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Abstract
The need for accurate conditional-branch prediction is well

known: mispredictions waste large numbers of cycles, inhibit out-
of-order execution, and waste power on mis-speculated compu-
tation. Prior work on branch-predictor organization has focused
mainly on how to reduce conflicts in the branch-predictor struc-
tures, while relatively little work has explored other causes of mis-
predictions. Some prior work has identified other categories of
mispredictions, but this paper organizes these categories into a
broad taxonomy of misprediction types. Using the taxonomy, this
paper goes on to show that other categories—especiallywrong-
history mispredictions—are oftenmore important than conflicts.
This is true even if just a very simple conflict-reduction technique
is used. Based on these observations, this paper proposesalloy-
ing local and global history together in a two-level branch pre-
dictor structure. This simple technique, a generalization of the
bi-modepredictor, attacks wrong-history mispredictions by mak-
ing both global and local history simultaneously available. Un-
like hybrid prediction, however, alloying gives robust performance
for branch-predictor hardware budgets ranging from very large to
very small. Finally, this paper shows thatindividual branch refer-
ences can also suffer wrong-history mispredictions as they alter-
nate between using global and local history, a phenomenon that
favors dynamic rather than static selection in hybrid predictors.

1. Introduction
The question of how better to predict the direction of condi-

tional branches has received intense study in recent years. Two-
level [11, 22] and hybrid [10] predictors, which explicitly track
prior branch history, have received special attention. Most of this
attention examines how to reduce aliasing errors (conflict mispre-
dictions), which arise when unrelated branches happen to collide
in a particular branch-predictor entry and overwrite each other’s
state. Conflicts are undeniably important, but a wealth of excel-
lent techniques have been developed to reduce these destructive
conflicts in the pattern history table (PHT)1 of two-level predic-
tors. This paper shows that evenwithout using aggressive anti-
aliasing techniques, conflicts only account for 15–20% of mispre-
dictions in global-history predictors and 40–50% in local-history
predictors. Naturally, these fractions are smaller when aggressive
conflict-reduction techniques are applied. A complete elimination
of conflicts therefore leaves many or most mispredictions remain-
ing to be solved.

Further reductions in conflict mispredictions are indeed becom-
ing difficult, and prediction accuracies still lie only in the 90–97%
range. This paper therefore looks beyond conflict mispredictions
and organizes a number of misprediction types into ataxonomy
to help characterize their relative importance. The paper then goes
on to show that some other misprediction categories are often more
important than conflicts, especially the category ofwrong-history

1The PHT is the table of saturating two-bit counters used by most pre-
dictor organizations. Different organizations assign branches or branch
streams to these two-bit counters differently.
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mispredictions. These arise when the type of history tracked by a
two-level predictor—either global or local history—is the wrong
type of history for that branch. The paper describesalloyed branch
prediction—a generalization of thebi-modebranch predictor pro-
posed by Lee, Chen, and Mudge [9]—as an attractive way to at-
tack this category of mispredictions. Finally, the paper shows that
individual branches dynamically vary between needing local and
global history, and demonstrates that static selection in a hybrid
predictor is therefore undesirable. Alloying, on the other hand,
allows branches to see both global and local history simultane-
ously. Alloying has the further advantage over conventional hybrid
branch predictors that it does not subdivide the available branch-
prediction hardware into distinct and much smaller—and thus less
effective—components.

As we developed our taxonomy, the category of wrong history
mispredictions suggested the development of the alloyed predic-
tor. We found that using an alloyed predictor permitted us to add a
category to our taxonomy. We therefore describe the alloyed pre-
dictor first, so that we can use the alloyed predictor in the rest of
the paper as we develop the taxonomy.

The next section presents the simulation methodology used
in this paper. Next, section 3 describes alloyed prediction and
presents a brief evaluation of its performance. Section 4 then de-
velops the taxonomy (incorporating alloying) and quantifies the
importance of wrong-history mispredictions, and Section 5 further
explores the issue of wrong-history mispredictions and how it af-
fects conventional hybrid predictors. It shows that not just static
branch instructions, but dynamic branch references can also suffer
wrong-history mispredictions. Finally, Section 6 describes related
work, and Section 7 concludes the paper.

