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ABSTRACT


Processors play an important role in determining computer performance, because they control all hardware devices.  Currently, branch prediction is considered to be an area of processor design that presents a significant opportunity for improvement.  Branch predictors are hardware devices that exist in processors in order to predetermine the instructions that will be executed.  There are several types of branch predictors and my research was focused on the alloyed predictor.  I created several test programs in order to determine if the alloyed predictor provides more accurate predictions than other branch predictors.  Based on these programs, the alloyed predictor provided better performance than other predictors in some cases.  I could not find a categorization for the cases in which alloyed predictors performed better.  However, I did find a specific branch type which appeared to be consistently more accurately predicted by alloyed predictors.  Future researchers may discover the reasons that alloyed predictors perform better in test cases such as the ones that I developed.  This knowledge could be used to improve branch prediction, which could make processors faster.  Faster processors would enable advances in high performance computing applications. 

INTRODUCTION


Processors play a crucial role in determining computer performance, because they control all of the hardware devices in computers.  Computer performance plays an important role in high performance computer applications such as Artificial Intelligence (AI) and Graphical User Interfaces (GUIs).  As people have sought to improve these applications, computer performance has become one of the greatest constraints on their development.  Creating faster processors would enable computer performance to increase significantly and would thus facilitate the improvement of high performance computer applications.  Currently, branch prediction is considered to be an area of processor design that presents a significant opportunity for improvement.  My research has shown that using a new type of branch predictor, the alloyed predictor, in processors can result in a significant increase in processor performance for certain cases.   

HOW BRANCH PREDICTORS AFFECT PROCESSOR PERFORMANCE


Branch predictors are implemented in hardware and attempt to determine the outcomes of conditional branches before they are known.  If their predictions are correct, then they prevent the processor from wasting clock cycles.  Clock cycles are the units of time in which processor performance is measured.  They are wasted when the processor cannot work on the next instruction in the program until it has determined which branch will be taken (Young, Gloy, & Smith, 1995).  


Since the percentage of times that they make incorrect predictions is small, branch predictors enable faster processor speeds than if they were not used.  The cost of a making an incorrect prediction varies, but the average range is between ten and twenty clock cycles.  If the predictor makes an incorrect prediction, then the processor has to undo the work that it started on the incorrect instruction and fetch the correct instruction.  This usually takes slightly longer than if no prediction had been made.  As a result, it is important to minimize the number of incorrect predictions that are made by branch predictors.


Current branch predictors predict approximately three to 10 percent of branches incorrectly.  Therefore, between 0.3 and two clock cycles are wasted for each conditional branch statement in a program.  Improvements in current branch predictors could increase processor speeds by as much as 30 percent (Young, Gloy, & Smith, 1995).
IMPROVING BRANCH PREDICTION


In order to improve branch prediction, more information about branches that have been encountered by the processor in the past needs to be made available to the branch predictor.  Current branch predictors either rely on global history, the results of all of the past branches, or on local history, the results of similar past branches.  Alloyed predictors combine these histories in order to make more accurate predictions.

Research Methods for Improving Branch Prediction 


In order to prove that alloyed predictors are superior to other branch predictors, I identified and classified cases in which they excelled.  I identified these cases by using a processor simulator to test several types of predictors operating on various programs.  The simulator allowed me to measure the time that it took for test programs to run with each type of predictor.  This led me to discover specific cases in which alloyed predictors outperformed other predictors.  By compiling and analyzing the data from these cases, I was able to experiment with classification schemes of cases in which alloyed predictors excelled.  After some experimentation, I was able to identify a classification scheme for a particular type of branch that is most accurately predicted by alloyed predictors.

Results of Branch Predictor Improvement Research

I was able to create certain programs for which alloyed predictors significantly outperform other branch predictors.  For other programs, the performance of alloyed predictors was not distinguishable from that of other predictors.  The code for these programs can be found in Appendix I.  Also, a complete list of the results of my performance tests can be found in Appendix II.  Hopefully, this information will help future researchers understand what specific benefits alloyed predictors provide.  Since I have shown that alloyed predictors provide superior performance in some cases, my research may contribute to the eventual adoption of alloyed predictors by processor manufacturers.    

