
Power-Efficient Embedded Processing with Resilience and Real-Time Constraints

Liang Wang†, Augusto J. Vega∗, Alper Buyuktosunoglu∗, Pradip Bose∗, and Kevin Skadron†
∗IBM T. J. Watson Research Center and †University of Virginia

Abstract—Low-power embedded processing typically relies on
dynamic voltage-frequency scaling (DVFS) in order to optimize
energy usage (and therefore, battery life). However, low volt-
age operation exacerbates the incidence of soft errors. Sim-
ilarly, higher voltage operation (to meet real-time deadlines)
is constrained by hard-failure rate limits. In this paper, we
examine a class of embedded system applications relevant to
mobile vehicles. We investigate the problem of assigning optimal
voltage-frequency settings to individual segments within target
workflows. The goal of this study is to understand the limits of
achievable energy efficiency (performance per watt) under vary-
ing levels of system resilience constraints. To optimize for energy
efficiency, we consider static optimization of voltage-frequency
settings on a per-application-segment basis. We consider both
linear and graph-structured workflows. In order to understand
the loss in energy efficiency in the face of environmental un-
certainties encountered by the mobile vehicle, we also study the
effect of injecting random variations in the actual runtime of
individual application segments. A dynamic re-optimization of
the voltage-frequency settings is required to cope with such in-
field uncertainties.

Keywords—Reliability, energy-efficiency, linear optimization

I. INTRODUCTION

A powerful control parameter for power management of
embedded processor systems is dynamic voltage-frequency
scaling (DVFS). However, soft error rates (SERs) are known
to increase sharply as the supply voltage is scaled down-
ward [10]. Hence, in order to preserve system resilience
levels, it is important to apply voltage scaling carefully,
keeping in mind the varying levels of vulnerability to SER
within an application’s execution profile. On the other hand,
overclocking or turbo-boosting (with higher voltages applied
if/as necessary) to meet real-time deadline, comes at the cost
of higher power (or current) density and temperature (as well
as higher gate-oxide field stress), which results in higher hard-
failure rates.

In this paper, we consider a class of embedded systems
that require high levels of power-performance efficiency while
meeting mission-critical reliability specifications and real-
time performance targets. Such systems require an energy
optimization protocol that is cognizant of the variable re-
siliency needs and properties of the executed application. A
representative example of such an embedded system of interest
is a single unmanned aerial vehicle (UAV) or a swarm of
such UAVs. These are typically engaged in remote sensing
of ground images, for the purposes of reconnaissance, object
recognition/tracking and tactical response.

We first describe PEARL, a novel software modeling frame-
work that enables users to: (a) statically prepare application
workflows for energy-optimized resilience; and (b) experi-
ment with run-time deployment options in targeted embed-
ded systems. PEARL stands for power efficient and resilient
embedded processing with real-time constraints, and is built
upon the earlier toolset described by Wang [13]. We then
describe the use of PEARL to pursue static optimization of
voltage-frequency settings across segments of a workflow.
We handle both linear and directed acyclic graph (DAG)-
structured workflows. Subsequently, we describe how dynamic

(run-time) uncertainties are factored into the user-driven work-
flow optimization process. Our analysis shows up to 15% and
35% energy efficiency improvement over a simple baseline, for
linear and graph workflows respectively. Moreover, our pro-
posed dynamic iterative approach achieves up to 25% energy
efficiency improvement over a conservative static approach,
while maintaining the same level of confidence in meeting
deadline constraints.

II. PEARL FACILITY AND METHODOLOGY

A. Workflow Model
We use the term workflow to denote a collection of inter-

dependent tasks as executed by a single mobile embedded
system (e.g. UAV) or a swarm thereof. The basic building
block of a workflow is an application or a task. For simplic-
ity, we stipulate that any workflow-specific voltage-frequency
management decision is applied only at the beginning of
an application segment. Within an application, the voltage-
frequency setting remains fixed.

A linear workflow (Figure 1a) is used to model a single
embedded system, where a sequence of applications is ordered
by inter-application dependencies. A graph workflow (Fig-
ure 1b) is used to model multiple embedded systems, across
which inter-communications are required in order to solve the
mission-assigned task cooperatively. Each embedded system
runs its own thread of linear workflow, while applications
within that linear workflow are also subject to dependencies
from other embedded systems, known as inter-dependencies.
Adding inter-dependencies, threads of linear workflows form a
directed acyclic graph (DAG). For simplicity, we only consider
dependencies across applications, and leave the overhead as-
sociated with inter-application communication as future work.

