
Area-Speed-Efficient Transpose-Memory Architecture for
Signal-Processing Systems

Mohamed El-Hadedy
∗

hadedy@Illinois.edu
Divya Patel

†

dnp6sm@virginia.edu
Martin Margala

‡

martin_margala@uml.edu

Kevin Skadron
§

skadron@virginia.edu

ABSTRACT
This paper presents the design and analysis of a high-speed
implementation of a new transpose memory architecture.
The proposed memory structure achieves almost 4X im-
provement in speed while consuming 46% less area, com-
pared to prior work. For example, an 8X8 transpose memory
with 12-bit input/output resolution has been implemented
in 140 slices on a Virtex-7 Xilinx FPGA platform, achieving
107.83 Gpbs, clocked at 647MHz. The new transpose mem-
ory architecture allows 3.5X speed up in performance for
the 2D-DCT algorithm, compared to previous work, while
consuming 28% less area, and 2D-IDCT achieves 3X speed
up compared to prior work, while consuming 20% less area.

Keywords
FPGA, Signal Processing, Adaptive Systems

1. INTRODUCTION
A wide-range of applications such as computer graphics,

medical imaging and telecommunications all rely on signal-

∗Dr.Mohamed El-Hadedy is a research scientist with the Co-
ordinated Science Laboratory, University of Illinois.edu at
Urbana-Champaign, 1308 West Main street, Urbana, Illi-
nois 61801-2307. This work was done while Dr. Mohamed
EL-Hadedy was a Research Associate with the Department
of Computer Science at the University of Virginia, 85 Engi-
neer’s Way, P.O.Box 400740, Charlottesville, Virginia
†Divya Patel is an undergraduate student with the Depart-
ment of Computer Science at the Univeristy of Virginia, 85
Engineer’s Way, P.O.Box 400740, Charlottesville, Virginia
‡Martin Margala is the chair of the Department of Elec-
trical and Computer Engineering at the university of Mas-
sachusetts Lowell, Ball Hall Room 301, One University Av-
enue, zip-code: 01854, Lowell, Massachusetts
§Professor.Kevin Skadron is the chair of the Department of
Computer Science at the University of Virginia, 85 Engi-
neer’s Way, P.O.Box 400740, Charlottesville, Virginia, USA

.

processing technology. Signal processing requires fast math,
often on complex numbers, but many applications require
computations in real-time: i.e., the signal is a continuous
function of time, which must be sampled and converted to
digital form and analyzed for real-time monitoring or con-
trol purposes. The processor must thus execute algorithms
performing discrete computations on the samples as they
arrive. Many media processors and digital signal processors
(DSPs) use special memory architectures that are able to
fetch multiple data and instructions for supplying multiple
computational functional units at the same time.

Many signal-processing algorithms, such as discrete co-
sine transform (DCT) and inverse DCT (IDCT) [2] must
repeatedly transpose matrices. Transposing a matrix us-
ing conventional operations—reading out rows and writing
columns from/to the cache, or vice-versa—is expensive, re-
quiring many clock cycles (and power). These read/write
operations are a form of overhead, and a prime target for
optimization to improve the performance and energy effi-
ciency of algorithms involving transpose operations. Also
DWT [8], FFT[13], and encryption[21] require transposition
operations as they dominated by matrix techniques.

To support efficient transposition, memory architectures
have been proposed (see Related Work, below) that allow
direct access to both the rows and columns (in contrast to
conventional memory structures that only allow row access).

Transpose memory can be implemented either with shift
registers or SRAM. RAM needs to transpose the column or
row elements. Solutions based on RAM lead to high latency,
which have a high cost in area [14, 16, 12]. Implementations
of the transpose memory with size configurable[3], and low
latency [6, 5], are based on shift-register structures because
of their flexibility and low over head control.