OVERVIEW


The second chapter describes the background and theory that preceded my research.  This includes information about computer architecture, processor design, and the history of branch predictors.  In the third chapter, I discuss the materials and methods which I employed in my research.  Software tools, analytical approaches, and research structure will be the focus of this chapter.  I discuss the results that I achieved from my research in the fourth chapter.  Finally, in the fifth chapter I present a conclusion of my research.  The conclusion includes a summary of the results that I achieved, an interpretation of these results, and my recommendations for further research. 

COMPUTER ARCHITECTURE AND BRANCH PREDICITON


Improving computer hardware performance has been a goal of computer science since the creation of the first computer.  Computer hardware design is commonly referred to as computer architecture and is used to improve hardware performance.  Processors are a basic element of computer architecture, and their speed has a significant impact on computer hardware performance.  Pipelines and branch predictors have been added to processors in order to improve processors' speeds.  Although a lot of research has been conducted in the area of branch prediction, the area remains an active field of research computer science. 

COMPUTER ARCHITECTURE


According to Richard E. Smith, in his 1989 article titled "A Historical Overview of Computer Architecture," John von Neumann, J. Presper Eckert, and John W. Mauchly performed the first significant work on computer architecture.   In 1946, Eckert and Mauchly designed the Electronic Numerical Integrator and Calculator (ENIAC) at the University of Pennsylvania.  The ENIAC was the first general purpose electronic calculating machine and one of the first computers developed in the United States.  Eckert and Mauchly designed the Electronic Discrete Variable Automatic Computer (EDVAC) in 1949, which was the first computer to use stored memory.  Von Neumann recognized the significance of the stored program concept in computer design and wrote two influential reports about computer design based on the concept.  One of the reports was so influential that stored program computers became known as von Neumann machines.  Nearly all modern computers utilize this type of computer design, in which memory and processors are two of the major hardware components (Smith, 1989).  


Basic computer architecture has not changed significantly since the design of the first stored program computer.  Figure 1 represents the interaction between the hardware elements of a modern computer.  Solid lines show the paths that data travels between components.  Dashed lines indicate the movement of control signals from one element to another.  This diagram was proposed by Smith in 1948, but remains the basis for computer architecture today.

Figure 1
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Diagram for computer hardware and signals proposed by Smith in 1948 (Smith, 1989).
PIPELINING IN PROCESSORS

In the textbook "Computer Systems Design and Architecture,"  authors Vincent P. Heuring and Harry F. Jordan introduce pipelining in Chapter 3, "Processor Design-Advanced Topics."  They describe pipelining as the process by which one instruction can be issued before the previous one has finished its execution (Heuring & Jordan, 1997).  This allows the processor to save time by working ahead.  However, some instructions may or may not be executed depending on the values of variables that the previous instruction sets during its execution.  These instructions, called conditional branches, can bring the speedup that pipelining normally provides to a grinding halt.  The processor must wait until the previous instruction has finished executing in order to know whether or not the next instruction should be executed.

BRANCH PREDICTION

One solution to this problem is branch prediction, which attempts to correctly guess whether or not the next instruction will be executed.  If the prediction is correct, then it allows the processor to continue executing the next required instructions immediately.  This results in a significant increase in overall processor speed.  There is a performance penalty when an incorrect prediction is made, because the processor must discard the work that it started on the incorrect instruction and start working on the correct instruction.  Since most branch predictors have high levels of accuracy they still provide overall performance increases to processors, despite incorrect prediction penalties.  Since processor performance can be improved even further by improving the accuracy of branch predictors, branch prediction remains an active area of computing research.

Simple, static branch prediction schemes which always predict taken or not taken are correct approximately 50 percent of the time for conditional branches.  The penalties for taken mispredictions may be different than those for not taken mispredictions.  Therefore, the speeds that processors can achieve may be higher for one or the other.  All other branch prediction schemes that have been developed attempt to improve upon the 50 percent misprediction rate and some attempt to reduce the penalties for mispredictions (Young, Gloy, & Smith 1995).  The branch prediction schemes that form the basis for my research are designed to improve misprediction rates.