B. Individual Application Programs
We use applications from the PERFECT benchmark suite

provided for research in the DARPA PERFECT program [1].
The PERFECT suite includes 12 applications taken from
signal and image processing tasks: outer product (oprod),
system solve (syssol), inner product (iprod), discrete wavelet
transform (dwt53), histogram equalization (histo), 2D con-
volution (2dconv), path finding algorithms (pfa1 and pfa2),
back projection (bp), change detection (cd), lucas kanade
(lucas), and debayer (debayer). To add diversity to our set of

N

3

2

1

N

3

2

1

M

3

2

1

K

3

2

1

ES ES1 ES2 ES3

ES: Embedded System

i : Applications

: Dependence

(a) Linear (b) Graph (DAG)

Fig. 1: Workflow illustration. A linear workflow (a) is a stitched sequence of applications,
modeling a single embedded system (ES). A graph workflow (b) is a set of linear
workflows with inter-dependencies, modeling multiple embedded systems with inter-
system communications.

benchmarks, we also select 8 applications from SPEC2006 in
the expectation that embedded systems will have an increasing
burden of general purpose applications. Selected applications
are gcc, perlbench, bzip2, h264ref, mcf, sphinx, dealII, and
lbm, which constitute an application set with diverse com-
puting domains and characteristics. We will use these 20
applications to synthesize workflows studied later in this paper.

C. Power and Performance Modeling
We use machine measurement from real hardware for power

and performance characterizations for all the applications
mentioned in the last section. The experimental system is
a state-of-the-art multi-core server processor system with
POWER ISA. For each application, we measure the power
and performance (execution time) under 20 frequency levels
with a step size of 100MHz. The frequency range covers
operating levels such as turbo boosting, nominal operation,
and low-power operations with low supply voltage. Note that,
in our experimental setup, the appropriate supply voltage is
determined by firmware for each frequency level. Therefore,
the frequency and supply voltage always come as a pair for
voltage-frequency scaling. For simplicity, we will refer to
voltage-frequency settings by their corresponding frequency
levels.

The length of each application plays a critical role in the
voltage-frequency allocation problem. For example, if a single
application dominates the workflow in terms of the execution
time, it will have an overwhelming effect in determining the
energy efficiency of the workflow. The solution, in this case,
would be straightforward: just choose the most efficient oper-
ation level for the dominating application. Therefore, in order
to remove such application-specific bias in our illustrative
analysis, we scale the execution time of each application so
that all of them run for the same length of time (10 seconds)
at the nominal supply voltage. This assumption allows us
to explore the maximum achievable improvement via full-
workflow scheduling. Furthermore, the DVFS transition time
(which is in the milliseconds range) is a very small fraction of
each application’s run time. We ignore the transition overhead
associated with DVFS by only allowing DVFS transitions at
application boundaries.

D. Resilience Modeling
System reliability, in the context of transient (soft) and

permanent (hard) errors, is of critical importance for embedded
systems carrying out mission-critical tasks. For soft error rate
(SER) modeling, we estimate the failure rate (measured in
standard units of failures in time or FITs) using an approach
adopted from industrial practice [5], [9]. In such an evaluation
methodology, machine-level derating (MD) and application-
level derating (AD) are treated as decoupled factors. We
model the system-level FIT as: FITSER = SERlatch ×
NL × AD × MD, where SERlatch refers to the raw per-
latch SER; NL is the number of latches; AD refers to the
probability of application-level masking, given a corruption
of the program-visible (register and memory) state; and MD
is the probability of machine- (or microarchitecture) level
masking in the context of a single latch bit upset.

To model SERlatch, we empirically fit it to the voltage
sensitivity gradients published in [10] using the formula shown
below:

SERlatch = eα·Vdd+β

where V dd is the supply voltage, and α,β are fitting constants.
To derive the AD factor for a given application, we use

an Application Fault Injection (AFI) tool with a built-in
programmable statistical fault injection routine. AFI makes use
of the ptrace debugging facility that is available in POSIX-
compatible operating systems to put together a framework
in which any target application can be compiled and run,
under user-controllable fault injection directives. Each injected
error in program-visible architectural state leads to one of the
four outcomes: 1) Masked, where there is no effect on the
correctness of program execution or final output; 2) SDC or
silent data corruption where a deviation of the program output,
relative to the golden value is observed; 3) Crash, where the
program terminates prematurely; and 4) Hang, where a hung
state is observed such that there is no forward progress in the
program execution. The overall AD factor is empirically de-
rived as the “masked” rate as observed from AFI experiments.
However, if the concern is mainly on SDC (which is often the
case in numerical, compute-intensive codes), the AD factor
may be computed as: AD = 1− rateSDC .