This paper describes the changes necessary to previously-
proposed transpose-memory organizations to support opera-
tions on both edges of the clock, doubling throughput. This
module can be used in a wide variety of DSPs and other
organizations to support DCT, IDCT, and other algorithms
requiring efficient transpose operations such as 2D-FFT [19,
21]. This paper describes the implementation of the double-
edge transpose memory unit, as well as its use within both
DCT and IDCT units.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 presents the trans-
pose memory architecture. Section 4 presents the transpose
memory performance along with comparisons with previ-
ously schemes. Sections 5 and 6 present the potential ap-

1

plications, which could benefit from the proposed TRM. Fi-
nally, some concluding remarks about the applications of
this memory architecture are presented.

2. RELATED WORK
In the past, several architectures for transpose memory

have been proposed. In 1995, Kovac et al. [10] introduced
an 8x8 transpose memory as an array of register pairs. The
data are input to the transpose memory in row-wise fash-
ion until all the 64 registers are loaded. Then the transpose
memory outputs the transposed version serially. The trans-
pose memory has a latency of 64 clock cycles. On the other
hand, for transposing 8x8 matrix by using our new architec-
ture, the latency in this case is just four cycles.

In 2001, Agostini et al. [1] describe a transpose memory
architecture for a row-column DCT architecture on FPGAs
that relies on two RAM structures. While the first RAM
is receiving the data from the first stage of the 1D-DCT,
the second stage of 1D DCT reads the input values column
by column from the other RAM. Those two RAMs are con-
trolled by a control block, which decides whether a RAM
should be in Read or Write mode at each memory-access
step. The authors’ reason for using RAMs for the transpose
memory implementation is the availability of RAM blocks
on the FPGA. In addition, the use of registers in FPGAs
is costly in terms of logic cells. However, block RAM is
inefficient when both row and column access are frequent.
Although we rely on using the FPGA flip-flops and look-up
tables LUTs to build the new transpose memory, careful de-
sign for efficiency achieves better performance in both area
and performance compared to all prior works.

In this paper, our new memory transpose architecture is
an improvement upon two prior implementations of simi-
lar FPGA-based, flip-flop-based transpose memory organi-
zations. In the method proposed in 2007 by El-Hadedy et
al. [6], a single-edged memory subsystem for data transposi-
tion is detailed. This subsystem, in its NxN implementation,
takes N clock cycles to saturate all of its cells with values,
and then N clock cycles to output the values before the next
set of data can be input into the transpose memory. The
transpose memory can only receive values in the horizontal
direction and can only output values in the vertical direc-
tion. Thus, 2N clock cycles are consumed to obtain each
transposed output set.

The method proposed in 2010 by El-Hadedy et al. [5]
remedied this shortcoming by creating a memory subsys-
tem that allows values to be input and output in both the
horizontal and vertical directions. This allows for decreased
latency because, while data is being output in a particular
direction, input data can be fed into the transpose memory
subsystem in the same direction, i.e. in a pipe-lined fashion.
This means that, for every N cycles (in an NxN implemen-
tation), a new set of inputs will be loaded and a new set of
outputs will be produced. Over many inputs, the number
of clock cycles consumed to obtain each output converges to
N cycles, which is half that of the 2007’s memory transpose
implementation.

Both architectures rely on using a register file consisting
of connected cells to shift the data in horizontal and vertical
dimensions based on the inputs’ direction. The difference
comes from using a different cell architecture. For instance,
in [5], the cell consists of an input 2x1 multiplexer for choos-
ing which input should process first. This is followed by a

set of flip-flops (register) acting on the positive edge of the
clock to store the data, which are shifting every-cycle. The
output from the register is connected to a 2x1 de-multiplexer
to choose to which direction (X-direction or Y-direction) the
output should be assigned.

On the other hand, the cell architecture of the new TRM
relies on using a 2x1 multiplexer to choose which input di-
mension should be processed—the row or column inputs.
This is followed by two sets of flip-flops, one of them act-
ing on the positive edge and the other on the negative edge.
The outputs of these registers can then be used without a
2x1 de-multiplexer. Although the actual hardware changes
are small, these insights yield a significant improvement in
terms of speed. With the new architecture, by using the
double-edge register, we decrease the latency by half, plus we
increased the maximum frequency by removing the combina-
tional circuit of the 2x1 de-multiplexer in the prior work [5].
This speeds up the new memory by almost 4x compared
to [5]. In other words, this new transpose memory module
can produce a transposed output matrix every N/2 clock
cycles, assuming an NxN memory transpose system.