Branch Prediction History

In the early 1980s, Smith and Lee showed that static, two-bit counters that were indexed by branch addresses performed well with many programs.  Two-bit counters keep track of whether or not the last two branches in a program were taken.  As hardware technology improved, it was possible for researchers to develop more sophisticated branch predictors.  The next major branch prediction scheme to emerge from research was called the correlating or two-level branch predictor and was designed by Yeh and Patt (Sechrest, Lee, & Mudge, 1995).  There were two variations of this scheme; one used local history to make predictions, and the other used global history to make predictions.  Predictions that used this scheme could achieve success rates of up to and slightly above 90 percent (Lee, Chen, & Mudge, 1997), which was a significant improvement over the performance of past predictors.  As a result, most branch predictors that are currently used are variations of this approach.

Current Branch Prediction

Presently, hybrid branch predictors are being widely researched because they are believed to provide the best performance possible.  Hybrid predictors select between local and global history for each prediction.  They can often be expensive and difficult to understand, because the selection process that they use is complicated and requires a lot of hardware.  Since individual branches dynamically vary between requiring local and global history, hybrid predictors do not always provide correct histories (Skadron, Martonosi, & Clark, 2000).  


Alloyed branch predictors were designed in an attempt to provide improved performance over hybrid branch predictors.  Alloyed predictors use both global and local history in order to make predictions.  They use all of the branch prediction hardware that is available to them, rather than dividing it into smaller components which are generally less effective, as hybrid predictors do (Skadron, Martonosi, & Clark, 2000).  Alloyed prediction was proposed as a solution to branch mispredictions in 1999 by Skadron, Martonosi, and Clark in their paper, "Alloying global and local branch history:  Taxonomy, performance, and analysis.”  In the following section, I will describe the research materials and methods that I used in order to analyze alloyed branch predictors.

 RESEARCH MATERIALS AND METHODS


To analyze branch predictors, I used computer hardware and software tools that were provided by the University of Virginia (UVA).  These enabled me to employ research methods that I developed in order to identify microbenchmarks and classify conditional branches that are most accurately predicted with alloyed predictors.

MATERIALS


The materials that I used were designed to simulate the execution of a processor with various types of branch predictors.  I used test programs, which are called benchmarks, as input for these simulations.  I compared the results of simulations that used different kinds of branch predictors.  This allowed me to determine the cases in which alloyed predictors performed better than other predictors.
Hardware


I executed benchmark simulations on Sun UltraSPARC-II servers from the UVA Department of Computer Science.  I accessed these servers primarily through secure remote login from the Sun workstations in Small Hall.  The operating environment that I used on these servers is called the Common Desktop Environment for the Solaris Operating Environment.  This is a UNIX operating environment, so all of the software that I used was UNIX based.
Simulation Software


SimpleScalar is a software program which can simulate a wide variety of processors.  It allows processors to be simulated with many types of predictors, including hybrid and bimodal.  However, it does not allow simulations with alloyed predictors.  My thesis advisor developed HydraScalar as an extension of SimpleScalar so that processors could be simulated with alloyed predictors.  HydraScalar also allows processors to be simulated with all of the branch predictors that are available in SimpleScalar.  I used SimpleScalar initially, in order to learn about how simulators work.  However, I exclusively used HydraScalar for all of my simulations.

Benchmarks


Sample software programs which are widely used to compare the performance of hardware elements are called benchmarks.  Benchmarks are designed to provide accurate comparisons, but they cannot make perfect comparisons.  This is because they are only representations of programs that may be executed on the hardware.
Standard Performance Evaluation Corporation (SPEC) Benchmark Suite.

SPEC is a non-profit company which develops suites of benchmarks intended to measure computer performance.  Their benchmark suite, or collection of programs, includes benchmarks called compress, go, m88ksim, gcc, li, ijpeg, perl, and vortex.  