2. Simulation and Benchmark Details
2.1. Simulator

This paper uses both instruction-level and detailed cycle-
level simulation to compare the performance of different branch-
predictor configurations. Cycle-level simulations are performed
using HydraScalar, our modified, multipath-capable version of
SimpleScalar 2.0’ssim-outorder[1]. HydraScalar has been con-
figured to approximately model an Alpha 21264 [7]. It performs
out-of-order execution with a 64-entry instruction window, and
issues up to 4 integer and 2 floating-point instructions each cy-
cle. The two-level, non-blocking cache hierarchy has 2-cycle, 64
KByte first-level instruction and data caches and a 12-cycle, uni-
fied, 8 MByte second-level cache. The branch history is updated
speculatively at fetch time with suitable repair mechanisms [14],
and HydraScalar models multiple layers of misprediction. The
branch misprediction latency is 7 cycles. The taxonomy measure-
ments use a modified version of SimpleScalar’s instruction-level
sim-bpredsimulator.

2.2. Benchmarks
These evaluations use not only the SPECint95 benchmarks

[19], but also four other primarily integer benchmarks. Table 1
summarizes the benchmarks’ characteristics. All are compiled



using gcc version 2.6.3 for the SimpleScalar PISA, with opti-
mization set at-O3 -funroll-loops (-O3 includes inlin-
ing). The SPEC programs use “ref” inputs. Some benchmarks
come with multiple reference inputs, in which case one has gener-
ally been chosen.Xlisp is an exception; it used the 9-queens input.
Gnuchess was set to level 10, and the SPLASH benchmarks used
the largest input.

Warmup Conditional branch counts
100 M insts 1 B insts

insts static dyn. static dyn.
go 925 M 4,627 11.2 M 5,331 112 M
m88ksim 25 M 231 16.2 M 968 162 M
gcc (cc1) 220 M 14,245 14.7 M 20,783 190 M
compress 2575 M 205 11.8 M 203 151 M
li (xlisp) 270 M 271 15.4 M 676 154 M
ijpeg 823 M 657 5.1 M 1,415 58 M
perl 600 M 352 12.9 M 614 129 M
vortex 2450 M 3,134 12.2 M 3,203 124 M
gnuchess 150 M 665 9.6 M 1,127 96 M
wolf 50 M 2,288 15.9 M 2,993 26 M
radiosity 300 M 163 9.4 M 183 92 M
volrend 125 M 57 6.5 M 660 70 M

Table 1. Benchmark summary.
Data is given for simulations of both 100 million and 1 billion in-
structions. “Warmup insts” indicates the length of the preliminary
phase of simulation, before statistics-gathering.

Gnuchesscomes from the IBS benchmark suite [20];wolf is
the timberwolf circuit router and comes from Smith’s Unix-Utils
benchmark suite [18], and 1.7% of its instructions are floating-
point operations. Radiosityand volrend were chosen from the
SPLASH2 suite [21] of parallel applications for shared memory
because these two have significant misprediction rates.

Some benchmarks have substantial initial phases in which they
generate data (as incompress), read in data, or perform other ac-
tions that differ from the main body of the execution. Simula-
tions produce substantially unrepresentative results if this initial
phase comprises too much of the simulation [13]. The simula-
tor therefore begins gathering statistics much later in the program.
During the preliminary phase, branches and memory references
are still presented to the simulator, warming up the predictor and
caches. After the warmup phase (whose duration is shown in
Table 1) completes, the simulator runs in full-detail, cycle-level
mode for a further 1 million instructions to prime all the processor
structures. Then statistics are gathered for the next 100 million
instructions for cycle-level simulations, and 1 billion instructions
for instruction-level simulations; in the latter case,gcc andwolf
are short enough to run to completion.

3. Alloying: Description & Performance
3.1. Hybrid Predictors

Hybrid predictors [10] are one way to attack the wrong-history
problem. Hybrid predictors combine two or more prediction com-
ponents, with some way to choose which component to use for
each dynamic branch encountered. If one component is a global-
history predictor and the other is a local-history predictor, both
types of history are therefore available [2]. This reduces the
wrong-history problem if the selection mechanism does an effec-
tive job of choosing which component to use for each branch. The
selector, however, may itself be a large prediction structure. Fig-
ure 1 presents a high-level schematic of a hybrid predictor that
combines global and local prediction components.

Hybrid predictors have drawbacks. Designing an effective se-
lection mechanism can be difficult. More importantly, hybrid pre-
diction only works well with a large hardware budget. This prob-
lem exists because a hybrid predictor must subdivide the available

selection

component #1
     (global)

component #2
      (local)

GBHR

PHT

BHT

taken/not−taken

PHT

Figure 1. The organization of a hybrid predictor with
two different components. (The left-hand component is a
global-history predictor, and the right-hand component is a
local-history predictor.) The selector can be dynamic, re-
quiring a meta-predictor structure, or static, in which case
each branch is assigned to a component at compile time.

area into these different and smaller components. If the total hard-
ware budget is too small, the subcomponents will be smaller yet
and ineffective as a result, yielding poor overall behavior.