Figure 1: NxN M-bit Transpose architecture

3. TRANSPOSE MEMORY ARCHITECTURE
As shown in Fig. 1, the architecture of the transpose mem-

ory consists of three primary components: the register file,
the cell mapper, and the control unit. The register file,
shown in Fig. 2, operates on M-bit-long inputs. Each cell in
the register file has a clock and an asynchronous reset sig-
nal, which synchronizes operation and reset. In addition, a
selector signal dictates the direction of data flow within the
memory transpose matrix: X or Y. At the end, the TRM has
a display signal, which controls the direction of the outputs.

3.1 Cell
Each cell receives data from both X and Y directions, as

shown in Fig. 3, and directly streams one direction’s input
to the appropriate output, shifting the data on each half-

2

Figure 2: NxN M-bit register file architecture

(a) M-bit Cell Architecture

(b) Register structure

Figure 3: Register file internal architecture

clock edge. The cell consists of a 2x1 (M-bit) multiplexer,
as shown in Fig. 3a, which is controlled by a 1-bit selec-
tor signal, and an M-bit register. The 2X1 multiplexer is
used to select from from which direction the M-bit regis-
ter receives data. The M-bit register is used to transfer the
multiplexers’ output on either the positive or negative edge
of the clock CLK. The double-edge register architecture, as
shown in Fig. 3b, is based on two sets of flip-flops running
in parallel, one for the positive edge and the other for the
negative. Both sets are connected to a 2x1 multiplexer, and
the control bit of the multiplexer is connected to the clock.

By this way, the TRM process the data in both edges
of the clock. Removing the de-multiplexer from the TRM
in [5] decreases the propagation delay, which helps raise the
maximum frequency compared to [5]. The register also has
an asynchronous reset signal RST, which has a priority over
the clock CLK and is used to clear the cell’s output

3.2 Cell Mapper
As shown in Fig. 4, the cell mapper works as a multiplexer,

which takes the outputs (X and Y directions) of the register
file as inputs. The ”Disp” signal determines which output
values (X or Y) will be the output from the cell mapper on

3

Figure 4: Cell mapper architecture

every clock edge.

3.3 Control Unit
The size of the control unit depends on the(TRM) dimen-

sions. For instance, if the TRM is NxN, the control unit
will act as a 2N-bit counter, counting on both edges of the
clock. The most significant bit of the control unit (2N-1)
determines the direction of the inputs and the outputs. The
selector signal is connected to the most significant bit of the
control unit. On the other hand, the disp’s signal is con-
nected to the inverse of the same bit. This gives the ability
while the input comes from the x-direction, for the output
to be taken from the Y-direction.

4. TRANSPOSE MEMORY PERFORMANCE
In this paper, the functionality of the proposed TRM was

verified on the Xilinx Virtex-7 XC7VX485T-2FFG1761 de-
vice. The prior works were implemented on the Xilinx Vir-
tex XCV800 [6, 5], so for fair comparison, the prior works
are re-implemented on the new Virtex-7 (VC707). In this
paper, VHDL is used for describing the prior and proposed
works on the FPGA platform and was synthesized using ISE
design suite 14.7.

Fig. 5 and Fig. 6 show the resource utilization of the
8X8 dual-edge TRM with different input/outputs resolu-
tions on Virtex-7 platform. As shown in Fig. 7, the total
area of the area of the proposed memory is a function of the
input/output resolution. The area steadily increases with
word size, while maximum frequency is almost unchanged,
it varies from 626 to 656 MHz.

In FPGA platforms, the area is typically reported based
on the total number of slices. A slice contains some number
of Look-Up-Tables (LUTs), flip-flops (FFs) and multiplexers
(MUX). For example, a Virtex-7 contains four LUTs and
eight flip-flops [7]. As shown in Fig. 6, the proposed dual-
edge TRM relies on using these LUTs and FFs, and the
utilization increases with resolution.