Microbenchmarks.  Microbenchmarks are small test programs which can be developed in order to study the behavior of branch predictors for specific code segments.  Because I wanted to find specific cases where alloyed predictors excelled, I created 14 custom microbenchmarks.  I compiled my microbenchmarks using a specialized version of gcc, which is a compiler for code written for the C programming language.
METHODS


The goal of my research was to prove that alloyed predictors perform better than other predictors in specific cases.  In order to do this I attempted to find benchmarks and microbenchmarks for which alloyed predictors performed better than other predictors.  I also tried to classify the types of benchmarks and microbenchmarks in which alloyed predictors provided superior performance.
Research Structure


I structured my research so that I could achieve my research goals of identifying and classifying cases in which alloyed predictors excel.  I began by familiarizing myself with the materials and concepts that were necessary to understand in order to perform my research.  Then I developed and tested microbenchmarks, or small programs.  Next I tested benchmarks, which are large programs.  Finally, I tested a classification scheme that I had initially thought would allow me to classify conditional branches that are most accurately predicted by alloyed predictors.


Studied Materials and Concepts.  The materials that were required for my research were initially difficult for me to understand, so I spent several weeks to familiarizing myself with them before I began my research.  During this learning period, I experimented with the software simulation tools in order to gain a better understanding of how they worked.  I attempted to write a version of SimpleScalar that implemented alloying, so that I could understand how HydraScalar works.  I also disassembled benchmarks to see how their software code was translated into assembly code.  Assembly code is composed of instructions which the processor can directly execute.  This helped me understand how the microbenchmarks that I was going to develop would actually be handled by the processor.

Developed Microbenchmarks.  I developed microbenchmarks to demonstrate cases in which alloying worked better than other types of branch prediction.  Finding these microbenchmarks was an important goal of my research, so I spent a lot of time creating them.  I attended weekly meetings with the research group that my technical advisor led to discuss my progress.  The input that I received from my advisor and the graduate students at these meetings helped me create effective microbenchmarks.  


I created microbenchmarks with dependent, nested loops in order to exploit alloying.  Loops are conditional branches which are taken repeatedly until a specific limit is reached.  Once the limit has been reached, they are no longer taken.  Loops that are contained in other loops are called nested loops.  Those which rely on information from the loops which contain them are called dependent, nested loops.  As I began testing the microbenchmarks that I had developed, I found that these loops produced interesting simulation results.

Tested Microbenchmarks  I tested all of my microbenchmarks using the same branch history table configurations.  Branch history tables are implemented in hardware and store information about branch history.  Configuring microbenchmark simulation software primarily consists of specifying the size for global or local history tables in bits.  For the alloyed predictor I concatenated nine global history bits to eight local history bits.  I used table sizes of 1,024 bits and 4,096 bits for the alloyed predictor.  The hybrid predictor used a table size of 4,096 bits by default, so I used that size.  I also used the  default table size for the bimodal predictor, which was 2,048 bits.  I found that varying the branch history table configurations did not significantly affect the performance differences between branch predictors. 


Finding a microbenchmark for which alloyed predictors provided the most accurate predictions took longer than I expected.  The microbenchmarks that I had initially developed did not work better for alloying than for hybrid and bimodal prediction.  I modified them by increasing the number of times that the loops were executed and by increasing the dependency of the nested loops.  This finally led me to develop two microbenchmarks for which alloying worked better than bimodal and hybrid prediction.  After I finished creating and testing microbenchmarks, I began testing the benchmarks in the SPEC benchmark suite.  


Tested Benchmarks.  The two benchmarks that I simulated were compress and gcc.  Since compress is a large program, I limited the number of warm up instructions to 1,645,000,000 and the number of simulation instructions to 100,000,000.  This allowed the simulation to complete within a reasonable amount of time and did not significantly affect the accuracy of my results.  Gcc is not as big as compress, so it was not necessary for me to limit the numbers of warm up or simulation instructions that it used.

Attempted to Categorize Test Results.  In order to derive useful information from my test results, I tried to form a classification scheme for them.  The classification scheme that I originially developed stated that the more times a loop was executed and the greater its level of its dependency on loops that contained it, the more likely it was to be accurately predicted by an alloyed predictor.  I thought that alloyed predictors would perform better than other predictors for branches of this type, since branches of this type seem to rely on both global and local history.  


