: 1. Per thread number of instructions caught by
amber: If the user specified the number of skipping in-
structions for a thread, the program should use the per
thread information to determine when to start writing the
trace file. It is also used for printing out the tracing sta-
tus on the fly. 2. Per basic block number of instructions
caught by amber. The BBV tracker is the consumer for
this information.

BBV Tracker is based on BBtracker released by Calder
et al. [11], but is extended for multi-threaded programs. It
builds a hash table for each basic block, with the starting
pc as the key value. Each time the trace parser encoun-
ters an end of a basic block, it will send the basic block
level instruction count to BBV tracker, and BBV tracker
will add them to the BBV statistic counter in the current
interval. If a basic block turned out to be crossing two in-
tervals, it will automatically be split in BBV tracker. So
the BBV tracker is accurate. Note that in [11], the basic

13

block instruction count will always be added to the cur-
rent interval, so it is an approximation. In most cases, this
doesn’t affect the phase analysis. But when a basic block
has a significant size compared with the interval size, this
may introduce more error to the phase analysis.

11 Appendix D: Turandot Modifica-
tions

Turandot is modified to capture microarchitecturally-
independent characteristics. Four versions of Turandot
is generated, each one is responsible to capture one type
of information, such as working set, ILP, register traffic
and branch predictability. We insert the code into the
main loop of Turandot’s simulator. We are using Turandot
mainly as a parser of the PowerPC instruction set. Every
clock cycle, the decoded instruction queue is checked for
newly fetched instructions. Since the instructions are in
order at this stage, we are able to feed our analysis code
with the instruction in sequence. No-ops are ignored. Tu-
randot provides information for instruction address, regis-
ter input and output, memory access address, and instruc-
tion type. With these information, we are able to process
our analysis.

References
[1] Kyle Bennet. The official doom 3 hardware guide.

Jul. 2004.

[2] Chris Connolly. Almost cinematic graphics : nvidia
geforcefx 5600. page 7, Apr. 2003.

[3] Lieven Eeckhout, John Sampson, and Brad Calder.
Exploiting program microarchitecture independent
characteristics and phase behavior for reduced
benchmark suite simulation. In IISWC05, Oct. 2005.

[4] Apple Computers Inc. Computer hardware under-
standing developer tools. Jan. 2004.

[5] Greg Kasavin. Doom 3 for pc review. Aug. 2004.

[6] J. Lau, S. Schoenmackers, and B. Calder. Struc-
tures for phase classification. In Proceedings of
the 2004 IEEE International Symposium on Per-
formance Analysis of Systems and Software (IS-
PASS04), Mar.

[7] Jaime H. Moreno and Mayan Moudgill. Turandot
users’s guide. In IBM Research Report RC 21968,
February 2001.

[8] Erez Perelman, Greg Hamerly, and Brad Calder.
Picking statistically valid and early simulation
points. In Proceedings of the 12th International
Conference on Parallel Architectures and Compila-
tion Techniques, Sep. 2003.

[9] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K.
John. Measuring program similarity: Experiments
with spec cpu benchmark suites. In Proceedings
of the 2005 IEEE International Symposium on Per-
formance Analysis of Systems and Software (IS-
PASS05), pages 10–20, Mar. 2005.

[10] Matt Pharr and Greg Humphreys. Physically-Based
Rendering: From Theory to Implementation. Else-
vier Science and Technology Books, 2004.

[11] Timothy Sherwood, Erez Perelman, and Brad
Calder. Basic block distribution analysis to find
periodic behavior and simulation points in applica-
tions. In International Conference on Parallel Ar-
chitectures and Compilation Techniques, Sep. 2001.

14

Figure 11: Raw Data

15

