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Abstract— We propose a novel C4 pad placement optimization
framework for 2D power delivery grids: Walking Pads (WP). WP
optimizes pad locations by moving pads according to the “virtual
forces” exerted on them by other pads and current sources in the
system. WP algorithms achieve the same IR drop as state-of-the-
art techniques, but are up to 634X faster. We further propose an
analytical model relating pad count and IR drop for determining
the optimal pad count for a given IR drop budget.

I. INTRODUCTION

In modern system-on-chip design, supply-voltage-noise in-
duced reliability issues are becoming increasingly challeng-
ing due to increasing current density [1]. Among the various
sources of voltage noise, IR drop refers to the resistive drop
across metal wires in the power delivery network (PDN). Typ-
ical design rules tolerate an IR drop ratio no more than 5% of
supply voltage; violations can lead to timing errors.

In a flip-chip design, because the underlying silicon chip has
a non-uniform power dissipation, the number and locations of
controlled-collapse-chip-connection (C4) pads connecting to
the on-chip PDN have a large impact on IR drop. Thus opti-
mizing both the number and location of power supply C4 pads
becomes critical to guarantee the desired IR drop target. More-
over, given the fact that both power supply and signal I/O share
the same physical interface—C4 pads—determining the mini-
mum number of power pads required for a given chip design
through such optimization can help a designer to determine the
available I/O bandwidth, or even perform tradeoffs between I/O
bandwidth and the IR drop target.

Previous works have addressed pad placement optimization
for the purpose of minimizing IR drop [2, 3, 4]. However, their
approaches have scalability limitations, and as a result are not
suitable for the large pad placement design space of modern
systems. Some other works provide analytical methods to es-
timate max IR drop when pad number and pad locations are
given [5, 6]. To the best of our knowledge, no existing work in-
vestigates the minimum number of C4 pads required to satisfy
a target IR drop in a 2D PDN grid.

In this paper, we propose a fast method to obtain the mini-
mum pad number for a target IR drop and corresponding op-
timized pad locations. First, we introduce a new method of
power pad placement optimization, Walking Pads (WP). The
key idea behind WP is to convert a global optimization prob-
lem, the placement of n pads given m candidate locations, into

a local balance problem, the placement of individual pads (cur-
rent sources) with respect to various nearby current demands.
Treating pads as “mobile positive charges” and the on-chip
PDN grid as a 2D electrostatic voltage field, WP optimizes pad
location by letting pads “walk” in the direction of the total vir-
tual force exerted upon them to achieve local force balance.

WP achieves significant speedup over existing methods in
the literature because it has two significant advantages:

1. WP leverages the underlying voltage gradients to quickly
identify promising pad locations.

2. WP allows all pads to step toward their balanced posi-
tions simultaneously, reducing algorithm complexity sig-
nificantly as a function of target pad count.

Second, we derive an analytical formula to describe the rela-
tionship between IR drop and pad number based on optimized
pad locations. While not a closed-form model, our analytical
formula only requires that three coefficients be fit to a curve,
and can identify the optimal pad count to within two pads for
systems with 128-1024 pads. When combined with WP, our
analytical formula can quickly and accurately predict the min-
imum required pad count.

This paper makes two principal contributions:
1. We propose WP and demonstrate that it achieves at least

100X speedup with respect to the classical simulated an-
nealing (SA) methods in the literature, while sacrificing
no more than 0.1% VDD in steady-state IR drop.

2. We propose an analytical formula that describes the re-
lationship between the number of pads and the expected
maximum IR drop assuming optimized pad locations.

Together, the analytical model and WP algorithm are posi-
tioned to significantly accelerate the optimization of power pad
count and placement, and therefore create new opportunities
for joint optimization.