MD factors can be estimated using the same approach as
used by the authors of Phaser [8], which factors in true data
residency statistics for each functional unit. These statistics
can be derived from a properly validated, cycle-accurate ar-
chitectural simulator as explained in [8]. As has been observed
in prior work on POWER machines [9], the AD factor tends
to dominate over MD by a large factor, especially if the focus
is only on SDC. Therefore, for simplicity of analysis, in this
paper we only focus on AD, while effectively assuming that
MD is invariant across the class of applications considered for
a given (fixed) machine implementation.

In optimizing for power-performance efficiency (e.g. bil-
lions of instructions per second per watt or BIPS/W), the
tendency is to push towards lower voltage-frequency operating
points as much as possible, without violating latency (i.e.
deadline) constraints. Therefore, our resilience modeling is
mostly focused on soft errors, because, as discussed above,
SER increases very sharply as the supply voltage is scaled
downward, which constrains the useful range of DVFS.
For operation at nominal or sub-nominal voltage-frequency
regions, hard-fault incidence rates are well below design
specification limits, so these effects need not be considered
explicitly in resilience models within PEARL. Even when
turbo-mode operation is required (very rarely) to meet deadline
constraints in field operation, the hard-failure rate is actually
within specification, since the processor is designed to tolerate
the higher voltages and temperatures incurred in turbo-mode.
Nonetheless, for completeness, we decided to consider power
consumption as a proxy or gauge for hard-failure rates of the
system. With increased voltage-frequency operation points, the
current drawn is higher, so failures linked to current density
(e.g. electromigration) are higher. Also, higher voltages trans-
late to failure rates associated with mechanisms such as oxide
breakdown and bias-temperature instability (BTI).

E. Workflow Synthesis
PEARL is a framework for workflow optimization. How-

ever, the target benchmark suites are composed of individ-
ual applications. Therefore, a workflow synthesizer, which
has been embedded in the PEARL framework, is required
to assemble workflows from applications according to user-
specified parameters, such as application dependencies, exe-
cution time (duration), etc. The synthesizer is able to generate

1.05 1.10 1.15 1.20 1.25
0%

5%

10%

15%

20%
Number of applications
within a workflow: 10

1.05 1.10 1.15 1.20 1.25
0%

5%

10%

15%

20%
Number of applications
within a workflow: 15

1.05 1.10 1.15 1.20 1.25
0%

5%

10%

15%

20%
Number of applications
within a workflow: 20

LinOpt Energy Efficiency (normalized to baseline)

H
is

to
g
ra

m
 P

e
rc

e
n
ta

g
e

Fig. 2: Histogram of the maximum improvement in BIPS/W achieved by LinOpt over the
baseline across 1,000 generated workflows with a given number of applications. Power
and resilience constraints are set as the maximum of applications within a workflow
running at the nominal frequency level. X-axis is the relative energy efficiency of LinOpt
normalized to the baseline. Y-axis is histogram in percentage.

various workflows for both design space exploration and algo-
rithm evaluation. In order to characterize the potential benefits
of full-workflow scheduling, this paper synthesizes workflows
using normalized applications, as described in subsection 2-
C. Note, however, that the PEARL framework is capable of
handling arbitrary workflows composed of applications with
any variety of execution time.

III. LINEAR WORKFLOW OPTIMIZATION

For linear workflows, we use an approach based on linear
programming (LinOpt), adapted from the one used by Wang
et al. [13]. The algorithm optimizes overall energy efficiency
defined in terms of billions of instructions per second per
watt (BIPS/W), while obeying constraints of power, resilience,
and deadline. To briefly show the benefit of optimization on
a linear workflow, we study the distribution of the energy
efficiency improvement obtained by LinOpt over a baseline
heuristic. The baseline picks a single frequency level that
is the lowest that meets all the constraints across all the
applications. We use the embedded workflow synthesizer to
generate workflows by selecting 10, 15, or 20 applications
from the full suite of 20. The selection is done by using ran-
dom sampling with replacement. For each generated workflow,
we set the power and resilience constraints to be the maximum
values of these metrics as observed across all the applications
within the workflow at nominal frequency level. After that, we
exhaustively search the space of feasible deadline constraints.
We then report the best energy efficiency improvement over
the baseline to demonstrate the maximum potential of the
algorithm. As shown in Figure 2, LinOpt outperforms the
baseline by around 15% for the majority of the 20-application
workflows. In some less common cases, the improvement
may go up to 25%. Comparing the three plots, the mass of
the histogram is seen to shift to the right, suggesting longer
workflows with more diverse behaviors will generally lead to
better energy efficiency improvements from LinOpt.

