
An ahead pipelined alloyed perceptron with single cycle
access time

David Tarjan
Dept. of Computer Science

University of Virginia
Charlottesville, VA 22904

dtarjan@cs.virginia.edu

Kevin Skadron
Dept. of Computer Science

University of Virginia
Charlottesville, VA 22904

skadron@cs.virginia.edu

Mircea Stan
Dept. of Electrical and
Computer Engineering
University of Virginia

Charlottesville, VA 22904
mircea@virginia.edu

ABSTRACT
The increasing pipeline depth, aggressive clock rates and
execution width of modern processors require ever more ac-
curate dynamic branch predictors to fully exploit their po-
tential. Recent research on ahead pipelined branch predic-
tors [11, 19] and branch predictors based on perceptrons [10,
11] have offered either increased accuracy or effective single
cycle access times, at the cost of large hardware budgets
and additional complexity in the branch predictor recovery
mechanism. Here we show that a pipelined perceptron pre-
dictor can be constructed so that it has an effective latency
of one cycle with a minimal loss of accuracy. We then intro-
duce the concept of a precomputed local perceptron, which
allows the use of both local and global history in an ahead
pipelined perceptron. Both of these two techniques together
allow this new perceptron predictor to match or exceed the
accuracy of previous designs except at very small hardware
budgets, and allow the elimination of most of the complexity
in the rest of the pipeline associated with overriding predic-
tors.

1. INTRODUCTION
The trend in recent high-performance commercial micro-

processors has been towards ever deeper pipelines to enable
ever higher clockspeeds [2, 7], with the width staying about
the same from earlier designs. This trend has put increased
pressure on the branch predictor from two sides. First, the
increasing branch misprediction penalty puts increased em-
phasis on the accuracy of the branch predictor. Second, the
sharply decreasing cycle time makes it difficult to use large
tables or complicated logic to perform a branch prediction
in one cycle. The consequence has been that recent designs
often use a small one cycle predictor backed up by a larger
and more accurate multi-cycle predictor. This increases the
complexity in the front end of the pipeline, without giving
all the benefits of the more accurate predictor.
Recently, it was proposed [8, 11, 19] that a branch pre-

dictor could be ahead pipelined, using older history or path
information to start the branch prediction, with newer in-
formation being injected as it became available. While there
is a small decrease in accuracy compared to the single cy-
cle version of the same predictor, the fact that a large and
accurate predictor can make a prediction with one or two
cycles latency more than compensates for this.
Using a different approach to reducing the effective la-

tency of a branch predictor, a pipelined implementation for

the perceptron predictor [10] was also proposed. The per-
ceptron predictor is a new predictor which is based not on
two bit saturating counters like almost all previous designs,
but on a simple neural network.
The main contributions of this paper are:

• We show that a path-based perceptron predictor with
one cycle effective access latency can be constructed
with neglibible loss in prediction accuracy, obviating
the need for any preliminary predictor and all the com-
plexity associated with such a design.

• We show that the prediction of a perceptron using local
branch history can be precomputed, removing all of
the delay associated with the computation and most
of the delay from the table lookup from the critical
path. This allows a local perceptron to be used in a
one cycle predictor. The effect is to shorten the global
pipeline at given accuracy, thus reducing the amount
of state that needs to be checkpointed and simplifying
the branch recovery mechanism of the global predictor.

This paper is organized as follows: Section 2 gives a short
introduction to the perceptron predictor and gives an overview
of related work, Section 3 talks about the impact of delay
on branch prediction and how it has been dealt with up to
now, as well as the complexity involved in such approaches,
Section 4 introduces the ahead pipelined path-based per-
ceptron, Section 5 then introduces the concept of a precom-
puted local perceptron, Section 6 describes the simulation
infrastructure used for this paper, Section 7 shows results
both for table-based predictors as well as comparing the
ahead pipelined alloyed perceptron with prior proposals. Fi-
nally, Section 8 concludes the paper and Section 9 gives an
outlook on future work.