II. RELATED WORK

Sato et al. proposed the Successive Pad Assignment (SPA)
method of power pad location optimization for pad ring alloca-
tion [3]. Zhao et al. provided a solution of mixed integer linear
program (MILP) for pad ring allocation [2]. The computational
complexities of both SPA and MILP grow quickly as problem
size increases. As a result, they are not tractable for large
scale 2D C4 arrays. Zhong and Wong proposed a fast power
pad placement optimization algorithm within the framework of
simulated annealing (SA) [4]. This method localizes the ef-
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fect of pad movement using a node-based iterative method and
therefore improves the performance of each SA iteration. How-
ever, the localization is based on the hypothesis that the volt-
ages of pad-PDN connection points cannot affect each other.
This is not true when the package circuit and pad resistance
are considered. Furthermore, their approach sacrifices accu-
racy when accelerating calculations [4], and cannot work with
other efficient numerical methods like preconditioned Krylov
subspace methods [7].

Shakeri proposed a theoretical method of accurate IR drop
estimation for uniform power consumption floorplans with uni-
formly distributed pads [5]. Rius extended this work to a
closed-form expression for non-uniform power consumption
floorplans with arbitrary pad counts and locations [6]. How-
ever, Rius’ work is based on the assumption that power pads
are uniformly distributed on a rectangular 2D array. As shown
in Section VII, IR drop is systematically overestimated in this
case relative to the expected IR drop of optimally placed pads.

Walking Pads and the analytical model we have developed,
unlike any prior work, enable designers to efficiently determine
the relationship between pad count and IR drop, and therefore
optimal pad allocation. Such an approach is critical for pre-
RTL design, as the number of pads required for power delivery
affects the number of pads available for I/O, and therefore has
implications for system architecture and microarchitecture.

III. PROBLEM FORMULATION

A. Power Delivery Network Model

The typical regularity of the on-chip PDN’s physical struc-
ture makes compact PDN modeling feasible. A well accepted
methodology models the multi-layer metal stack as a 2D re-
sistor mesh [8]. C4 pads are modeled as individual resistors
attached to on-chip grid nodes, and the relative locations of
those connection points in the grid represent the actual loca-
tions of the C4 pads on the silicon die. Ideal current sources
are used to model the load (i.e. switching transistors). Off-chip
components like the package or printed circuit board (PCB) are
lumped into single resistors. To the best of our knowledge,
lumped package models are adopted in most current related
work. We adopt this methodology and build the model skele-
ton as in Fig. 1 [9]. We assume the PCB represents an ideal
power supply and simultaneously model lumped package re-
sistors, pad resistors and on-chip 2D resistor mesh; the steady
state equations we solve therefore capture not only the on-chip
2D resistor mesh, but the package and pad resistors as well,
with the latter elements changing as pads move from one can-
didate location to another.

To solve for voltage and current values in the model cir-
cuit, we employ sparse LU decomposition with pivoting, us-
ing SuperLU [10]. A direct solver with pivoting is generally
considered a numerically stable and accurate method, and pro-
tects optimization quality from numerical errors. When imple-
mented using advanced reordering techniques [11], sparse LU
reduces memory usage significantly and achieves adequate per-
formance for use in our experiments. It is worth noting that the
proposed Walking Pad algorithm framework is a high level op-
timization framework, is thus not restricted to a particular nu-
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Fig. 1. Model of 2D PDN.

merical method, and can therefore take advantage of ongoing
advances in numerical methods [7, 12].

B. Power Pad Location Optimization

Given the system floorplan, the number of power pads to
place, and system power trace, the objective of power pad loca-
tion optimization is to identify grid locations at which to place
pads in order to minimize the maximum observed IR drop.
The size of C4 bumps restricts the locations where they may
be placed. We assume that power pads can be allocated on a
coarse pad grid that depends on the ratio of pad pitch and metal
pitch. Each possible allocation of power pad to grid locations
is called a configuration. The total number of configurations
is the binomial coefficient of the number of pad locations and
number of pads, and is larger than 10200 in the case studies con-
sidered in this paper (and larger than 101400 for a scaled system
in Section VI.B). In this context, effective and computationally
efficient search techniques are needed to rapidly identify pad
allocations that achieve near-optimal IR drop.