IV. GRAPH WORKFLOW OPTIMIZATION

A. DAGopt
We propose an iterative optimization algorithm called

DAGopt to statically optimize voltage-frequency settings of
applications within a graph workflow. The basic idea of

Algorithm 1 Graph workflow optimization algorithm

1: function DAGOPT(workflow, constraints)
2: initialize freq list by the lowest frequency level (freqmin)
3: for all app in workflow do
4: update the execution time of app set by freqmin

5: while not all applications processed do
6: C ← NextCriticalPath(workflow)
7: freq opt← LinOpt(C, constraints, freq list)
8: if LinOpt fails on path C then
9: return Failure due to in-feasible constraints

10: update freq list with freq opt
11: for all app in C do
12: update the execution time of app according to freq opt

13: return freq list

14: function NEXTCRITICALPATH(workflow)
15: for all app that is not processed do
16: Cto ← longest path from source to app
17: Cfrom ← longest path from app to target
18: C ← Cto + Cfrom

19: return max C

40

15

50

20

35

15

45

5

33

8

44

5

(a) (b) (c)

A

B

C

D A A

B

C C

DD

B

Un-processed App. Processed App. Deadline = 85s

Fig. 3: DAGopt illustration on a synthetic workflow. Numbers in each node indicate the
execution time of the corresponding application in seconds. Suppose that the deadline
constraint is 85s. In (a), all applications are initialized with the lowest frequency levels.
In (b), DAGopt identifies the critical path as A → C → D, then invokes LinOpt on
the path. Upon a successful optimization, DAGopt sets optimized frequency levels as
indicated by the new execution time, and marks all nodes within the path as processed.
In (c), DAGopt identifies the next critical path as A → B → D and invokes LinOpt
on the path while only selecting higher frequency levels for A and D than their already
chosen levels. DAGopt terminates after this step since all the applications within the
workflow have been marked as processed.

DAGopt is to apply LinOpt iteratively on paths of a DAG
until all applications within a graph workflow are optimized.
For a given graph workflow, as shown in Algorithm 1, DAGopt
initializes all applications with the lowest frequency level,
and identifies the critical path as C: one that has the longest
execution time. Then it applies LinOpt to C to choose the
optimal frequency levels for each application within C. After
a successful optimization of C, DAGopt updates the DAG
with the execution time of all applications within C running
at the optimized frequency level, and marks these applications
as processed. In the next iteration, DAGopt identifies the
next critical path as C∗, which is defined as the longest path
that traverses at least one un-processed application. Then it
applies LinOpt on C∗ with the same deadline constraint of
T , where frequency levels can only increase on any already-
processed applications. As a result, any paths that share
applications with C∗ can only run faster after the current iter-
ation. This restriction ensures that no paths processed in prior
iterations would violate deadline constraints, while sacrificing
energy efficiency due to the potential increase of frequency
levels on already-processed applications. DAGopt keeps work-
ing on the next critical path until all applications have been
marked as processed (therefore, no new next critical path can
be found). The algorithm processes at least one application in
each iteration so that it finishes in at most N -iterations, where
N is the number of applications within a workflow. Figure 3
shows how the algorithm executes on an illustrative DAG.

B. DAGopt Evaluation
We first show a workflow illustrated in Figure 4, for which

the DAGopt has a promising energy efficiency boost over the
baseline. The workflow has two threads of linear workflows.
Each linear workflow is composed of applications chosen from
2dconv, lbm, and bzip2. We add inter-dependencies between
the two threads, shown by the dashed arrows. Power and
resilience constraints are set as the maximum power and
maximum FIT estimates of all applications within a workflow
running at nominal frequency. For demonstration purposes, we
select 10 evenly-spaced sample points for deadline constraints
from the range of critical path execution times, determined by
running all applications within a workflow at the lowest and
highest frequency levels. Results shown in Figure 5 suggest up
to 35% energy efficiency improvement is achievable over the
simple single-frequency selection heuristic. This is because,
with the added inter-dependencies, application segments such
as bzip2 in the first thread can be slowed down considerably
thanks to the dependence-imposed timing slack.