3.2. The Importance of Small Branch Predictors
Some readers may wonder why 8 Kbit and 2 Kbit branch pre-

dictors are of any interest today, when some processors now use
much larger predictors. For example, the Alpha 21264’s predic-
tor is about 28 Kbits [7]. But not all processors designed today
can afford to devote a large area to the branch predictor. For ex-
ample, power constraints may dictate a smaller chip size, and cost
constraints likewise. Processors for embedded environments are
generally both space- and power-constrained. Despite these con-
straints, smaller branch-prediction environments still require the
best branch prediction available, because prediction accuracy re-
mains a powerful lever over performance. Better prediction ac-
curacy also reduces power wasted on mis-speculated computation.
One might think a simple bimodal2 organization would be the best
choice. The data from Section 3.6 and [15] show otherwise.

3.3. Alloyed Predictors
This paper proposes an alternative—alloying—as a superior

way to expose both global and local history and to attack the
wrong-history problem. Alloyed prediction performs competi-
tively to an equal-area hybrid predictor for large hardware bud-
gets, and substantially outperforms hybrid predictors for smaller
hardware budgets. In other words, alloying providesrobustper-
formance for both large and small hardware budgets. Alloying
also outperforms other two-level organizations.

PHT

taken/not−taken

GBHR

(combine bits)

BHT

branch address

Figure 2. The organization of a two-level predictor with
an alloyed index. This “MAs” predictor combines local his-
tory from the per-branch history table (BHT) and global his-
tory from the global branch-history register (GBHR) with
some address bits to compose the PHT index.

Alloying is a pseudo-hybrid organization that looks just like a
two-level, local-history predictor, and merely adds a global-history
register. The predictor thenalloys global and local history bits
into one PHT index. Figure 2 shows the organization we pro-
pose. This simple modification attacks the drawbacks of two-level
organizations—by exposing both global and local history—and
the drawbacks of hybrid organizations—by avoiding the need for
a selector and by avoiding the need to subdivide the hardware into
multiple branch-prediction components.

2A bimodal or “2-bit” predictor—proposed by Smith in [17]—is just a
bare PHT, indexed by branch address.
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We call the organization shown in this figureMAs, because it
resembles GAs and PAs predictors3 [22] in concatenating the dif-
ferent types of bits. GAs and PAs predictors try to reduce con-
flicts in the PHT by concatenating the history—whether global
or local—with some bits from the branch address. In this way,
two unrelated branches that share the same prior history should
be distinguished and mapped to different PHT entries by their dif-
fering branch addresses. MAs does this too, as shown by Figure
2. However, to obtain the same degree of anti-aliasing, MAs typ-
ically needs fewer address bits than GAs or PAs. This is because
alloying global and local history itself provides some anti-aliasing
capability: unrelated branches that alias with one kind of history
often can be distinguished using the other kind of history.

3.4. Alloyed vs. Bi-Mode Prediction
Alloying is a generalization of thebi-modepredictor proposed

by Lee, Chen and Mudge [9] and shown in Figure 3. As de-
scribed in [9], the bi-mode predictor seems quite different from
the MAs predictor in Figure 2. A careful rearrangement, how-
ever, shows the similarity. The bi-mode predictor was developed
to attack destructive interference between branches that map to the
same PHT entry but have opposite biases (i.e., one is taken, one is
not taken). Branches that alias but have the same bias are harm-
less. The bi-mode predictor therefore maintains two PHTs, one
for branches with a bias toward taken, one for branches with a
bias toward not taken. These PHTs are indexed in the gshare [10]
manner of xor’ing a global-branch-history string with bits from
the branch PC. Achoice predictor, indexed only by the branch
PC, uses two-bit counters to learn each branch’s bias and therefore
indicate which PHTs the branch should use.

taken/not−taken

GBHR branch address

selection

choice predictorPHTs
xor

Figure 3. The organization of a bi-mode predictor. The
“choice predictor” uses two-bit counters to learn for each
branch whether it is biased toward taken or not taken. This
value is then used to assign the branch to one of the two
PHTs.

GBHR

(combine bits)

BHT

branch address

taken/not−taken

selection

PHTs

....

....
p

Figure 4. An MAs predictor rearranged to permit simul-
taneous PHT and BHT access. The original, unified PHT is
broken into2p separate tables, all accessed simultaneously.
Thep local-history bits are then used to select which value
to use for the final prediction.
3In this naming scheme, the first letter gives the type of history tracked:

Global, Per-address (local), or Merged (alloyed). The second letter indi-
cates whether the predictor’s PHT is Adaptive (i.e., dynamic), or Static.
And the third letter indicates the PHT structure: “g” indicates no anti-
aliasing, “s” indicatesselector concatenation-style anti-aliasing, and “p”
indicates perfect anti-aliasing (no conflicts ever; GAp, PAp, and MAp are
ideal in this regard) [22].