Initially, I tested my classification scheme based exclusively on the overall results of my microbenchmark tests.  This proved inconclusive, so I modified HydraScalar to output the prediction accuracy of each individual conditional branch within the microbenchmarks.  Based on this information, I was able to revise my classification scheme.   


RESULTS

I achieved my goal of developing a classification scheme for branches that are most accurately predicted by alloyed predictors.  Also, I was able to create two microbenchmarks for which alloyed predictors perform better than hybrid or bimodal predictors.  This demonstrated that alloyed predictors perform better than other branch predictors in some cases.  

DESCRIPTION OF RESULTS


For the microbenchmarks that I created, alloyed prediction was generally more accurate than bimodal prediction.  It was not always better than hybrid prediction, but for two microbenchmarks it was better than both hybrid and bimodal prediction.  Of the two SPEC benchmarks that I tested, one was most accurately predicted with alloyed prediction and the other was not.  Neither the microbenchmarks that I developed nor the SPEC benchmarks that I tested fit my original conditional branch classification scheme.  However, I was able to identify a specific type of branch that was eventually consistently predicted the most accurately with alloying.

Microbenchmarks and SPEC Benchmarks


By using HydraScalar simulations to compare hybrid, alloyed, and bimodal predictors for each of my microbenchmarks, I was able to find two microbenchmarks for which alloyed predictors were superior.  Appendix I contains the code for these two microbenchmarks.  I gathered statistics for bimodal, hybrid, and alloyed branch predictors and for each microbenchmark that I created.  These statistics are for the conditional branch direction prediction rates of the branch predictors. 


Conditional branch direction prediction rates are the numbers of successfully predicted conditional branch directions divided by the total numbers of conditional branches encountered.  Appendix II contains the conditional branch direction prediction rates for the microbenchmarks that I created.  These rates were given as output by HydraScalar when I simulated the execution of each microbenchmark.  


The prediction accuracy of alloyed prediction versus other prediction was very different for compress and gcc.  The alloyed prediction rates for compress were much higher than they were for the other predictors.  However, the alloyed predictor did not perform as well as the other two predictors for gcc.  These results can be found in Appendix II.

Classification Scheme


In order to develop a classification scheme for branches that are more accurately predicted by alloyed predictors, I also analyzed the prediction rates for individual conditional branches.  These prediction rates showed that most branches were not consistently predicted more accurately by one predictor.  However, there was one type of branch which I identified that consistently performs best with alloyed prediction.  This is a specific kind of branch if not equal (bne) conditional branch.  Appendix III provides a description of bne conditional branches.  The specific type of bne for which I found a classification scheme is the following:


bne $v0[2],$zero[0],address

In all of the microbenchmarks and benchmarks that I tested, these branches exhibited the same behavior.  The first few times that they appeared in the assembly code, they were predicted by alloyed predictors either worse than or as well as by other predictors.  However by the last times that they occurred in the assembly code, they were always predicted better by alloyed predictors.  Appendix V contains an example of this behavior for two representative microbenchmarks.  


This behavior is similar to that which I described in my original classification scheme.  However, it only applies to a specific type of bne.  If this behavior were true of any bne, then my original classification scheme would be correct.  Since it does not, I developed a revised classification scheme.  

ANALYSIS OF RESULTS


I was able to revise my initial conditional branch classification scheme so that it worked for the results that I achieved.  Also, I was able to draw several conclusions from the results that I obtained by testing my microbenchmarks and the SPEC benchmarks.  

Classification Scheme


The revised classification scheme that I developed based on my results is similar my original classification scheme.  The bne branches that I identified are dependent on the branches which contains them and eventually perform better with alloyed prediction.  Also, the prediction accuracy of the alloyed predictor compared to other predictors improves as the number of bne iterations increase.  This may be due to the warm up period that the predictor requires before it can begin accurately predicting a branch.  The alloyed predictor may not get the first few predictions right, because it has not yet seen a particular nested loop.  However once it establishes histories for the branches, it is able to begin making accurate predictions.  Conversely, the other two predictors may happen to correctly predict nested loops the first few times.  But once they establish histories of the nested loops, they cannot take advantage of both types of history at the same time.  Therefore, they eventually make less accurate predictions then the alloyed predictor.