2. THE PERCEPTRON PREDICTOR AND
RELATED WORK

2.1 The Idea of the Perceptron
The perceptron is a very simple neural network. Each

perceptron is a set of weights which are trained to recognize
patterns or correlations between their inputs and the event
to be predicted. A prediction is made by calculating the
dot-product of the weights and an input vector. The sign of
dot-product is then used as the prediction. In the context of
branch prediction, each weight represents the correlation of
one bit of history (global, path or local) with the branch to

1

be predicted. In hardware, each weight is implemented as an
n-bit signed integer, where n is typically 8 in the literature,
stored in an SRAM-Array. The input vector consists of 1’s
for taken and -1’s for not taken branches. The dot-product
can then be calculated as a sum with no multiplication cir-
cuits needed.

�� �����

�
�

�
�

�
���

�
���

�
�

� ���

���

��	��
�
��

�

���

���

�

i

n

i
i gh ⋅�

=1

Figure 1: The perceptron assigns weights to each
element of the branch history and makes its predic-
tion based on the dot-product of the weights and
the branch history plus a bias weight to represent
the overall tendency of the branch. Note that the
branch history can be global, local or something
more complex.

2.2 Related Work
The perceptron predictor was originally introduced in [13]

and was shown to be more accurate than any other then
known global branch predictor. The original perceptron
used a Wallace tree adder to compute the output of the
perceptron, but still incurred more than 4 cycles of latency.
The recently introduced path-based perceptron [11] hides
most of the delay by fetching weights and computing a run-
ning sum along the path leading up to each branch. The
critical delay of this predictor is thus the sum of the delay
of a small SRAM-Array and one small adder. It is estimated
that a prediction would be available in the second cycle after
the address became available. For simplicity we will call this
predictor the overriding perceptron, since it can only act as
a second level overriding predictor, and not as a standalone
predictor.

Figure 2: (left) The global perceptron fetches all
weights based on the current branch address. (right)
The path-based perceptron fetches weights along the
path leading up to the branch and computes a run-
ning partial sum in the pipeline.

Seznec studied the performance of a theoretical interference-
free global perceptron [17]. He then introduced several im-
provements which could improve the accuracy of a global
perceptron at very large hardware budgets, without looking

at delay. He noted that the number of additions necessary
to compute any perceptron could be cut in half by looking
at two adjacent weights in the weight table as the weights of
the combination of the two branches. He also introduced the
idea of using different hashing functions (similar to skewed
caches and branch predictors) to fetch different weights and
assigning multiple weights per branch, thereby lessening the
impact of aliasing.
Ipek et al.[8] investigated inverting the global perceptron,

by using global history to address the weights and using a
combination of global history and address bits as inputs for
the perceptron. This allowed them to prefetch the weights
from the weight tables, eliminating the latency of the SRAM-
Arrays, but they still incurred the delay of the Wallace-tree
adder. There is no need for this kind of inversion for a
pipelined perceptron, since the critical path is already re-
duced to a small SRAM-array and a single adder. They also
looked at incorporating concepts from traditional caches, i.e.
two-level caching of the weights, pseudo-tagging the percep-
trons and adding associativity to the weight tables.
Most of the improvements proposed by Seznec and Ipek

et al. are orthogonal to our work and exploring possible syn-
ergies could be the subject of future work.

3. DELAY IN BRANCH PREDICTION
An ideal branch predictor uses all the information which

is available at the end of the previous cycle to make a predic-
tion in the current cycle. In a table-based branch predictor
this would mean using a certain mix of address, path and
history bits to index into a table and retrieve the state of
a two-bit saturating counter (a very simple finite state ma-
chine), from which the prediction is made.