If the choice predictor is viewed as the BHT of a local-history
predictor, and the two direction PHTs are viewed as logical halves
of a physically unified table, the similarity between bi-mode
and alloying can be seen. The choice predictor is tracking per-
branch—i.e., local—history, and the high-order bit of its two-bit
counter is used as the highest-order index bit, thereby selecting
which half of the PHT to use. In particular, if the bi-mode predic-
tor uses bit-concatenation rather than xor’ing, bi-mode is almost
exactly the same as an MAs predictor with one bit of local history.

3.5. Further Alloying Considerations
The MAs organization, as described, may have a longer access

time than a conventional two-level predictor or even a conventional
hybrid predictor. This is because the MAs predictor would per-
form two table lookups in series. First it would probe the BHT,
in order to get the local-history bits to be concatenated with the
global-history and address bits. Only then could the PHT be ac-
cessed. Fortunately, if the number of local-history bits is small,
this problem can be avoided. The PHT can be broken into mul-
tiple physical tables, accessed in parallel, similar to the bi-mode
organization (Figure 3). The local history bits are then used as the
selector on a multiplexor that chooses the outcome from the ap-
propriate table. This organization is shown in Figure 4. It permits
the PHT and BHT lookups to proceed in parallel. Such an orga-
nization should be feasible for most MAs configurations, since we
never found an MAs organization that needed more than 4 local-
history bits. While a 16-way multiplexor will have a non-trivial
delay in its own right, this delay should be less than that of a table
lookup. A further consideration is that the multiple simultaneous
table accesses will dissipate somewhat more power than the single
access to one large table. Of course, the roles of lookup time and
power cannot be evaluated in the experimental framework used for
this work.

Despite the concerns over access time, MAs has two major
virtues that make it attractive: it reduces wrong-history mispre-
dictions, and it avoids subdividing the branch-prediction hardware
into multiple components that may individually be too small to
predict effectively. MAs thus gives robust prediction accuracy for
a range of sizes. Conventional hybrid predictors perform poorly at
small sizes, and conventional two-level predictors reach a domain
of diminishing returns too early and therefore perform poorly at
large sizes.

As mentioned before, other anti-aliasing schemes have been
proposed that outperform GAs and PAs, although often at the
cost of additional complexity. We restrict our evaluation of al-
loying to GAs, PAs, and MAs predictors, and hybrid predictors
that use them as components. Comparing predictors that use the
same conflict-reduction technique keeps our experiments fair, and
should give an accurate picture of alloying’s usefulness. Alloy-
ing is certainly not restricted to an MAs configuration. Alloy-
ing would presumably benefit slightly less from the anti-aliasing
than strictly global- or local-history predictors (because alloying
already achieves some anti-aliasing), but alloying would presum-
ably be more effective at removing wrong-history mispredictions.
A final important consideration for this paper is that “select”-
style anti-aliasing makes comparisons between alloying and hy-
brid straightforward: it is not obvious how to extend most pro-
posed anti-aliasing techniques to hybrid prediction.

3.6. Performance of Alloyed Prediction
In the interests of space, a detailed evaluation of the perfor-

mance of alloyed prediction is left to a technical report [15]. That
document presents per-benchmark comparisons of MAs against
bimodal, GAs, PAs, and hybrid branch predictors, giving both pre-
diction-rate and IPC data. Here we only summarize the results to
show that MAs successfully attacks wrong-history mispredictions.

To get the best comparison for each predictor size, the config-
urations that perform best overall for the entire benchmark suite

3



GAs PAs MAs
index BHT PHT index BHT PHT

64 Kbits 8g, 7a 8p, 6a 4K entries 16K entries 9g, 4p, 3a 8K entries 16K entries
8 Kbits 5g, 7a 4p, 7a 1K entries 2K entries 7g, 2p, 2a 2K entries 2K entries
2 Kbits 1g, 9a 2p, 7a 512 entries 512 entries 3g, 2p, 4a 512 entries 512 entries

Table 2. Predictor configurations used for equal-total-size comparison.
“g” indicates the number of global-history bits, “p” local-history bits, and “a” address bits.

GAs PAs selector
index PHT index BHT PHT index PHT

Dynamic 7g, 7a 16K entries 8p, 4a 1K entries 4K entries 6g, 7a 8K entries
Static 7g, 7a 16K entries 13p, 0a 1K entries 8K entries na

Table 3. Predictor configurations used for 64 Kbit dynamic and static hybrid predictors.