IV. WALKING PADS

The key idea behind WP is to convert a global optimiza-
tion problem, the placement of n pads given m candidate loca-
tions, into a local balance problem, the placement of individual
pads (current sources) with respect to various nearby current
demands. To find the proper virtual force for local balance,
we first observe that there is a similarity between the 2D PDN
on-chip voltage field and a 2D electrostatic voltage field. The
steady state equation of a voltage field can be regarded as the
finite-difference version of the 2D Poisson equation [5, 13]:

∂2V

∂x2
+
∂2V

∂y2
= IxyR, (1)

where V is the on-chip voltage field, Ixy is the workload cur-
rent density at point (x, y) and R is the resistance per unit
length in the x and y directions. Gauss’s law of electrostatic
systems can be similarly described [14]:

∂2Ṽ

∂x2
+
∂2Ṽ

∂y2
=
ρxy
εxy

, (2)

where Ṽ is the electrostatic field, and ρxy and εxy are the
charge density and permittivity at point (x, y). Note that in
this paper we only consider the case where R is the same in the
x and y directions; WP algorithms are also suitable if on-chip
resistance is anisotropic.



When viewing pad placement as a 2D electrostatic voltage
field problem, the current in the PDN is analogous to the elec-
tric flux lines in an electrostatic system, which are proportional
to the voltage gradient. In this way, power pads can be re-
garded as “positive point charges” that source currents, and
the underlying architectural blocks in the processor system can
be regarded as “negative surface charges” that sink currents.
Like charges repel each other, while unlike charges attract each
other. We therefore define the voltage gradient at a pad location
as the virtual force to direct pad movement.

In this context, Walking Pads allows pads to move in reac-
tion to the forces exerted on them by current sources and other
pads in the PDN; the pads “walk,” toward the locations where
these forces balance. No matter where the pads are placed, the
total current through all pads is invariant. However, when pads
reach their balanced positions, the gradient of the voltage field
(directly proportional to the current) in each direction is equal-
ized and reduced. Therefore, IR drop (the integral of voltage
gradients) is minimized.

WP also minimizes max on-chip current density and PDN
metal power dissipation at the same time. On-chip max cur-
rent always occurs in those wires directly connected to a pad;
max on-chip current density is therefore also minimized by WP
because WP minimizes the current through these wires. PDN
metal power dissipation is an analogue to the total energy of the
electrostatic system. Therefore, the PDN metal power dissipa-
tion is also reduced when pads move under virtual forces, and
is minimized when all forces on surface charges are balanced.

A. Walking Pads Algorithm Framework

An iteration of a Walking Pads algorithm uses three steps to
incrementally move all pads toward their balanced positions:

1. Solve steady state equations.
2. Calculate virtual forces and decide the direction and dis-

tance of movement for each pad based on total forces.
3. Move pads.

Grid voltage and current values are determined in step 1. In
step 2, current values are used to guide pad movement. Step 3
moves all pads simultaneously. WP achieves a significant per-
formance improvement over SA by employing a deterministic
approach to the selection of pad movement direction and dis-
tance in step 2 and allowing all pads to move simultaneously in
step 3. As more optimization is achieved with each iteration,
fewer iterations are needed.

B. Efficient Total Force Calculation

Once steady state current and voltages have been calculated
for each node in the PDN, WP must determine in which direc-
tion to move each pad by computing virtual forces.

A intuitive way to determine the total virtual force on each
pad is to apply the law of superposition and sum the contribu-
tions of virtual force from all other pads and current sources
together. Some previous work uses this approach [15]. How-
ever, such methods are inherently inefficient due to their com-
plexity. Using Gauss’s Law, the force on a pad in one direction
can be calculated from the voltage gradient in that direction.
In the case of 2D PDN, one pad connects to four lines in the

east, north, west and south directions. The resultant force is the
vector summation of these four currents.