3.1 Overriding Prediction Schemes
Because of the delay in accessing the SRAM-Arrays and

going through whatever logic is necessary, larger predictors
oftentimes cannot produce a prediction in the same cycle.
This necessitates the use of a small but fast single cycle
predictor to make a preliminary prediction, which can be
overridden [12] several cycles later by the main predictor.
Typically this is either a simple bimodal predictor or, for
architectures which do not use a BTB, a next line predictor
as is used by the Alpha EV6 and EV7 [4].
This arrangement complicates the design of the front of

the pipeline in several ways. Most obviously, it introduces a
new kind of branch misprediction and necessitates additional
circuitry to signal an overriding prediction to the rest of the
pipeline.
While traditionally processors checkpointed the state of

all critical structures at every branch prediction, this method
does not scale for processors with a very large number of
instructions in flight. Moshovos proposed the use of selec-
tive checkpointing at low confidence branches [16]. Since
the number of low confidence branches is much higher for
the first level predictor than for the overriding predictor,
this negates much of the benefit of selective checkpointing.
Other proposals [1, 5] for processors with a very large num-
ber of instructions in flight similarly rely on some kind of
confidence mechanism to select whether to checkpoint crit-
ical structures or not. As mentioned above, the overrid-
ing scheme introduces a new kind of branch misprediction.
In a normal pipeline even without overriding, all structures
which are checkpointed because of branch predictions must

2

predictor type Amount of state to be checkpointed
in bits

overriding
perceptron

∑
x−1

i=2
1 + dlg(i − 1)e bits

ahead
pipelined
perceptron

(w · x) +
∑

x−1

i=2
1 + dlg(i − 1)e bits

table-based 2x−1 − 1 bits for most significant
bits

Table 1: Amount of state to be checkpointed for
each type of predictor. x is the pipeline depth of
each predictor and w is the number of bits for each
weight in the perceptron predictor.

depth of
pipeline

Amount of state to
be checkpointed in
bits

13 133
18 195
20 221
32 377
34 405
37 447

Table 2: Example of amount of state to be check-
pointed for an overriding perceptron with 8-bit
weights. We use the pipeline depth determined to
be optimal in [11] as examples.

be able to recover from a BTB misprediction, signaled from
the front of the pipeline, or a full direction misprediction,
which is signaled from the end of the pipeline. The case
of the slower predictor overriding the faster one introduces
a new possible recovery point, somewhere between the first
two.

3.2 Ahead-Pipelined Predictors
A solution to this problem, which was introduced in [11],

was to ”‘ahead pipeline”’ a large gshare predictor. The ac-
cess to the SRAM-Array is begun several cycles before the
prediction is needed with the then current history bits. In-
stead of retrieving one two-bit counter, 2m two-bit counters
are read from the table, where m is the number of cycles
it takes to read the SRAM-Array. While the array is being
read m new predictions are made. These bits are used to
choose the correct counter from the 2m counters retrieved
from the Array.
In an abstract sense, the prediction is begun with incom-

plete or old information and newer information is injected
into the ongoing process. This means that the prediction can
stretch over several cycles, with the only negative aspect be-
ing that only a very limited amount of new information can
be used for the prediction. An ahead pipelined predictor ob-
viates the need for a separate small and fast predictor, yet
it introduces other complications. In the case of a branch
misprediction, the state of the processor has to be rolled
back to a checkpoint. Because traditional predictors only
needed one cycle, no information except for the PC (which
was stored anyway) and the history register(s) were needed.

3.3 Checkpointing Ahead-Pipelined Predictors

For an ahead pipelined predictor, all the information which
is in flight has to be checkpointed or the pipeline would incur
several cycles without a branch prediction being made. This
would effectively lengthen the pipeline of the processor, in-
creasing the branch misprediction penalty. The reason that
an ahead pipelined predictor can be restored from a check-
point on a branch misprediction and an overriding predictor
cannot, is that the ahead pipelined predictor only uses old
information to retrieve all the state which is in flight, while
the overriding predictor would use new information, which
would be invalid in case of a branch misprediction.
This problem was briefly mentioned in [19] in the context

of 2BC-gskew predictor and it was noted that the need to
recover in one cycle could limit the pipeline length of the
predictor. In a simple gshare the amount of state grows ex-
ponentially with the depth of the branch predictor pipeline,
if all the bits of new history are used. Hashing the bits
of new history down in some fashion of course reduces the
amount of state in flight.
For an overriding perceptron, all partial sums in flight