GAs PAs selector
index PHT index BHT PHT index PHT

Dynamic 4g, 7a 2K entries 2p, 7a 512 entries 512 entries3g, 7a 1K entries
Static 4g, 7a 2K entries 2p, 8a 1k entries 1k entries na

Table 4. Predictor configurations used for 8 Kbit dynamic and static hybrid predictors.

64 Kbits 8 Kbits 2 Kbits
bimodal GAs PAs hybrid bimodal GAs PAs hybrid bimodal GAs PAs hybrid
1.154 1.031 1.034 1.000 1.092 1.033 1.032 1.029 1.038 1.036 1.020 na

Table 5. Mean speedup of MAs over each listed predictor organization for a 4-issue processor.

64 Kbits 8 Kbits 2 Kbits
GAs PAs GAs PAs GAs PAs

23.1% 22.8% 19.6% 16.9% 11.8% 6.8%

Table 6. Mean reduction in misprediction rate achieved by MAs.

must be used. Finding the best composition of PHT index bits
was done using brute force, simulating all possible combinations
of global, local, and address bits for the desired branch-predictor
size (plots of this design space forgccandm88ksimcan be found
in [16].) Finding equal-area configurations must also account for
the BHT’s size. We explored all possible BHT configurations for
the chosen size, ranging from wide and short (many local-history
bits and few BHT entries) to narrow and tall. The GAs, PAs, and
MAs configurations chosen appear in Table 2. The hybrid config-
urations chosen appear in Tables 3 and 4.4

Comparison Against Two-Level Predictors. Table 5 re-
ports the average speedup on a 4-issue, out-of-order processor for
MAs compared to each alternative: GAs, PAs, and bimodal. Un-
like the taxonomy results in Section 4, these results do use a finite
BHT. A bimodal predictor of the appropriate size is included to
serve as a reference. We also evaluatedgshare-style [10] versions,
where the history and address strings are xor’d together. Like
Sechrestet al. [12], we found little added benefit: xor’ing actu-
ally helps MAs slightly more than GAs or PAs. These speedups
translate into substantial reductions in the misprediction rate. For
some benchmarks likem88ksim, perl, andvortex, a 64 Kbit MAs
halves the misprediction rate compared to an equivalent-area GAs!
Table 6 reports how much overall MAs reduces the misprediction
rate compared to GAs and PAs. Note that the reduction in mispre-
dictions is mostly independent of issue width.

Comparison Against Hybrid Prediction. Of course, GAs
and PAs are restricted to one type of history, and suffer from
wrong-history mispredictions. We also must evaluate alloying
against hybrid prediction, which like alloying can attack the

4While exploring configuration options for hybrid prediction, we made
sure to test hybrid organizations that use a simple, 2-bit, bimodal structure.
This benefited some benchmarks, especially for small hybrid predictors,
but for both 64 Kbits and 8 Kbits, the organization that was best overall
did not use any bimodal structures.

wrong-history problem. Here we complete our brief evaluation of
MAs by comparing it against a dynamic-selection hybrid branch
predictor [10]. The data are included in Table 5. We only exam-
ine configurations of 64 Kbits and 8 Kbits; hybrid prediction is
not feasible at 2 Kbits, because the components would simply be
too small. Indeed, our data show that 8 Kbits is also too small for
a hybrid predictor. An alloyed predictor, in contrast, works well
even down to 2 Kbits.

At 64 Kbits, hybrid prediction and MAs provide equivalent per-
formance: the average speedup of MAs over hybrid prediction for
all the benchmarks is 1.0, and hybrid never outperforms MAs by
more than 1.2%. Both organizations do a good job of eliminating
wrong-history mispredictions. Hybrid performs well because 64
Kbits is enough area to subdivide into different components.

The picture is different for an 8 Kbit predictor. Here, MAs is
superior for all but one benchmark and usually by a substantial
margin, as high as 8.5%. The exception isgo, where hybrid is
1.3% better. The overall speedup for MAs compared to hybrid
is 2.9%. This seems like a small speedup, but this corresponds
to an average 15% reduction in mispredictions. MAs does better
at small sizes like 8 Kbits, because a hybrid predictor—whether
using dynamic or static selection—simply does not have enough
area to subdivide into smaller components.

In summary, MAs performs at least as well as hybrid predic-
tion for large hardware budgets, and outperforms hybrid predic-
tion for smaller hardware budgets. Overall, alloying’s robust per-
formance makes it attractive for a range of processors, from high-
performance processors with large branch-prediction budgets to
small embedded processors.