Finally, we carry out the energy efficiency distribution
study that is similar to what we have shown in the previous
section. We first randomly choose 14 applications to form
two linear workflows, with seven applications per workflow.
Then we randomly add a given number of inter-dependencies
between the two linear workflows to finish a graph workflow.
Using this approach, we generate 1,000 graph workflows, and
compare DAGopt against the baseline which picks a single
frequency for applications within the workflow. We use the
same constraints that were just described. We choose the
number of inter-dependencies to be 5, 10, and 15, and plot
the histogram of maximum relative energy efficiency obtained
by DAGopt over the baseline in Figure 6. It shows that with
fewer inter-dependencies (e.g. 5), DAGopt is able to achieve
an energy efficiency boost over the baseline by 10% to 20%.
As the number of inter-dependencies increases to 15, the
improvement in energy efficiency reduces to the range of 5%
to 10%. This is because DAGopt becomes more limited in
trade-off options among applications as the number of inter-
dependencies increases.

V. DYNAMIC, RUN-TIME EFFICIENCY OPTIMIZATION

A. Dynamic Iterative Approach
PEARL is also capable of emulating real systems by consid-

ering dynamic execution time variations. For each application
within a workflow, we define its run-time variation factor
(rvf) for a specific execution instance as the ratio of actual
execution time to the pre-characterized value at the same
frequency level. An rvf value greater than one indicates that
the actual execution time of the corresponding application
exceeds the expected pre-characterization value. In this case,
there is a potential to miss the overall deadline for a workflow.
On the other hand, an rvf value less than one indicates that
the actual execution time is less than the pre-characterized
value. The resulting slack could be potentially reclaimed to
improve overall energy efficiency.

lbm lbm lbm lbm bzip2 2dconv 2dconv

2dconv 2dconv lbm lbm lbm lbm bzip2

Start EndIntra-dependence Inter-dependence

Fig. 4: An illustrative graph workflow, consisting of 2 threads with inter-dependencies
indicated by dashed arrows.

95 100 105 110 115 120 125 130

Execution Time Constraint (s)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

E
n
e
rg

y
 E

ff
ic

ie
n
cy

 (
n
o
rm

.) 35% boost

Baseline
DAGopt

Fig. 5: DAGopt energy efficiency improvement over simple single-frequency selection
heuristics, evaluated on an illustrative workflow (Figure 4). Power and resilience
constraints are set as the maximum of applications within a workflow running at the
nominal frequency level. Energy efficiency values, plotted on Y-axis, are normalized
to the baseline under the execution time constraint of 100s (the leftmost data point).
DAGopt outperforms the baseline in all cases, with up to 35% boost when the execution
time constraint is 106s.

1.05 1.10 1.15 1.20 1.25 1.30
0%

5%

10%

15%

20%
Number of inter-
dependence: 5

1.05 1.10 1.15 1.20 1.25 1.30
0%

5%

10%

15%

20%
Number of inter-
dependence: 10

1.05 1.10 1.15 1.20 1.25 1.30
0%

5%

10%

15%

20%
Number of inter-
dependence: 15

DAGopt Energy Efficinecy (normalized to baseline)

H
is

to
g
ra

m
 P

e
rc

e
n
ta

g
e

Fig. 6: Histogram of the maximum relative BIPS/W obtained by DAGopt over the
baseline across 1,000 generated workflows. The number of inter-dependencies is varied
from 5 to 15. Power and resilience constraints are set as the maximum of these metric
values across applications within a workflow running at the nominal frequency level.
The X-axis is the relative energy efficiency normalized to the baseline, Y-axis is the
histogram distribution percentage. It shows that with fewer inter-dependencies, DAGopt
is good to achieve an energy efficiency boost over the baseline by 10% to 20%, while as
the number of inter-dependencies increases to 15, the improvement in energy efficiency
reduces to the range of 5% to 10%.

The static optimization algorithm on a linear workflow
tends to choose lower frequency settings to maximize energy
efficiency. As a result, the total execution time of a given
solution is usually close or equal to the deadline constraint.
Therefore, such a static algrotihm’s success becomes vulnera-
ble to dynamic execution time variations, where the rvf value
of at least one application in the workflow is greater than 1.
With rvf following the Gaussian distribution of N (1, 0.1),
frequency settings given by LinOpt miss deadline constraints
in more than 50% of trials. Although it is possible to invoke
LinOpt with a stricter deadline constraint than the original
to tolerate execution time variations, it reduces the achieved
energy efficiency significantly. For example, with the same
rvf distribution, it reduces the average energy efficiency by
20% when statically invoking LinOpt with only 90% of the
original deadline constraint.