There may be other conditional branches which fit my classification scheme, but I was not able to identify them based on my microbenchmarks.  I also tried analyzing larger programs such as the SPEC benchmarks in order to find other branches that could be classified with my scheme.  There were many branches in the SPEC benchmark compress which performed best with alloying, however my classification scheme could not be used to describe them.  This was because they did not appear to be dependent on loops which contained them.  However, they did all have a high number of iterations.

Microbenchmarks and SPEC Benchmarks


The alloyed predictor performed almost as well as the hybrid predictor for many of the microbenchmarks that I created.  It performed better than the bimodal predictor for many of the microbenchmarks, although it did not perform better in all cases as I had expected.  Similarly, it performed well in compress overall and for branches with many iterations.  However, it was not clear whether or not this was due to dependent, nested loops.  It is also not clear why the alloyed predictor did not perform better for gcc.  Perhaps it was because there were less iterations for some branches.  Alternatively, it could have been because there were less dependent, nested loops.  More research is necessary in order to determine the causes of the overall prediction rates that I observed for both my microbenchmarks and the SPEC benchmarks.  The results that I obtained indicate that there is room for improvement in alloyed predictors, but that their prediction rates are comparable to those of other predictors.

CONCLUSION

I was able to create microbenchmarks that were more accurately predicted by alloyed predictors than other predictors.  Also, I was able to classify a type of conditional branch that is most accurately predicted by alloyed predictors.  The simulations that I performed are not indicative of the overall prediction accuracy of the predictors that I tested.  However, they do show that alloyed predictors provide more accurate predictions than other predictors in some cases.  This research could eventually be used to improve processor performance, which can improve high performance computing applications.

SUMMARY


I created two microbenchmarks for which alloyed prediction works better than other types of branch prediction.  Based on the prediction rates for individual conditional branches in these microbenchmarks, I was able to identify a specific type of conditional branch that is eventually predicted best by an alloyed predictor.  Since this behavior occurred in all of the microbenchmarks and SPEC benchmarks that I created, I was able to form a classification scheme for it. 

INTERPRETATION


The results that I obtained by testing hybrid, alloyed, and bimodal branch predictors with my microbenchmarks are not necessarily representative of the overall capabilities of each of branch predictor.  Because the focus of my research was on finding a specific case for which alloyed predictors worked better than hybrid predictors, the results that I obtained only indicated that this was possible.  Other tests are necessary in order to determine the overall performance of each predictor.

RECOMMENDATIONS


I believe that there is a great potential for improving branch predictor performance by studying the cases in which alloyed predictors outperform other predictors.  The research that has been done by my thesis advisor, his fellow researchers, and myself is some of the first alloyed predictor research that has been done.  Because alloyed predictors are relatively new, modifications to their current design may be necessary in the future.  As researchers continue to study alloyed predictors, it is likely that their specific benefits will be discovered.   


If the specific benefits of alloyed predictors are discovered, they could be used to improve branch prediction in all types of predictors.  They could also lead the research community to the determine that alloyed predictors provide the best branch predictions.  Improvements to current branch predictors based on alloyed predictors or the adoption of alloyed predictors in processors could make processors faster.  By making processors faster, they could enable improvements in high performance computing applications.  Improving high performance computing applications could result in better medical software, safer nuclear power plant management systems, and more accurate weather prediction services.
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APPENDIX I:  MICROBENCHMARK SOURCE CODE

test10.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 5; ++i)

    {

          if( (i % j) == 0 )

            {

              printf( "Hi.\n" );

            }

          else

            {

            }

    }

  return 0;

}

test11.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 5; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

          else

            {

            }

    }

  return 0;

}

test12.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 5; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

          else

            {

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

    }

  return 0;