C. Walking Pads Algorithm Variants

We propose three variants of Walking Pads. The first, Walk-
ing Pads - Neighbor (WP-N), only allows the pads to move to
neighboring locations based on a comparison of the strength
of vertical and horizontal forces: the stronger force determines
the direction the pad moves, either up/down or left/right. Be-
cause all pads move at the same time and traverse a con-
stant distance—one pad candidate location in the direction of
motion—this algorithm results in the oscillation of pad loca-
tions around balanced positions. In practice, WP-N regards
oscillation as convergence: when oscillation is detected, the al-
gorithm terminates. As a result, WP-N does not perform well,
but remains useful for quick, but low-quality, optimization.

The second variant, Walking Pads - Freezing (WP-F), is
shown in Algorithm 1. WP-F allows pads to move in an arbi-
trary direction defined by the normalized virtual force ~F/

∥∥∥~F∥∥∥.
Large move distances are also adopted in early iterations. To
force pads to stop at approximately balanced positions, we in-
troduce a freezing process which gradually decreases the move
distance of each pad. The distance a pad moves Di decreases
with the constant freezing rate γ. WP-F terminates when pads
no longer move. The large-step stage of WP-F helps pads to
jump out of local minima, while the small-step stage helps pads
gradually freeze in their balanced positions.

Set: initial move distance D0, freezing rate γ
repeat

Solve steady state;
foreach pad do

~F = (Inorth − Isouth, Ieast − Iwest)

~Disp = ~F/
∥∥∥~F∥∥∥ ∗Di

end
Di+1 = Di ∗ γ

until check converge() == True;

Algorithm 1: Walking Pads - Freezing (WP-F) algorithm.

Walking Pads - Refined (WP-R), is shown in Algorithm 2.
The first two versions of WP take advantage of the simultane-
ous movements of all pads. Simultaneous movements reduce
the quality of the solution to some extent, however, because the
forces on one pad may change when other pads move. To ad-
dress this, WP-R performs a greedy search: it moves pads one
by one and only accepts movements that decreases the max IR
drop. For a 2D grid, we assume that moving pads near the loca-
tion of max IR drop has greater effect than moving distant ones.
To improve efficiency, WP-R sorts the pads by their distances
to the max IR drop location and lets nearby pads move first.
When the location or the value of maximum IR drop changes,
WP-R re-sorts the pads and continues. The algorithm termi-
nates when no pad movement improves IR drop. Because of
its algorithm complexity, WP-R is used to supplement WP-F
or WP-N to further improve the results when high optimization
quality is required.



Set: D0 = PadPitch, initial maxIRDrop
repeat

Sort pads by distance to max IR place→ PadList;
foreach pad in PadList do

~F = (Inorth − Isouth, Ieast − Iwest)

~Disp = ~F/
∥∥∥~F∥∥∥ ∗D0

Solve steady state and get new maxIRDrop;
if new maxIRDrop < maxIRRrop then

accept the movement;
maxIRRrop = new maxIRDrop; break;

else
reject the movement;

end
end

until check converge() == True;

Algorithm 2: Walking Pads - Refine (WP-R) algorithm.

D. Algorithm Complexity Analysis

The worst-case complexity of WP algorithms occurs when
a pad must move from an initial position in one corner of the
chip (e.g., the left-top corner) to a balanced position in the op-
posite corner (e.g., the right-bottom). In this case, WP-N re-
quires #gridrow + #gridcolumn − 2 iterations to converge.
For the practical cases of randomly initialized pad positions,
the average number of iterations required is on the order of
B0(#gridrow + #gridcolumn− 2)/#pad. B0 is larger than 1
for the case that a pad does not move directly from its initial to
the balanced position (i.e., it takes a detour).