In this section, we present an iterative dynamic algorithm
(Figure 7a) to achieve a high level of confidence in meeting
deadline constraints without significantly compromising the
energy efficiency. The algorithm works as follows:

1) Before starting application Ai, we invoke LinOpt with
an adjusted deadline by applying a scaling factor (tf)
to the original deadline constraint. Then, we launch Ai
with the frequency level picked by LinOpt.

2) At the end of Ai, we observe that the actual elapsed
execution time for Ai is ti. We incorporate this slack
(positive or negative) and update the deadline constraint
for the residual workflow by deducting ti from the
residual deadline. If it is less than zero, the algorithm
terminates and reports “in-feasible” as the deadline
constraint is not met.

3) We go back to step 1) and iterate until the workflow is
fully processed.

The algorithm is visualized step by step in Figure 7(b) using an
illustrative workflow composed of 2dconv, dwt53, and histo.

It is important to choose appropriate values for the deadline
scaling factor tf . When tf equals 1, it invokes LinOpt with
the original deadline constraint. In this case, the algorithm
achieves maximized energy efficiency, while it is vulnerable to
any applications that run slower than their pre-characterized la-
tency. On the other hand, when tf is less than 1, the algorithm
invokes LinOpt with a more stringent deadline constraint. In
this case, the algorithm creates slack that tolerates runtime
delays while sacrificing energy efficiency. Note that the value
of tf can be larger than 1 in speculating that most applications
finish earlier than their pre-characterized latency. However, we
will not discuss this scenario in this paper.

We choose tf based on the observation that delays in early
phases of a workflow are more easily compensated for, while
delays in later phases of a workflow are more dangerous
because there is less opportunity to compensate with few
remaining residual applications. Based on this observation, our
algorithm exploits the most aggressive max(tf) at the begin-
ning for the first application to maximize potential energy effi-
ciency gains, then gradually lowers tf to the most conservative
min(tf) at the end for the final applications to stay within the
deadline constraint. The pair of parameters (max(tf),min(tf))
enables the trade-off between energy efficiency and the level
of confidence in meeting the deadline constraints. We choose
a value of 1 for max(tf), speculating that few applications
finish earlier. We evaluate alternate min(tf) values in the next
subsection with regard to distributions of rvfs.

B. Evaluation
To study the impact of run-time variations, we use an illus-

trative workflow by stitching together four copies of the lbm
application, two copies of 2dconv, and one copy of bzip2, and
replicate the 7-application sequence three times. The resulting
workflow has 21 applications. For illustration purposes, we use

Monte-Carlo simulation method to generate rvf sequences by
following a Gaussian distribution for the workflow. For each
rvf distribution, we sample 1,000 rvf sequence samples. We
study three alternative distributions to cover various dynamic
execution scenarios: a)VarL with N(1, 0.1), which reflects the
scenario that the system experiences significant, intermittent
changes in operating environment; b)VarS with N(1, 0.03),
which reflects a scenario similar to VarL except that only
moderate changes in operating environment are observed;
c)Delay with N(1.05, 0.02), which reflects the scenario in
which steady deviations from the nominal operating environ-
ment lead to persistent delays for all applications (as indicated
by the mean rvf that is larger than 1). We study the dynamic
iterative approach with three values for parameter min(tf):
0.9, 0.85, and 0.8. The three cases are denoted as DYN 0.9,
DYN 0.85, and DYN 0.8, respectively. We compare the three
dynamic approaches against the static LinOpt (denoted as
ST 1). We include an alternate static case which targets 90%
of the original deadline constraint (denoted as ST 0.9). Note
that rvf distributions are chosen to illustrate the capabilities
of PEARL. PEARL accepts distributions chosen by users.

As shown in Figure 8, static approaches are either too
conservative, yielding lower energy efficiency (in the case
of ST 0.9), or too vulnerable to dynamic execution time
variations, yielding higher deadline miss ratio (in the case
of ST 1). Dynamic approaches, on the other hand, achieve
energy efficiency that is close to static LinOpt, which targets
the original deadline constraint. Within dynamic approaches,
the energy efficiency increases in a limited manner as min(tf)

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

D
YN

_0
.8

D
YN

_0
.8

5

D
YN

_0
.9

ST
_0

.9

ST
_1

D
YN

_0
.8

D
YN

_0
.8

5

D
YN

_0
.9

ST
_0

.9

ST
_1

D
YN

_0
.8

D
YN

_0
.8

5

D
YN

_0
.9

ST
_0

.9

ST
_1

VarL VarS Delay

N
o

rm
al

iz
ed

 E
n

er
gy

 E
ff

ic
ie

n
cy

 Average Energy Efficiency (Normalized)