Figure 5: TRM 8X8 Performance, Area/Throughput

Throughput =
Number of input bits×Maxfrequency

Number of clock cycles per block
(1)

Figure 7: TRM 8X8X12 comparisons on VIRTEX-7,
Area/max.freq comparison

Figure 8: TRM 8X8X12 on ViRTEX-7, Resource utiliza-
tion comparison with 12-bit word-size

As shown in Fig. 7, in terms of area, the proposed TRM
is 39% smaller than [6] and 46% smaller than [5]. In terms

4

Figure 6: TRM 8X8 Performance, Resource utilization comparison with different word-sizes

of max. frequency, the proposed TRM works at 647 MHz,
which is 3.5% better compared to [6] and 71% better com-
pared to [5]. In terms of latency, for the TRM8X8, the pro-
posed TRM has fewer cycles of latency compared to prior
works; for example, for the 8X8 TRM, the proposed TRM
has just 4 cycles, compared to 8 cycles in [5] and 16 in [6].

The results of Fig. 8 show that the proposed TRM does
consumes 350% more full LUT-FF pairs than [6] and 11%
less than [5]. However, for total LUT-FFs used (unused FF +
unused LUT + Full used LUT-FF pairs), the proposed TRM
consumes almost 50% less than [6], and 39% less than [5].
The proposed TRM, in terms of LUT-FF pairs compared to
prior work, is expensive due to using these LUTs for building
the double-edge sets of registers per each cell in the register
file, but is still able to yield area savings and performance
improvement.

These results in Fig. 7 and Fig. 8 show that the pro-
posed TRM, using just LUTs and FFs, achieves better per-
formance in terms of area and frequency compared to prior
work. By applying equation. 1 on the posted data in Fig. 7

Figure 9: Speed/Area Performance

and Fig. 8, we can find in Fig. 9 that the proposed TRM is
3.7X faster than [6] and around 3.4X times faster than [5].

5. APPLICATIONS
For better comparison, the proposed transpose memory

has been integrated in both 2D-DCT and 2D-IDCT blocks [4].
Specifically, the 2D-DCT and 2D-IDCT implementations
and transpose-memory structures in [5] have been re-implemented
on the Virtex-7.

5.1 2D-DCT component
Numerous applications such as lossy compression of im-

ages (e.g. JPEG [15] and watermarking [6]) rely on using
the DCTs, to spectral methods for numerical solutions of
partial differential equations[20].

Although 2D-DCT can be performed on blocks of various
size, experiments have shown that compression is always a
trade-off. One can always get sharper images by keeping
more information. Experience shows that 8x8 blocks pro-
vide a good balance between fidelity and compression [17].
Equation 2 describes the formula of the 2D-DCT (omitting
normalization and other scale factor), where N and M rep-
resents each dimension size, f(i,j) is the intensity of the pixel
in row i and column j, and F(u,v) is the DCT coefficient in
row k1 and column k2 of the DCT matrix. For instance, in
8X8 2D-DCT N = M = 8.

F (u, v) =

(
2

N

) 1
2
(

2

M

) 1
2

N−1∑
i=0

M−1∑
j=0

Λ(i, j) cos
[πu

2N
(2i+ 1)

]
cos
[πv

2M
(2j + 1)

]
f(i, j)

5

where,

Λ(i) =

1√
2

, for ε = 0

1 , otherwise

(2)

Computing a 2-dimensional DCT is typically achieved by
two 1D-DCT computations, one in the X and one in the
Y dimension, with a transpose unit between them. This is
known as a row-column algorithm. El-Hadedy et al [5] re-
lied on a combinational architecture to build the 1D-DCT
followed by a register processing the data every cycle to de-
crease the effect of the critical path. In this paper, we used
the same structure of the 1D-DCT in the prior work while
modifying the end-stage register to perform every half cycle
by applying the approach in Fig. 3b.