4. A Taxonomy of Mispredictions
A taxonomy of mispredictions has three virtues. It shows the

relative importance of different misprediction types. It permits de-
signers to tailor branch-prediction solutions to individual mispre-
diction types—a divide-and-conquer approach—rather than devise
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a single, all-purpose branch predictor. And it provides better un-
derstanding of branch-predictor behavior: merely devising a tax-
onomy yields insight. Indeed, alloying simply suggested itself
while we developed this taxonomy, and this in turn permitted us to
extend the taxonomy. We feel this taxonomy is perhaps the most
important contribution of this paper.

As mentioned before, a great deal of work has explored ways
to preventconflict mispredictionsin two-level predictors. This pa-
per shows that predictors also suffer from other important types
of mispredictions. For example, two-level and hybrid predic-
tors are sophisticated structures that can take a long time to
learn a branch’s behavior, often producing a substantial number
of training-time mispredictions [4]. And—as we have already
pointed out—most programs suffer severely from wrong-history
mispredictions. It is important to understand the relationship
among these different sources of mispredictions, but we are aware
of no prior work that organizes such misprediction categories into
a broad framework and measures the relative importance of so
many sources of mispredictions.
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GAp

misprediction

hit

hit destructive 
PHT interference

misprediction

bimod
hit training

misprediction

misprediction
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misprediction

PAs
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misprediction misprediction
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hithit
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wrong type 
of history
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of historymisprediction
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true hit true hit

Figure 5. A flowchart depicting how the taxonomy
categorizes misprediction types. Each dynamic branch
flows down both sides until it is either categorized or falls
through.

Figure 5 shows the sequence of tests used to classify each
misprediction. Note that wrong-history mispredictions are only
counted after conflict and training-time mispredictions. This pro-
vides a measure of “true” wrong-history mispredictions. Measure-
ments are accomplished by running in parallel several predictor
organizations of increasing sophistication. If a branch mispredicts
in one organization while predicting correctly in another, the dif-
ference between the two configurations isolates the misprediction
category. The simulator performs the pictured cascade of tests un-
til the branch either predicts correctly, or the misprediction fails all
tests.Remainingbranches are either inherently difficult to predict,
or fall into a category not yet included in the taxonomy. The de-
picted process simultaneously categorizes each dynamic branch’s
behavior for both GAs and PAs predictors.

We by no means claim the taxonomy is comprehensive: the
included categories can presumably be refined, and it lacks some
obvious categories: update timing [14], history length, and history
pollution [5]. This is partly because our work on taxonomies is
still in its beginning stages, partly because we restrict ourselves to
GAs and PAs predictors of fixed history length, and partly because
measurements using the taxonomy are difficult. This is therefore
only a first step toward a rigorous and thorough analysis of what
causes branch mispredictions, a step that we hope leads to further
research in understanding branch predictability. We expect that
readers will find many ways to improve this taxonomy, and this is
exactly why we seek to disseminate it.

Yet even this simple taxonomy is an important contribution. It
shows the importance of wrong-history mispredictions. It shows
the risk of continuing to focus on conflict mispredictions. It has

helped us discover alloying. And most importantly, it substan-
tially extends prior efforts at categorizing branch mispredictions,
by organizing a number of recognized misprediction types into a
single classification scheme and by describing a one-pass method
for counting them.

4.1. Taxonomy Categories
Destructive PHT and BHT conflicts. All dynamic predic-
tors that track state can suffer from destructive conflicts when un-
related branches map to the same predictor entry. Destructive
PHT (pattern history table) conflicts arise when branches map
to the same 2-bit PHT counter and these branches go in oppo-
site directions.5 Theseconflict-mispredictionscan be identified by
running a finite and infinite PHT in parallel (GAs and GAp predic-
tors, or PAs and PAp). The two predictors behave the same, except
that the infinite PHT cannot suffer from conflicts. A mispredic-
tion in the finite PHT that does not occur in the infinite PHT must
therefore be a destructive conflict.

Aliasing in the BHT (branch history table) can also cause mis-
predictions. To simplify an already complicated measurement,
here we omit their impact by assuming an interference-free BHT.
This also provides better comparability of GAs and PAs results.

Training-induced mispredictions. If a misprediction is not
caused by PHT interference, it can instead occur because the pre-
dictor has not yet learned the branch’s behavior. This happens
especially at the beginning of a program or after a context switch,
but also occurs as programs transition from one phase to another.
We have yet to devise a precise method for measuringtraining
mispredictions, but the impact of training time can be estimated
using a simple bimodal predictor. First eliminate conflict mispre-
dictions. Then training-time mispredictions occur when the main
branch predictor fails but an idealized bimodal predictor succeeds.