For WP-F, the convergence speed is controlled by freezing
rate γ. The approximate traveling distance of one pad before
being frozen is (D0− 0.5pad pitch)/(1− γ), where D0 is the
initial move distance. Again, to beat the worst case, D0 and γ
are chosen to make the travel distance of each pad larger than
the diagonal length of the grid. In our experiments, starting
from roughly uniform pad locations results in much faster con-
vergence than this theoretical upper bound. Detours are also
possible in WP-F. In practice, we add a safety coefficient C0 in
the range of 2.0 ∼ 4.0 to balance the effect of detours and the
speedup due to uniform initial positions and get:

D0 − 0.5pad pitch

1− γ
= C0 ∗

√
#grid2row + #grid2column.

(3)
We choose an initial move distance D0 = 3 ∗ pad pitch and
freezing rate γ = 0.99 for our case studies; this results in 180
WP-F iterations. The total number of iterations required is in-
dependent of the number of pads to be placed.

V. EXPERIMENTAL SETUP

To evaluate our WP algorithms, we compare their conver-
gence speed and solution quality with the simulated annealing
(SA) algorithm proposed by Zhong and Wong [4]. For SA, we
evaluate two cooling rates, 0.98 (practical cooling speed, SA-
P) and 0.999 (very slow cooling speed, SA-S) for efficiency
and quality comparison respectively; we have observed that the
cooling rate of 0.85 proposed by Zhong and Wong is too fast
to produce high-quality results. In our SA implementation, we
maximize the square of the worst node voltage and implement

the movement window shrinking strategy proposed in the liter-
ature [4]. The SA algorithm is considered converged when the
movement window is too small for pads to move.

We begin by comparing SA with WP-N and WP-F, and com-
pare SA with WP-F+WP-R then. To compare WP-R and SA,
we need to terminate WP-R iteration to get results of similar
quality as those from SA, and then compare the speedup. To
compare with SA-P and SA-S respectively, WP-F+WP-R-T1,
terminates after #pad/2 iterations of WP-R, and WP-F+WP-R-
T2 terminates after #pad*8 iterations of WP-R. These cutoffs
were determined heuristically to yield similar quality.

We select a 24-core, Intel Penryn-like multiprocessor at
16nm technology as the platform to evaluate the above opti-
mization algorithms. To estimate the power consumption for
each functional block, we use McPAT, an architecture-level
power model [16]. To model the worst-case power dissipa-
tion in the system, we assume that each architectural unit dis-
sipates 85% of its max power [17]. We assume a supply volt-
age of 0.7V; architectural floorplans were generated using an
architecture-level tool, ArchFP [18]. We assume that the top
metal pitch is 30µm top layer metal pitch, and that wires in this
layer are 6µmwide and 4µm thick; this results in a PDN model
consisting of a 236 by 296 resistor grid, where each resistor has
a resistance of 41mΩ. We assume that the C4 pad pitch is 285
µm, resulting in a grid with 2880 pad candidate locations for
our 24-core system. According to ITRS projections, C4 pad
density will be held constant in the foreseeable future [19]; we
adopt the ITRS projection for pad density in our experiments.
All our experiments are conducted on an Intel Xeon E5-1650
3.20 GHz CPU with 32 GB memory.

VI. RESULTS

A. WP Speedup and Result Quality

We first compare two basic WP algorithms, WP-N and WP-
F, with SA-P; the results of this comparison are illustrated in
Fig. 2. Fig. 2 plots algorithm convergence and solution quality
for WP-F (dotted line), WP-N (dashed line), and SA-P (solid
line) with respect to IR drop, max current density and power
consumed in PDN metal; iteration count is plotted on the x
axis. We use iteration counts alone to compare the efficiency of
each approach because solving for steady state voltage and cur-
rent values—required by, and equivalent in, each approach—
requires over 99.9% of the total time to complete a single itera-
tion in each case. SA, WP-N, WP-F and WP-R have about the
same runtime per iteration and memory usage (approximately
0.3s and 220MB for the case of 512 pads on 24-core floorplan).