in the pipeline need to be checkpointed. See Table 1 for
the formulas used to determine the amount of state to be
checkpointed. Since the partial sums are distributed accross
the whole predictor in pipeline latches, the checkpointing
tables and associated circuitry must also be distributed. The
amount of state that needs to be checkpointed/restored and
the pipeline length determine the complexity and delay of
the recovery mechanism. Shortening the pipeline and/or
reducing the amount of state to be checkpointed per pipeline
stage will reduce the complexity of the recovery mechanism.
A final factor to consider is the loss of accuracy in an

ahead pipelined predictor with increasing delay. Since this
was not explicitly investigated in [9], we investigate the re-
sponse of some basic predictors and the pipelined perceptron
predictor to delay. The first predictor is the gshare predic-
tor, since it serves as the reference predictor in so many aca-
demic studies of branch predictors. Unlike the gshare.fast
introduced in [9], we vary the delay from zero to four cycles.
Our ahead pipelined version of the gshare predictor also dif-
fers from the gshare.fast presented in [9], as can be seen in
Figure 3.

address(n) normal GAs:

address(n)
 normal gshare: XOR

global history(n)

address(n-x)
pipelined gshare: XOR

global history(n-x)

new gl. hist.

address(n-x)pipelined GAs: new gl. hist.

gl. hist.

Figure 3: The ahead pipelined versions of each pre-
dictor uses the address information from several cy-
cles before the prediction to initiate the fetch of a
set of counters. In the case of the gshare predictor
these are XOR’ed with the then current global his-
tory. The new bits of global history which become
available between beginning to access the pipelined
table and when the counters become available from
the senseamps are used to select one counter from
the 2x retrieved to make the actual prediction.

3

In general, when we say a predictor has delay x, we mean
that only address bits from cycle (n - x), where cycle n is
the cycle in which the prediction is needed, are used. In
the case of the gshare predictor, we XOR the address(n - x)
during cycle (n - x) with the speculative global history shift
register and start to fetch a group of 2x 2-bit counters from
the prediction table. We then use the newest x bits of global
history, which become available while the table lookup is still
in progress, to select one counter from this group.
A bimodal predictor can similarly be pipelined, by using

only the address bits from address(n - x) to initiate the table
read. The bimodal predictor in this case becomes similar to
a GAs [22] (also known as gselect [15]), but it uses a past
address as opposed to the present address used by a GAs.

4. THE AHEAD PIPELINED PERCEPTRON

Pipeline Latch+AdderSRAM-Array

+++

addr(x)addr(x-1)

+++

addr(x-1)addr(x-2)

88 88

8
8

8

8
8

88

8

Mux

Fetch branch(x) Fetch branch(x+1)

Pred for
branch(x)

Pred for
branch(x)

preliminary
pred for

branch(x)

Fetch branch(x) Fetch branch(x+1)

Pred for
branch(x+1)

possible
override

Figure 4: (top)The original proposal for a pipelined
perceptron uses the current address in each cycle to
retrieve the weights for the perceptron.
(bottom) Our proposed design uses addresses from
the previous cycle to retrieve two weights and then
chooses between the two at the beginning of the next
cycle. Note that the mux could be moved ahead of
the pipeline latch if the prediction is available early
enough in the cycle.

To bring the latency of the pipelined path-based percep-
tron down to a single cycle, it is necessary to decouple the
table access for reading the weights from the adder. We note
that using the address from the cycle n − 1 to initiate the
reading of weights for the branch prediction in cycle n would
allow a whole cycle for the table access, leaving the whole
cycle when the prediction is needed for the adder logic. We

can use the same idea as was used for the ahead pipelined
table based predictors to inject one more bit of informa-
tion (whether the previous branch was predicted taken or
not taken) at the beginning of cycle n. We thus read two
weights, select one based on the prediction which becomes
available at the end of cycle n-1, and use this weight to cal-
culate the result for cycle n. While this means that one less
bit of address information is used to retrieve the weights,
perceptrons are much less prone to the negative effects of
aliasing than table based predictors.
In the case of a branch misprediction, the pipeline has to