}

test13.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

          else

            {

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

    }

  return 0;

}

test14.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

    }

  return 0;

}

test15.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

            if( (i % j) == 4 )

            {

              for( j; j < i; ++j )

                {

                  printf("every.\n");

                }

            }

    }

  return 0;

}
test16.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

            if( (i % j) == 4 )

            {

              for( j; j < i; ++j )

                {

                  printf("every.\n");

                }

            }

            if( (i % j) == 1 )

            {

              for( j; j < i; ++j )

                {

                  printf("One.\n");

                }

            }

    }

  return 0;

}

test17.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 100; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

            if( (i % j) == 4 )

            {

              for( j; j < i; ++j )

                {

                  printf("every.\n");

                }

            }

            if( (i % j) == 5 )

            {

              for( j; j < i; ++j )

                {

                  printf("One.\n");

                }

            }

    }

  return 0;

}

test18.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 100; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

    }

  return 0;

}

test19.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 1000; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

    }

  return 0;

}

test20.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 4;

  int j = 4;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("Hi.\n");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

    }

  return 0;

}

test21.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 10000; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("0");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  printf("2");

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("3");

                }

            }       

            if( (i % j) == 4 )

            {

              for( j; j < i; ++j )

                {

                  printf("4");

                }

            }

    }

  return 0;

}

test22.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  if( (i - j) > 4 )

                    {

                      printf("Hi.\n");

                    }

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

    }

  return 0;

}

test23.c

#include <stdio.h>

#include <stdlib.h>

int main( )

{

  int i = 2;

  int j = 2;

  int k = 4;

  int h = 2;

  if( (k % h) == 0 )

  {

    for( i; i < 50; ++i)

    {     

          if( (i % j) == 0 )

            {

              for( j; j < i; ++j )

                {

                  k = (k - h);

                }

            }

            if( (i % j) == 2 )

            {

              for( j; j < i; ++j )

                {

                  k++;

                }

            }

            if( (i % j) == 3 )

            {

              for( j; j < i; ++j )

                {

                  printf("There.\n");

                }

            }

       }

  }

  return 0;

}

test25.c

#include <stdio.h>

#include <stdlib.h>

int myfunction( int );

int k = 20;

int main( )

{

  int i = 2;

  int j = 2;

while( k > 10 )

{

  for( i; i < 50; ++i)

  {     

            if( (i % j) == 0 )

            {

                for( j; j < i; ++j )

                {

                  printf("Howdy.\n");

                }

            }

            if( (i % j) == 2 )

            {

                for( j; j < i; ++j )

                {

                  k = myfunction(i);

                }

            }       

   }

   k--;

}

  return 0;

}

int myfunction( int myi )

{

  int h = 2;

  int y = 0;

  if( ( myi % h) == 2)

    {

      if( k == 0)

        {

          return 0;

        }

      else

        {

          y = k - 1;

          return y;

        }

    }


}

APPENDIX II:  CONDITIONAL BRANCH DIRECTION PREDICTION RATES FOR BRANCH PREDICTORS
RESULTS FOR MICROBENCHMARKS TEST10.C THROUGH TEST14.C
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APPENDIX III:  BRANCH IF NOT EQUAL


A bne conditional branch is a branch which is taken if two values are not equal.  The two values are specified in assembly code, the code which the processor executes, by registers.  In the example below, these are referred to as register one and register two.  Registers are memory locations where values of program variables are stored.  The location, or address, at which the processor will continue executing if the branch is not taken is also specified in the assembly code.  In the following example, this is referred to as address.  Here is an example of a branch if not equal instruction in assembly code:


bne register one, register two, address

In high level code such as C or C++, this assembly code corresponds to statements such as the following.


if( value one == value two)


{



//conditional code

}

In this example, value one and value two can be any values that are specified by the programmer.  If they are equal, then the processor will execute the next sequential line of code.  Otherwise, it will skip the conditional code in brackets and continue executing after the closing bracket.  

APPENDIX IV:  PREDICTION RATES FOR BRANCHES SPECIFIED 

BY CLASSIFICATION SCHEME

TEST14.C
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