In Fig. 2, VDD pads are initially allocated uniformly to ev-
ery fourth pad candidate location in the vertical and horizontal
directions, representing 180 pads among 2880 pad candidate
locations. We summarize the IR drop (IR), max on-chip current
density (J), metal power dissipation (P) and required iteration
(Iter) for each pad allocation method in Table I.

We observe that uniform pad allocation does not produce
good results: SA reduces IR drop by 45% with respect to that
from uniform pad location. Furthermore, we observe that all
three algorithms jointly optimize all three metrics, if at differ-
ent rates, and with differing effectiveness. WP-N converges the



TABLE I
COMPARISON OF DIFFERENT ALLOCATION METHODS

Method IR (% VDD) J (1010A/m2) P (W) Iter

Uniform 12.5 2.246 10.11 –
WP-N 10.2 1.903 8.752 36
WP-F 7.5 1.543 8.365 180
SA-P 6.9 1.530 8.571 28,261
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Fig. 2. WP-F (dotted), WP-N (dashed) and SA (solid) all jointly optimize IR
drop, max current density and power dissipated in on-chip PDN metal, but at
different rates and with different effectiveness. In practice, the techniques
above do not monotonically improve each figure of merit; for clarity, we plot
the results for the best explored configuration so far at a given iteration count.

fastest, finishing in 20% of the time required for WP-F; how-
ever, WP-N converges too quickly to get high-quality results,
resulting in an IR drop 48% higher than that produced by SA.
WP-F only sacrifices 0.6% VDD in IR drop, but obtains a 157X
speedup when compared with SA.

We next evaluate the effect of combining WP-F and WP-R to
achieve better optimization quality. Fig. 3 plots the IR drop gap
and convergence efficiency of WP-F, WP-F+WP-R-T1 (termi-
nates after #pad/2), and SA-P for varying pad counts, relative
to the results from SA-S. The pad allocations selected by SA-S
are considered the global optimal and are used to evaluate the
result quality of other methods. SA-S, which cools at a rate of
0.999 instead of 0.98, needs 3176×#pad iterations to converge
while SA-P needs 157×#pad to converge.

In Table II we summarize the quality and speedup on a 24-
core floorplan with 128 to 1024 pads. Four different WP strate-
gies (WP Str.) - WP-F, WP-F+WP-R-T1 (F+R-T1, WP-R-
T1 terminates at #pad/2), WP-F+WP-R-T2 (F+R-T2, WP-
R-T2 terminates at #pad ∗ 8), and WP-F+WP-R (F+R, no
early termination), are investigated. WP-F achieves up to 893X
speedup with respect to SA-P, but sacrifices too much qual-
ity (0.54 %VDD). When refined with WP-R, WP-F+WP-R-T1
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Fig. 3. Comparision of Walking Pads and simulated annealing: differences in
worst IR drop and speedup. WP-R-T1 terminates after #pad/2 iterations.

TABLE II
COMPARISON OF DIFFERENT WALKING PADS ALGORITHMS

WP Str. Speedup (X) Max Gap in %VDD

vs SA-P vs SA-S vs SA-P vs SA-S

WP-F 112-893 – 0.54 0.81
F+R-T1 82-232 – 0.09 0.25
F+R-T2 – 337-388 – 0.12
F+R – 20-220 – 0.10

achieves up to 232X speedup with respect to SA-P, but pro-
duces results matching those from SA-P with a gap less than
0.1% VDD. We therefore think WP-F+WP-R-T1 can replace
SA-P to obtain optimized pad locations with practical quality.
In the case of 832 pads, WP-F+WP-R-T1 requires less than
four minutes to achieve results of comparable quality to SA-P
after 15 hours. For the same reason, we think WP-F+WP-R-
T2 can replace SA-S to obtain intensively optimized pad loca-
tions with a speedup in the range of 337-388X. We have not
compared WP-F and WP-R-T1 with SA-S and WP-R-T2 and
WP-R with SA-P.