16% 48.9% 49.7%

100%

8.3%
6% 0.4%

0

0 0

0

0 0 0

0

Fig. 8: Dynamic simulation results. For the described scenarios (VarL, VarS, and Delay),
we compare the dynamic iterative approach with 3 values of min(tf) (DYN 0.9,
DYN 0.85, and DYN 0.8), and two two cases of static LinOpt with (ST 0.9) and without
(ST 1) conservative provision on deadline constraints. The Y-axis is the average energy
efficiency computed in BIPS/W normalized to ST 0.9. The percentage on top of a bar
is its deadline miss ratio. Dynamic approaches generally achieve energy efficiency close
to the aggressive static approach (ST 1), while maintaining miss ratios close to the
conservative static approach (ST 0.9).

2dconv dwt53 histo

deadline target (T0)

2dconv dwt53 histo

2dconv remaining budget (T1)

dwt53 histo

2dconv dwt53 T2

histo

2dconv dwt53 histo

T0*tf

T1*tf

T2*tf

Ai finishes with ti , T = T - ti

Start with i=1

Invoke LinOpt on (Ai, Ai+1, …, An)
with adjusted deadline as

T’=T*tf

Initiate Ai with the optimization
mandated VFS settings.

T<0

SucceedFail

i<=n

Example workflow

Deadline target

LinOpt

Elapsed time runs
over the anticipated

LinOpt

Elapsed time runs shorter
than the anticipated

LinOpt

Elapsed time runs over
the anticipated, but global
deadline is still met

a) Algorithm flowchart b) Illustrative example

N

Y N

Y

Fig. 7: An iterative algorithm adapting to dynamic execution time variations. In (a), the algorithm is presented as a flowchart, and in (b), a step-by-step example illustrates the
dynamic optimization algorithm. The illustrative linear workflow is a stitched sequence of three applications: 2dconv, dwt53, and histo.

increases. In the cases of VarS and Delay where distribution
variations of rvf are small, dynamic approaches do not
miss any deadlines, in any experimental trials, which is as
good as the conservative static approach (ST 0.9). In the
case of VarL, dynamic approaches with higher min(tf) (e.g.
DYN 0.9) suffer from a higher deadline miss ratio. The latter
is more than double the miss ratio observed in dynamic
approaches with lower min(tf) (e.g. DYN 0.8), despite a
modest energy efficiency improvement. Overall, the dynamic
approach prefers a high min(tf) when the variation of rvf is
small, and a low min(tf) is better when the variation of rvf
is large.

VI. RELATED WORK

Dynamic voltage and frequency scaling (DVFS) has been
widely used for managing workload-driven power in a pro-
cessor or system context. For example, Isci et al. [3] propose
multi-core DVFS algorithms with the objective of maximizing
chip throughput for a given power budget. In the real-time
embedded systems domain, early work by Pillai et al. [6] and
more recent work by Devadas et al. [2] and Qi et al. [7] are
a few representative studies from a large body of work to
meet real-time deadlines while minimizing power. Scheduling
of tasks in the form of DAG has also been widely studied, for
example, in Shang et al. [12] and Kanoun et al. [4]. However,
none of them considered reliability as a system-level design
constraint.

Combining reliability considerations with energy savings
in a unified dynamic resource management framework is
a topic area that has not been explored as widely as dy-
namic power management alone. Zhang et al. [15] address
a reliability-aware power management problem, but in this
case the reliability focus is only on checkpoint-restart based
systems. Similar to our work, Zhao et al. [16] address the
mutually opposing issues of energy efficiency and transient
error probability (with DVS or DVFS control). However, Zhao
et al. use a set voltage-dependence equation to model system
resilience, without factoring in the application-level masking
effects (as in our work). EPROF [14] exploits Integer Linear
Programming (ILP) to optimize the trade-off among energy,
performance, and reliability. However, the trade-off in EPROF
targets heterogeneous multi-core systems composed of reliable
cores consuming high power, and unreliable cores consum-
ing low power. Performance, and reliability are modeled as
intrinsic properties of hardware using proxies such as clock
frequency and soft error rate. Our work relies on voltage-
frequency scaling as the primary energy saving technique, and
takes advantage of application-specific models for power and
reliability. Finally, our work presents an approach to dynamic
adaptation that accounts for run-time variations, which is not
covered by EPROF. As in our static optimization work, the
authors of [11] propose a similar linear-optimization based
approach, while emphasizing the impact of application level
correctness to the system resilience. However, in their work,
the method of characterizing the application level resilience is
SoC-specific, and does not apply to general-purpose proces-
sors, as studied in our work. In [13], Wang et al. present the
idea to exploit ILP for linear workflow optimization. Our work
extends this to more complex graph workflows, and provides
a better dynamic approach that can achieve higher energy
efficiency while still maintaining a high level of confidence
in meeting deadline constraints.