Figure 10: Performance result of the 8X8 2D-DCT using
the proposed TRM

The performance comparison between [5] and the pro-
posed double-edge TRM in Fig. 10 shows that the double-
edge TRM improves the performance of 2D-DCT, with 3.5X
speedup and a 28% reduction in area.

5.2 2D-IDCT component
The IDCT decodes an image back into the spatial domain

from a frequency-domain representation of the data better
suited to compression. It is the inverse operation of the DCT
in section 5.1.

The 2D-IDCT consists of three blocks. The first and the
last blocks are 1D-IDCT and the middle block is the trans-
pose memory. The 1D-IDCT in this paper relies on using the
modified Loeffler’s technique [4] with modifications in [5], so
that one 1D-ICT operation requires 11 multiplications and
29 additions, using the pipelined approach as shown in [5].
Fig. 11. Each

√
2Cn block consists of three multiplication

and three adders/subtractor [6].
A shown in Fig. 12, by integrating the proposed TRM in

the 2D-IDCT, a speedup of 3X is achieved compared to the
prior work [5], while the total area decreased by 20%.

6. COMPACT 2D-DCT PROCESSOR

Figure 11: Modified 1D-IDCT [6]

Figure 12: Performance result of the 8X8X12 2D-IDCT
using the proposed TRM

Area is critically important for many applications, such
as medical, military, and space applications. Instead of cap-
turing the data from a local sensor and transmitting the raw
data, it is preferable to compress it, or perhaps perform lo-
cal analysis and send only results. These operations rely on
algorithms such as DCT and IDCT.

The speed improvements of the TRM in section 4 can be
invested to build a compact version of the 2D-DCT that re-
lies on using one 1D-DCT connected to the TRM and loop-
ing back. This provides almost the same speed as the fastest
version of the prior work [5], with a much smaller area.

As shown in Fig. 13, the new processor processes 8X8
blocks with 8-bit input resolution per element. It consists of
a ”padder,” parallel data-bus, 1D-DCT, TRM, and the con-
trol unit. The total latency of this processor is 10.5 cycles.

6

Figure 13: 2D-DCT compact processor

6.1 Padder
It is a combinational circuit, which converts the input

stream resolution from 8-bit to 12-bit width by adding four
zeros on the most significant bits (The extra bits are needed
by the 1D-DCT).

6.2 Parallel Data_Bus
This works as two parallel multiplexers. The first multi-

plexer takes the output streams of the padder and the TRM
and sends them to the 1D-DCT unit according to the con-
trol unit’s DBIN CTRL(1-bit) signal. The second multi-
plexer takes the output streams from the TRM (for debug-
ging purposes) and the 1D-DCT and sends them as 2D-DCT
outputs according to the control unit’s DBOT CTRL signal.
The same architecture of the 1D-DCT and TRM in section
5.1 and section 3, respectively are used.

6.3 2D-DCT Control Unit
The control unit consists of a 5-bit counter, which is re-

porting the output every a half cycle. It controls the parallel
data-bus unit and DBIN CTRL(1-bit) through DBOT CTRL(1-
bit), DBIN CTRL(1-bit), and DCT CTRL respectively.

6.4 The Performance of the 2D-DCT Compact
Processor

The processor has been implemented in 256 slices, requir-
ing 13.5 cycles to process 96 byte blocks of data, achieving
throughput of 5.6 Gps at 100 MHz. The throughput/area
(Mbps/Slices) ratio of the compact processor is 22.4, which
is higher than the ratio of the implementation of the 2D-
DCT in [5] by 54%. On an FPGA, this frees up area, which
allows a smaller FPGA to be used, or allows the FPGA to
support a greater amount of functionality. It is also sugges-
tive of the potential savings in an ASIC implementation.

Table 1 shows a comparison between the implementation
of the 2D-DCT by using the proposed TRM and others. The
throughput/Area (Mbps/slices) ratio of both fast and com-
pact processors are higher than the ratio of the prior work.