It may seem odd for a simple bimodal predictor to follow a
global-history predictor in our cascade of tests. But recall that
we are not comparing the two. We only use the bimodal predic-
tor to indicate if a branch reference could be predicted by some
very simple organization. The assumption is that if a branch mis-
predicts using global history, but predicts correctly in the bimodal
organization, the branch is predictable; the global history predictor
just has not yet learned its behavior. On the other hand, if not even
a simple predictor can predict a reference, then the problem is not
training time.

This procedure admittedly neglects the time it takes the bi-
modal predictor to train. Yet a bimodal predictor is fast-training,
and so we feel it provides a good estimate of the effect of training-
induced mispredictions. A better method for measuring training
mispredictions would be a clear contribution to this taxonomy.

Wrong type of history. Mispredictions can also occur be-
cause the predictor tracks the wrong type of history for the branch
in question: global instead of local, or vice-versa. These are the
wrong-history mispredictions.

Global history can expose correlation among branches, while
local history is well suited for branches that follow a consistent
pattern. Unfortunately, most programs have some branches that do
well with global historyandsome branches that do well with local
history. If the branch predictor only tracks one or the other, some
branches therefore find that the predictor provides the wrong type
of history.6 Everset al. showed this to be important in [5]. Our
measurements find that these wrong-history mispredictions are es-
pecially severe in global-history predictors, comprising 35–50%
of the total misprediction rate.

As mentioned, the measurements here separate “true” wrong-

5Note thatconstructiveconflicts can also occur, so the expected gain
from eliminating PHT conflicts would only be the difference.

6By wrong history, we do not mean that the actual history bits are in-
correct; rather, thetype of history being tracked is inappropriate for the
branch at hand.
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GAs/GAp PAs/PAp MAp
32K entries 8 global, 7 address 14 local, 1 address 10 global, 4 local, 1 address
4K entries 5 global, 7 address 10 local, 2 address 7 global, 4 local, 1 address
1K entries 1 global, 9 address 10 local, 0 address 5 global, 4 local, 1 address

Table 7. Predictor configurations used for taxonomy measurements.
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Figure 6. Breakdown of misprediction types for GAs and PAs with 32K-entry, 8K-entry, and 4K-entry PHTs and an interference-
free BHT. KEY: For each benchmark, the left-hand bar represents GAs, and the right-hand bar PAs. Shorter bars mean fewer
mispredictions.

history mispredictions from those merely caused by aliasing. We
argue that the only true wrong-history mispredictions are those
that cannot be solved by eliminating conflict or training-time mis-
predictions. The above techniques are therefore used first, to elim-
inate all conflict and training mispredictions. Then, if a mispredic-
tion remains in a GAs organization while a PAs organization pre-
dicts the branch correctly, global history must be the wrong type
of history for this branch instance. Similarly, if PAs fails while
GAs succeeds, local history must be the wrong type.

A possible drawback of our approach is that the measurement
of wrong-history mispredictions is tied to the anticipated predictor
size. Yet any predictor under consideration will have some finite
size, and the behavior of the branches is dictated by the maxi-
mum history length that size can entertain. Some wrong-history
mispredictions will therefore occur, even though they might be
eliminated by some more idealized organization. At the limit, one
might consider infinite history or prediction by partial matching,
but this would not measure wrong-history, but rather the intrinsic
predictability of the branch. Our approach characterizes the degree
to which a particular history length produces wrong-history mis-
predictions and a different history type of the same length could
remove those mispredictions.

Having seen how important wrong-history mispredictions are,
we were motivated to explore ways to make both types of history
available, and this led us to develop alloyed prediction.

Needs combined history. For some branches, neither type of
history alone suffices; instead the branch needs both types of in-
formation simultaneously. This occurs if a branch correlates with
other branches and also has some self-repeating pattern. The fre-
quency of thesecombined-historymispredictions can be estimated
using an alloyed predictor like the one described in the next sec-
tion. The best method for measuring these mispredictions that we
have been able to devise is to use an alloyed predictor: in par-
ticular, an MAp predictor using an alias-free PHT, just as with
GAp and PAp. This maintains our “cascade” of tests and contin-
ues excluding conflict mispredictions. Mispredictions which do
not fall into the preceding categories and which an MAp organiza-
tion eliminates are combined-history mispredictions. Their num-
ber is always the same for both GAs and PAs. Note that a hybrid
predictor cannot eliminate this type of misprediction.