VII. CONCLUSIONS AND FUTURE WORK

Future ultra-efficient embedded systems with mission-
critical resilience requirements in the deep-submicron design
era will require a careful balance between static preparation
and run-time adaptation of applications. In this paper, we first
describe a software framework called PEARL for applica-
tion preparation and runtime steering in the context of di-
verse performance, power, and resilience constraints. Then we
present experimental analysis for a diverse set of application
sequences to demonstrate the functionality and capabilities of
the PEARL framework. Our analysis shows up to 15% and
35% energy efficiency improvement over a simple baseline,
for linear and graph workflows respectively. Moreover, our
proposed dynamic iterative approach achieves up to 25%
improvement in energy efficiency over a conservative static
approach, while maintaining the same level of confidence in
meeting deadline constraints.

VIII. ACKNOWLEDGEMENT

This work is sponsored by Defense Advanced Research
Projects Agency, Microsystems Technology Office (MTO),
under contract no. HR0011-13-C-0022. The views expressed
are those of the authors and do not reflect the official pol-
icy or position of the Department of Defense or the U.S.
Government. This document is Approved for Public Release,
Distribution Unlimited.

REFERENCES

[1] “DARPA PERFECT Program,” http://www.darpa.mil/Our Work/MTO/
Programs/Power Efficiency Revolution for Embedded Computing
Technologies (PERFECT).aspx.

[2] V. Devadas et al., “Real-Time Dynamic Power Management Through
Device Forbidden Regions,” in RTETAS, 2008.

[3] C. Isci et al., “An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given Power
Budget,” in MICRO, 2006.

[4] K. Kanoun et al., “Onling Energy-Efficient Task-Graph Scheduling for
Multicore Platforms,” TCADICS, 2014.

[5] P. Kudva et al., “Fault Injection Verification of IBM POWER6 Soft
Error Resilience,” in Proc. of the Workshop on Architectural Support
for Gigascale Integration, 2007.

[6] P. Pillai et al., “Real-Time Dynamic Voltage Scaling for Low-Power
Embedded Operating Systems,” in SOSP, 2001.

[7] X. Qi et al., “Power Management for Real-Time Embedded Systems
on Block-Partitioned Multicore Platforms,” in ICESS, 2008.

[8] J. A. Rivers et al., “Phaser: Phased Methodology for Modeling the
System-Level Effects of Soft Errors,” IBM Jour. of Res. and Dev.,
vol. 52, no. 3, pp. 293–306, 2008.

[9] P. N. Sanda et al., “Soft-Error Resilience of the IBM POWER6
Processor.” IBM Jour. Res. and Dev., vol. 52, no. 3, pp. 275–284, 2008.

[10] N. Seifert et al., “Soft Error Susceptibilities of 22nm Tri-Gate Devices,”
IEEE Trans. on Nuclear Science, vol. 59, no. 6, Dec 2012.

[11] R. A. Shafik et al., “Soft Error-Aware Voltage Scaling Technique for
Power Minimization in Application-Specific Multiprocessor System-
on-Chip,” JOLPE, vol. 5, no. 2, pp. 145–156, 2009.

[12] M. Shang et al., “An Efficient Parallel Scheduling Algorithm of
Dependent Task Graphs,” in PDCAT, 2003.

[13] L. Wang et al., “Resilience and Real-Time Constrained Energy Opti-
mization in Embedded Processor Systems,,” in SELSE, 2014.

[14] Y. Yetim et al., “EPROF: An Energy/Performance/Reliability Optimiza-
tion Framework for Streaming Applications,” in ASPDAC, 2012.

[15] Y. Zhang et al., “A Unified Approach for Fault Tolerance and Dynamic
Power Management in Fixed-Priority Real-Time Embedded Systems,”
TCADICS, vol. 25, no. 1, pp. 111–125, 2006.

[16] B. Zhao et al., “Reliability-aware Dynamic Voltage Scaling for Energy-
constrained Real-time Embedded Systems,” in ICCD, 2008.