B. Synthetic and Scaled System Benchmarks

To demonstrate that WP performs well under a variety of
scenarios, we developed a series of benchmarks including (a)
six synthetic floorplans (Fig. 4) and (b) three variants of the
24-core system with 16, 32, and 48 cores. Our results are sum-
marized in Table III. For each benchmark (Bench.), we report
the number of pads allocated (# pads), the number of candidate
locations (# loc), and the corresponding speedup (Speedup) of
WP-F (F), WP-F+WP-R-T1 (R-T1) and the IR drop gap (%
Gap) of WP-F (F), WP-F+WP-R-T1 (R-T1) and WP-F+WP-R
(R), each relative to SA-P. The IR drop gap between SA-P and
WP is calculated as (IRWP − IRSA-P )/V DD. A negative
gap means WP outperforms SA-P.

For the synthetic benchmarks, we observe that WP-F and



(a) Uniform
(S-Uni)

(b) Half-half
(S-HH)

(c) Checked
(S-CB)

(d) 3-Level 1
(S-TL1)

(e) 3-Level 2
(S-TL1)

(f) 3-Level 3
(S-TL1)

Fig. 4. The floorplan of each synthetic model is 20 x 20 mm2. 512 pads are
allocated to deliver a total of 150 W. In (b), the power density ratio of black to
white is 4:1. In (d), (e) and (f) the power density ratio of black, gray and white
is 3:2:1.

TABLE III
WP RESULTS FOR SYNTHETIC AND MULTI-CORE MODELS

Bench. # pads # loc Speedup % Gap

F R-T1 F R-T1 R

S-Uni 512 4900 498 206 0.18 -0.03 -0.11
S-HH 512 4900 498 206 0.23 -0.03 -0.11
S-CB 512 4900 498 206 0.20 -0.06 -0.12
S-TL1 512 4900 498 206 0.15 -0.03 -0.10
S-TL2 512 4900 498 206 0.24 0.01 -0.12
S-TL3 512 4900 498 206 0.19 -0.03 -0.11
16-Core 512 1914 375 155 0.42 0.16 -0.07
24-Core 768 2880 670 277 0.33 0.071 -0.04
32-Core 1024 3844 961 397 0.41 0.070 -0.07
48-Core 1536 5776 1536 634 0.39 0.055 -0.09

WP-R-T1 achieve a speedup of 498 and 206X relative to SA-P.
WP-F and WP-R-T1 further achieve IR drops within 0.25% and
0.01% of SA-P. For the Penryn-like variants, the speedup ad-
vantage of WP-F and WP-R-T1 increases as the chip grows, up
to 634X, and the IR drop gap for WP-R-T1 shrinks marginally;
the IR drop gap for WP-F is relatively constant across chip
sizes.

VII. ANALYTICAL MODEL

While the above results show that WP efficiently places a
given number of pads, naively determining the appropriate pad
count to meet a given IR drop budget requires many WP exe-
cutions, one for each pad count. We therefore developed an an-
alytical model capable of predicting the appropriate pad count,
significantly reducing the number of required WP executions.

Fig. 5 illustrates the relationship between pad count, IR drop,
max current density and PDN metal power when pad locations
are optimized with WP-R. As the pad count increases, each of
the three metrics decreases in a similar way.

To model the relationship between pad count and IR drop,
we begin with several simplifying assumptions:
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Fig. 5. Pad number effect on IR drop, max current density and PDN metal
power dissipation based on optimized pad locations. Optimization uses
WP-F+WP-R (no early termination) and starts from randomly allocated pads.
Points are plotted at a interval of 8 pads in this figure.

1. The load current density ρ is uniform.
2. All pad currents are equal.
3. Each pad serves a circular area around it with radius r0.