For instance, the ratio of the fast processor is higher than the
ratio of the implementation in ref[18, 11] by 15 times. Even
though, the maximum frequency in ref[9] is higher than the
proposed fast version by 12.8%, the throughput/area ratio
of the fast version is 34 times higher than it. The through-
put of the proposed fast version is almost 2X higher than
[18, 11], almost 5X higher than the implementation in [11],
and almost 8X higher than in [9].

7. CONCLUSIONS
In this paper, we presented an FPGA implementation of

a new transpose memory architecture that leverages both
edges of the clock to improve throughput. In fact, with care-
ful organization, the transpose memory itself can achieve a
speedup of almost 4X over prior work, while consuming 46%
less area. In transpose-heavy algorithms that rely heavily on
transpose operations, such as 2D-DCT and 2D-IDCT, we
also implement the computation logic to benefit from new
data every half cycle. The resulting architecture achieves
3.5X speedup on 2D-DCT and 3X speedup on 2D-IDCT.
This new TRM architecture allows a more compact DCT
architecture that needs only a single stage of 1D-DCT, by
looping data back through the TRM to reuse the computa-
tion hardware, maintaining high performance while further
reducing area. Both normal and compact implementations
of the 2D-DCT by using the proposed transpose memory
show a significant improvements compare to the prior works
in terms of speed and area.

The future work in this area will be implementing more
algorithms, which are benefiting from the low latency the
proposed memory showed. Also integrating this memory
structure in DSPs for signal processing applications.

Acknowledgements
This work was supported in part by NSF grant no. CDI-
1124931 and by the Center for Future Architectures Re-
search (C-FAR), one of six centers of STARnet, a Semicon-

7

Table 1: Performance Comparison

Proposed Fast Proposed Compact ref[18] ref[11] Ref[9] arch(1) Ref[9] arch (2)

Device
Virtex-7
XC7VX485t

Virtex-7
XC7VX485t

XC2VP3 Spartan XC3S500E
Virtex-7
XC7VX330T

Virtex-7
XC7VX330T

Throughput (Gpbs) 15 5.6 8.36 3.44 1.84 1.97
Area 322 256 2823 1145 1354 1110
Throughput/Area (Mbps/Slices) 47.7 22.4 3.03 3.07 1.39 1.82
Maximum Frequency (MHz) 300 100 107 84.81 338.5 256

ductor Research Corporation program sponsored by MARCO
and DARPA.

8. REFERENCES
[1] L. Agostini, I. Silva, and S. Bampi, “Pipelined fast 2d

dct architecture for jpeg image compression,” in
Integrated Circuits and Systems Design, 2001, 14th
Symposium on., 2001, pp. 226–231.

[2] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine
transform,” Computers, IEEE Transactions on, vol.
C-23, no. 1, pp. 90–93, Jan 1974.

[3] J. Bruguera and R. Osorio, “A unified architecture for
h.264 multiple block-size dct with fast and low cost
quantization,” in Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th
EUROMICRO Conference on, 2006, pp. 407–414.

[4] K. Bukhari, G. Kuzmanov, and S. Vassiliadis, “Dct
and idct implementations on different fpga
technologies,” in Proceedings of ProRISC 2002,
pp-232-235, 2002.

[5] M. El-Hadedy, S. Purohit, M. Margala, and
S. Knapskog, “Performance and area efficient
transpose memory architecture for high throughput
adaptive signal processing systems,” in Adaptive
Hardware and Systems (AHS), 2010 NASA/ESA
Conference on, June 2010, pp. 113–120.

[6] M. Elhadedy, A. Madian, H. Saleh, M. Ashour, and
M. Aboelsaud, “Hardware implementation of the
encoder modified mid-band exchange coefficient
technique (mmbec) based on fpga,” in
Microelectronics, 2007. ICM 2007. Internatonal
Conference on, Dec 2007, pp. 43–46.

[7] U. Guide, 7 Series FPGAs Configurable Logic Block,
1st ed., Xilinx, San Jose, CA.