be restored the same as an overriding perceptron. However,
because the predictor has to work at a one cycle effective
latency, additional measures have to be taken. One possi-
bility is to checkpoint not just the partial sums but also one
of the two weights coming out of the SRAM-arrays on each
prediction. Only the weights which were not selected need
be stored, because by definition, when a branch mispredic-
tion occurred, the wrong direction was chosen initially. A
second possibility is to also calculate the partial sums along
the not chosen path. This reduces the amount of state that
needs to be checkpointed to only the partial sums, but ne-
cessitates additional adders. A third possibility is to only
calculate the next prediction, for which no new information
is needed, and advance all partial sums by one stage. This
would lead to one less weight being added to the partial sums
in the pipeline and a small loss in accuracy. The difference
between options two and three is fluid and the number of
extra adders, extra state to be checkpointed and any loss in
accuracy can be weighed on a case by case basis.
For our simulations we assumed the first option, and leave

evaluation of the second and third option for future work.
The weights are updated based on the committed outcome
of the branch and the same training algorithm was used as
in [11].

global weights local weights
l1 l2 l3 l4g1 g4g3g2 g6g5 b

b+loc
precomputation

g1 g4g3g2 g6g5 +

Figure 5: The local part of an alloyed perceptron can
be precomputed as soon as the previous prediction
for the branch is available. The partial sum consist-
ing of the bias weight b and the sum of the local
weights li multiplied with their respective specula-
tive history bits can then be stored in place of the
bias weight in a normal perceptron.

5. PRECOMPUTING A LOCAL PERCEP-
TRON

The use of alloyed branch history information [14] in com-
bination with perceptrons was investigated in [11, 13] and
shown to be effective. The use of alloyed history was dropped
from the overriding perceptron, because the computation of
the local part of the alloyed perceptron cannot be pipelined
in the same way as the global part.
However it should be noted that when a branch x is pre-

dicted for the nth time, almost all the information necessary
to calculate the local part of an alloyed perceptron is already

4

given. The only possible change is that the set of weights can
be updated between the nth and (n+1)th prediction or that
the outcome of the nth occurrence of branch x is mispre-
dicted. The former is an infrequent event, since perceptrons
are quickly trained to the desired outcome and then remain
stable for long periods; the later requires a rollback to a
non-speculative state.
Note that because of the delay in computing the partial

sum, it is possible that the next occurrence of a branch hap-
pens before the result can be fully calculated. In effect,
the branch overtakes or ”loops” the predictor. In this case,
the precomputed sum would be stale and most likely wrong.
This is most likely to happen for tight inner loops, where the
loop branch occurs every cycle or two. In such a case, the
global part of an alloyed perceptron would capture the be-
havior of the branch and would implicitly override the stale
local part of the perceptron. The effects of stale precom-
puted local history on different benchmarks is beyond the
scope of this paper and is the target of future work.
Precomputation of a local perceptron is similar to a pipelin-

ing of a local history, two-level predictor as proposed in [21].
However, there is no table based predictor which can use so
much address, history and path information to make a pre-
diction.
The benefit of integrating a precomputed local perceptron

with an ahead pipelined perceptron is two-fold:
First, it has been shown [14] that the use of local and

global history will increase the accuracy of a predictor at a
given hardware budget.
Second, by shifting weights from the global part of an

alloyed perceptron to the local part we reduce the num-
ber of pipeline stages in the global part of the predictor.
This means fewer partial sums to checkpoint and smaller
pipelines to which the checkpoint/recovery information has
to be propagated.
Third, several weights can be fetched from the same bank

for the local perceptron, saving on decoder area and energy.
The use of a Wallace-tree adder for the precomputation of
the partial sum instead of n independent adders also saves
die area and energy.

6. SIMULATION SETUP
We evaluate the different branch predictors using the 12

SPEC2000 integer benchmarks. All benchmarks were com-
piled for the Alpha instruction set using the Compaq Alpha
compiler with the SPEC peak settings and all included li-
braries. Exploring the design space for new branch predic-
tors exhaustively is impossible in any reasonable timeframe.
To shorten the time needed for the design space exploration
we used 1 billion instruction traces which best represent the
overall behavior of each program. These traces were chosen
using data from the SimPoint [20] project. Simulations were
conducted using EIO traces for the SimpleScalar simulation
infrastructure [3]. We used the sim-bpred simulator from
the Simplescalar [3] suite for simulating the accuracy of all
branch predictors. In all simulations we ran we assumed
that the branch predictor would have to predict only one
branch per cycle and that all updates to the weights were
immediate. Previous studies have shown [18] that the sec-
ond assumption can be made with only minimal impact on
the accuracy of the results, and the there are known meth-
ods how to modify branch predictors to deliver more than
one prediction per cycle. We leave the evaluation of the

different branch predictors in terms of IPC for future work.