From Gauss’s Law we have:

∂V

∂r
=
πr20ρ− πr2ρ

2πr
∗R. (4)

Integrating V from (rε) to r0, the IR drop at r0 is:

V |r0 =
ρRr20

2
ln
r0
rε
−ρR

4
(r20−r2ε)+

I0Rp
Np

+Vpackagedrop. (5)

where rε is the effective radius of pad, and R is the resis-
tance per unit length of on-chip resistor grid. Substituting
r0 =

√
I0

πρNp
and substituting for the constant coefficients with

a, b, and c, we have:

Vdrop = a
1

Np
log(

1

Np
) + b

1

Np
+ c. (6)

To validate Eq. (6), we performed curve fitting against the IR
drop data in Fig. 5, and find thatR2 = 0.998 and 0.9998 for the
16-core and 24-core models respectively. Furthermore, when
used to derive max on-chip current density and PDN metal
power, fitting Eq. (6) results in R2 = 0.998 and 0.9999 respec-
tively for the 16-core model, and R2 = 0.9995 and 0.99997
respectively for the 24-core model. Eq. (6) clearly is effective
at predicting each metric as a function of pad count.

To explore the predictive power of our analytical model, we
select four different IR drop budgets for the 24-core system,
use Eq. (6) to estimate the appropriate number of pads, and
compare this with the minimum pad count satisfying the bud-
get. The parameters of Eq. (6) are fitted using three randomly
selected pad counts: 200, 520, and 840. The results of this
experiment are summarized in Table IV. We observe that the
predicted pad count (Pred.) is within two of the optimal pad
count (Optimal) in each case. It is worth noting that even if all



TABLE IV
PREDICTED AND OPTIMAL PAD COUNT FOR 24-CORE MODEL

IR Drop Budget Pred. Optimal Actual IR Drop

5%, 35mV 240 238 34.63mV
4%, 28mV 304 306 27.97mV
3%, 21mV 416 418 20.77mV
2%, 14mV 673 672 13.99mV

pad counts in {128, 136, ..., 1024} are used for curve fitting,
the predicted number of pads does not change.

While validating our analytical model, we noticed that there
is a significant difference between the worst-case IR drop ex-
perienced under uniform pad distribution and that experienced
when pad locations are optimized. For example, the worst IR
drops with uniform pads allocations on a rectangular 2D array
are 12.0%, 7.0% and 3.3% for the cases of 180, 320 and 720
VDD pads in our 24-core model. The corresponding worst IR
drops with WP-optimized pad allocations are 6.6%, 3.8% and
1.9% respectively. This suggests that previous analytical mod-
els based on uniform pad allocations (e.g., [6]) systematically
overestimate worst-case IR drop.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we describe a fast method for determining the
minimum number of pads required to satisfy an IR drop con-
straint and their corresponding optimized locations. We intro-
duce a novel pad placement optimization framework for 2D
grids: Walking Pads (WP). Three algorithms are proposed in
the WP framework to meet the conflicting requirements of
results quality and optimization time. The experimental re-
sults show that combining the Walking Pads - Freezing (WP-F)
and Walking Pads - Refined (WP-R) algorithms achieves up to
634X speedup when compared with simulated annealing (SA),
without sacrificing more than 0.1% VDD in IR drop. Our scal-
ability test also shows that speedup and result quality of WP in-
crease as the chip grows. We also propose an analytical model
to describe the relationship between the number of allocated,
optimized pads and resulting IR drop. This model matches WP
results well and leads to fast minimum-pad-number determina-
tion when working with WP algorithms.

In this paper we take the first step of demonstrating the vi-
ability of the WP paradigm. There are several directions for
future research using the WP framework: (1) The joint op-
timization of VDD and GND pad placement should be con-
sidered to make further IR drop optimization across both the
VDD and GND layers; (2) Spatial constraints in the 2D pad
candidate location grid should be considered in WP for the
placement of signal pads; (3) WP could be used to support IR-
drop-aware floorplanning, by moving ‘negative charges’ (func-
tional units or standard cells) instead of ‘positive changes’
(power pads); (4) WP algorithms could be simply extended for
through-silicon via (TSV) placement in 3D IC; (5) WP algo-
rithms can be easily extended to temperature-aware placement
by replacing the voltage field with a temperature field.
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