[8] R. Jain and P. Panda, “Memory architecture
exploration for power-efficient 2d-discrete wavelet
transform,” in VLSI Design, 2007. Held jointly with
6th International Conference on Embedded Systems.,
20th International Conference on, Jan 2007, pp.
813–818.

[9] P. Kitsos, N. Voros, T. Dagiuklas, and A. Skodras, “A
high speed fpga implementation of the 2d dct for ultra
high definition video coding,” in Digital Signal
Processing (DSP), 2013 18th International Conference
on, July 2013, pp. 1–5.

[10] M. Kovac and N. Ranganathan, “Jaguar: a fully
pipelined vlsi architecture for jpeg image compression
standard,” Proceedings of the IEEE, vol. 83, no. 2, pp.
247–258, Feb 1995.

[11] E. Kusuma and T. Widodo, “Fpga implementation of
pipelined 2d-dct and quantization architecture for jpeg
image compression,” in Information Technology

(ITSim), 2010 International Symposium in, vol. 1,
June 2010, pp. 1–6.

[12] Y. Li, Y. He, and S. Mei, “A highly parallel joint VLSI
architecture for transforms in H.264/AVC,” Signal
Processing Systems, vol. 50, no. 1, pp. 19–32, 2008.
[Online]. Available:
http://dx.doi.org/10.1007/s11265-007-0111-4

[13] Y. Ma, “An effective memory addressing scheme for fft
processors,” Signal Processing, IEEE Transactions on,
vol. 47, no. 3, pp. 907–911, Mar 1999.

[14] A. Madisetti and J. Willson, A.N., “A 100 mhz 2-d 8
times;8 dct/idct processor for hdtv applications,”
Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 5, no. 2, pp. 158–165, Apr 1995.

[15] N. Ponomarenko, K. Egiazarian, V. Lukin, and
J. Astola, “Additional lossless compression of jpeg
images,” in Image and Signal Processing and Analysis,
2005. ISPA 2005. Proceedings of the 4th International
Symposium on, Sept 2005, pp. 117–120.

[16] G. Ruiz and J. Michell, “Memory efficient
programmable processor chip for inverse haar
transform,” Signal Processing, IEEE Transactions on,
vol. 46, no. 1, pp. 263–268, Jan 1998.

[17] G. Sullivan and R. Baker, “Efficient quadtree coding
of images and video,” Image Processing, IEEE
Transactions on, vol. 3, no. 3, pp. 327–331, May 1994.

[18] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi,
and D. Sciuto, “A pipelined fast 2d-dct accelerator for
fpga-based socs,” in Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, ser. ISVLSI ’07.
Washington, DC, USA: IEEE Computer Society, 2007,
pp. 331–336. [Online]. Available:
http://dx.doi.org/10.1109/ISVLSI.2007.13

[19] W. Wang, B. Duan, C. Zhang, P. Zhang, and N. Sun,
“Accelerating 2d fft with non-power-of-two problem
size on fpga,” in Reconfigurable Computing and
FPGAs (ReConFig), 2010 International Conference
on, Dec 2010, pp. 208–213.

[20] Wikipedia, “Discrete cosine transform,” 2015, [Online;
accessed 20 December 2015]. [Online]. Available: http:
//en.wikipedia.org/wiki/Discrete cosine transform

[21] X. Zhang and K. Parhi, “Implementation approaches
for the advanced encryption standard algorithm,”
Circuits and Systems Magazine, IEEE, vol. 2, no. 4,
pp. 24–46, Fourth 2002.

8

http://dx.doi.org/10.1007/s11265-007-0111-4
http://dx.doi.org/10.1109/ISVLSI.2007.13
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_cosine_transform

	Introduction
	Related Work
	Transpose Memory Architecture
	Cell
	Cell Mapper
	Control Unit

	Transpose Memory Performance
	Applications
	2D-DCT component
	2D-IDCT component

	Compact 2D-DCT processor
	Padder
	Parallel Data_Bus
	2D-DCT Control Unit
	The Performance of the 2D-DCT Compact Processor

	Conclusions
	References