7. RESULTS
First, we will present results from ahead pipelined versions

of basic predictors to show that the impact of delay is univer-
sal and has similar but not equal effects on all branch predic-
tors. Prediction accuracy degrades in a non-linear fashion
for most predictors with increasing delay, most probably due
to increasing aliasing between branches. We will then go on
to show the impact of delay on the overriding perceptron
predictor, which behaves similarly to table based predictors
with respect to increasing delay, despite its very different
structure. Finally, we show that the alloyed ahead pipelined
perceptron slightly outperforms all previous predictors at
larger hardware budgets.

7.1 Table Based Predictors
Figure 6 shows the accuracy of a pipelined GAs predic-

tor. We use only address bits to start the prediction and
use the new history bits to select from the fetched predic-
tions. This means that each predictor uses as many bits of
global history as its delay in cycles. This of course implies
that the predictor with 0 cycles of delay is in fact a bimodal
predictor. As can be seen in Figure 6, the addition of global
history bits increases the accuracy of such a predictor. For
comparison we show non-pipelined GAs predictors with 0 to
4 bits of global history in Figure 7. Such predictors are more
accurate than the pipelined GAs predictors with an equiva-
lent number of global history bits. The gshare predictor in

Pipelined GAs

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.25KB 0.5KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB
Size in Bytes

M
is

pr
ed

ic
tio

n
R

at
e

in
 P

er
ce

nt

delay 0
delay1
delay 2
delay 3
delay 4

Figure 6: The impact on accuracy of using older ad-
dresses on a pipelined GAs predictor. The accuracy
of the predictor actually improves with increasing
delay, the inclusion of more bits of global history
compensating for the effects of increasing delay.

Figure 8 shows a consistent loss of accuracy with increasing
delay. However, the increase is not linear, with a predictor
with one cycle delay showing only a very mild degradation
in comparison to the normal gshare predictor.

7.2 Pipelined Perceptron Predictors
As can be seen in Figure 9, the perceptron predictor be-

haves similarly to the table based predictors in that the loss
of accuracy with increasing delay is not linear. However,
it exhibits different behavior from the gshare predictor in
that the impact of delay decreases much more quickly with
increasing size. We attribute this to the very small number
of perceptrons for the smaller hardware budgets, which nec-
essarily means that fewer address bits are used. The loss of

5

Non-pipelined GAs

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.25KB 0.5KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB
size in bytes

M
is

pr
ed

ic
tio

n
R

at
e

in
 P

er
ce

nt

0 ghist
1 ghist
2 ghist
3 ghist
4 ghist

Figure 7: Accuracy of non-pipelined GAs predictors
with zero to four bits of global history.

GSHARE

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.25KB 0.5KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

size in Bytes

M
is

pr
ed

ic
tio

n
R

at
e

delay 0
delay1
delay 2
delay 3
delay 4

Figure 8: The impact on accuracy of using older
addresses on a pipelined gshare predictor. Accuracy
decreases with increasing delay. However a one cycle
delay leads to only minimal loss of accuracy.

even one bit of address information seems to lead to much in-
creased aliasing. At larger hardware budgets the increasing
number of perceptrons and the tendency of the perceptron
not to suffer from destructive aliasing to dominate. All the
following simulations were done with the ahead pipelined
perceptron as described in Section 4, which incurs one cycle
of extra latency.
In Figure 10, we compare the overriding perceptron to

the ahead pipelined perceptron with and without the use of
alloyed history. We use 4 and 8 weights for local history,
since those configuration were determined as optimal from
our experiments.
We observe that the overriding perceptron predictor per-

forms better at very small hardware budgets than our pro-
posed perceptron. With increasing hardware budgets, the
alloyed and ahead pipelined perceptron predictors close the
gap and then overtake the pipelined perceptron predictor.
We attribute this to the fact that the increase in size makes
the increased aliasing in an ahead pipelined perceptron less
important.
An interesting result is that the ahead pipelined percep-

tron outperforms the normal overriding perceptron very slightly
at 32 and 64 kilobytes. This could indicate that the use of
history information in addressing the weights is beneficial.
However, the difference is so small that it could very well
just represent noise from our set of benchmarks and traces.
Further investigations in this area are necessary to come to

�

���

���

���

���

���

���

��	

�
� �
� �
� �
� ��
�

����������������

��

��
��
�
�
�
�
��
�
�
��
�
��
�
��
�
�
�

�������
�����
�������
�����
�������
�����

Figure 9: The impact on accuracy of using older
addresses to fetch the perceptron weights.

a definitive conclusion.
The benefits of alloyed prediction grow with increasing

hardware budgets, with the alloyed perceptron predictors
lagging behind at small hardware budgets, but surpassing
the purely global predictors at larger budgets.

Accuracy at diferent Sizes

2.5

3

3.5

4

4.5

5

1KB 2KB 4KB 8KB 16KB 32KB 64KB

Hardware Budget in Bytes

A
vg

. M
is

pr
ed

ic
tio

n
R

at
e

in
 P

er
ce

nt

overriding
0 local
4 local
8 local

Figure 10: Average misprediction rates for hardware
budgets from 1 to 64 kilobytes. All predictors where
tuned for optimal accuracy for all sizes.

8. CONCLUSION
We have shown that a perceptron branch predictor can

be ahead pipelined to acchieve effective one cycle access la-
tency. This allows the removal of the preliminary predictor
necessary for multicycle overriding predictors, considerably
reducing the complexity of the branch prediction and fetch
engine. It also allows the use of confidence based selective
checkpointing mechanisms [1, 5, 16], which rely on a sin-
gle accurate prediction mechanism. We also show that an
alloyed perceptron can be pipelined in the way described
above by precomputing the local history part of the percep-
tron. This further reduces the amount of state that needs
to be checkpointed for a given hardware budget, by short-
ening the global predictor pipeline. When combining these
two techniques we can achieve accuracies equal to or bet-
ter than the best previously published pipelined perceptron
predictor [11], while allowing single-cycle prediction latency.

9. FUTURE WORK

6

It should be noted that precomputation effectively decou-
ples the access latency of the local perceptron from the cycle
time of the branch predictor. The latency is thus only bound
by the average latency between accesses to the same branch.
As mentioned above, it might make sense to use a special
loop predictor to filter out loop branches with high loop
repetition counts(as has been done in the Pentium M [6]),
because loop predictors are much more efficient in terms of
hardware for these specific branches. However, some latency
can be tolerated and the only critical factor could be area.
This can be resolved, perhaps by moving the weight tables
for the local perceptron away from the rest of predictor with
only the precomputed sums stored locally.
As mentioned above, incorporating some of the improve-

ments proposed by Seznec [17] and Ipek et al. [8] should
further improve the accuracy of our predictor, especially at
large hardware budgets.
Evaluating the impact of this new, very accurate single

cycle predictor on the performance of a real processor is of
great interest to us, and we are working on incorporating
the ahead pipelined perceptron with a detailed model of a
current high-performance processor.

10. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation under grant nos. CCR-0105626, EIA-0224434,
and a grant from Intel MRL. We would also like to thank
Karthik Sankaranarayanan and Yingmin Li for valuable feed-
back on early versions of this paper.

11. REFERENCES
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan.

Checkpoint Processing and Recovery: Towards
Scalable Large Instruction Window Processors. In
Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page
423. IEEE Computer Society, 2003.

[2] D. Boggs, A. Baktha, J. M. Hawkins, D. T. Marr,
J. A. Miller, P. Roussel, R. Singhal, B. Toll, and K. S.
Venkatraman. The Microarchitecture of the Intel
Pentium 4 Processor on 90nm Technology. Intel
Technology Journal, 8(1), February 2004.

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating
Future Microprocessors: The Simplescalar Tool Set.
Technical Report CS-TR-1996-1308, University of
Wisconsin-Madison, 1996.

[4] B. Calder and D. Grunwald. Next Cache Line and Set
Prediction. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pages 287–296. ACM Press, 1995.

[5] A. Cristal, D. Ortega, J. Llosa, and M. Valero.
Out-of-Order Commit Processors. In Proceedings of
the 10th International Symposium on High
Performance Computer Architecture, page 48. IEEE
Computer Society, 2004.

[6] S. Gochman, R. Ronen, I. Anati, A. Berkovits,
T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C.
Valentine. The Intel Pentium M Processor:
Microarchitecture and Performance. Intel Technology
Journal, 7(2):21–59, May 2003.

[7] G. Hinton, D. Sager, M. Upton, D. Boggs,
D. Carmean, A. Kyker, and P. Roussel. The

Microarchitecture of the Pentium 4 Processor. Intel
Technology Journal, 5(1):13, February 2001.

[8] E. Ipek, S. A. McKee, M. Schulz, and S. Ben-David.
On Accurate and Efficient Perceptron-Based Branch
Prediction. Unpublished Work.

[9] D. Jiménez. Reconsidering Complex Branch
Predictors. In The Ninth International Symposium on
High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings., pages 43–52, 2003.

[10] D. Jiménez and C. Lin. Dynamic Branch Prediction
with Perceptrons. In Proceedings of The Seventh
International Symposium on High-Performance
Computer Architecture, pages 197–206, 2001.

[11] D. A. Jiménez. Fast Path-Based Neural Branch
Prediction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on
Microarchitecture, page 243. IEEE Computer Society,
2003.

[12] D. A. Jiménez, S. W. Keckler, and C. Lin. The Impact
of Delay on the Design of Branch Predictors. In
Proceedings of the 33rd Annual ACM/IEEE
International Symposium on Microarchitecture, pages
67–76. ACM Press, 2000.

[13] D. A. Jiménez and C. Lin. Neural Methods for
Dynamic Branch Prediction. ACM Trans. Comput.
Syst., 20(4):369–397, 2002.

[14] Z. Lu, J. Lach, M. R. Stan, and K. Skadron. Alloyed
Branch History: Combining Global and Local Branch
History for Robust Performance. International
Journal of Parallel Programming, 31:137–177, 2003/4.

[15] S. McFarling. Combining Branch Predictors. Technical
Report TN-36, June 1993.

[16] A. Moshovos. Checkpointing Alternatives for High
Performance, Power-Aware Processors. In Proceedings
of the 2003 International Symposium on Low Power
Wlectronics and Design, pages 318–321. ACM Press,
2003.

[17] A. Seznec. Redundant History Skewed Perceptron
Predictors: pushing limits on global history branch
predictors. Technical Report 1554, IRISA, September
2003.

[18] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides.
Design Tradeoffs for the Alpha EV8 Conditional
Branch Predictor. In Proceedings of the 29th Annual
International Symposium on Computer Architecture,
pages 295–306. IEEE Computer Society, 2002.

[19] A. Seznec and A. Fraboulet. Effective Ahead
Pipelining of Instruction Block Address Generation.
In Proceedings of the 30th Annual International
Symposium on Computer architecture, pages 241–252.
ACM Press, 2003.

[20] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically Characterizing Large Scale
Program Behavior, 2002. Tenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002.
http://www.cs.ucsd.edu/users/calder/simpoint/.

[21] T.-Y. Yeh and Y. N. Patt. Two-Level Adaptive
Training Branch Prediction. In Proceedings of the 24th
Annual International Symposium on
Microarchitecture, pages 51–61. ACM Press, 1991.

[22] T.-Y. Yeh and Y. N. Patt. A Comparison of Dynamic

7

Branch Predictors that use Two Levels of Branch
History. In Proceedings of the 20th Annual
International Symposium on Computer Architecture,
pages 257–266. ACM Press, 1993.

8