Remaining mispredictions. Mispredictions that cannot be
eliminated using these techniques fall into a “left-over” category.
Theseremainingmispredictions are either inherently difficult to
remove, or fall into a category not yet included in the taxonomy.

4.2. Taxonomy Results
Figure 6 presents a breakdown of misprediction types for GAs

and PAs predictors of different sizes: 64 Kbits (32K PHT entries),
8 Kbits (4K PHT entries), and 2 Kbits (1K PHT entries). Because

these taxonomy measurements use a perfect BHT, its size is not
included in the total area. This does mean that the total mispre-
diction rate for PAs is understated, and the training time for PAs is
slightly overstated. Nevertheless, the bar segments faithfully de-
pict therelative importance of PHT conflict, wrong history, com-
bined history, and uncategorizable mispredictions. PAs just lacks
an additional segment to show the number of BHT conflicts.

For each branch predictor size, all possible GAs, PAs, and MAs
configurations were tested, and the configuration that performs
best overall for the entire benchmark suite is the one used for the
experiments. That configuration is reported in Table 7. MAp is
included to determine the impact of combined history.

As expected, PHT conflicts are important, and as expected,
that importance declines with increasing PHT size. Still, even
with the simple concatenation-style anti-aliasing used by GAs and
PAs, PHT conflicts are often less important than training time and
wrong history. This is especially true for global-history predic-
tors. Overall—for each of the three sizes—conflicts comprise an
average of 15–20% of mispredictions for the GAs predictor, and
40–52% for the PAs predictor.

Wrong-history mispredictions are instead often the single most
important cause of mispredictions for global-history predictors,
comprising an average of about 35% of mispredictions for the 8
Kbit and 32 Kbit GAs predictors, and 50% for the 2 Kbit GAs
predictor. This is true even though only “true” wrong-history mis-
predictions are counted (all conflict and training-time mispredic-
tions are first eliminated). Wrong-history mispredictions are less
dominant in local-history predictors, comprising about 14.5% and
17.5% of the mispredictions for the 8- and 32-Kbit PAs predictors,
and 3% for the 2 Kbit predictor.

Combined-history mispredictions are usually unimportant (6–
7% of mispredictions), although alloying does help eliminate
them.

It might seem curious that in the 2 Kbit predictor, wrong-
history is especially important for global history, and especially
unimportant for local history. (This can be seen in the large wrong-
history segments for GAs in Figure 6, and the near-absence of
those segments for PAs.) This happens because at that size, the
chosen GAs configuration tracks only 1 bit of branch history, while
PAs tracks 10 bits. Under these circumstances, PAs frequently has
better information than GAs, and GAs almost never has better in-
formation than PAs. As the global history grows longer with larger
predictors, this problem diminishes. Furthermore, once the global
history is long enough, GAs also captures correlation behavior
that local history never can. This means that some PAs mispre-
dictions that were uncategorizable at small sizes7 can be predicted
correctly by larger GAs predictors. This converts those mispredic-

7These are properly labeled uncategorizable, because no small predic-
tor organization can make a correct prediction.
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tions to wrong-history mispredictions for a large PAs. As a result,
PAs’s wrong-history component grows with predictor size, and the
uncategorizable component shrinks.

5. Static vs. Dynamic Choice
This section extends the information from the taxonomy and

shows that dynamic references by the same branch instruction can
also suffer wrong-history mispredictions—that is, someindivid-
ual branches dynamically alternate between needing global history
and needing local history.

Hybrid predictors can use either static or dynamic selection to
choose which predictor component to use for each branch. Bran-
ches that do well with global history are directed to the global-
history component, and branches that do well with local history
are directed to the local-history component. Grunwaldet al. [6]
argue that static selection outperforms dynamic selection. Profil-
ing can identify which component branches prefer, and a static
assignment can be made at compile time. This dispenses with
the dynamic selector, and the extra area can be used to make the
prediction components larger. By assigning a branch to one or
the other component, static selection also has the advantage that
branches only cause conflicts in one component. Static selection
does require instruction set support, and also requires high-quality
training data to make the profiling accurate. Yet a static selector
permanently assigns each branch to one or the other, and so pe-
nalizes any branches that alternate between history types, while
dynamic selection can accommodate such alternation. The tax-
onomy’s wrong-history data in Figure 6 only provides cumulative
data for programs as a whole. Here we measure whether indi-
vidual branch sites dynamically vary the type of history they use,
using interference-free BHTs, an 8K-entry PHT for PAs, and a
16K-entry PHT for GAs. We find that a significant number of in-
dividual branches do indeed switch between using global and local
history.
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Figure 7. X-Y scatter plots showing, for each branch site,
the number of times that a static branch site needs a global
predictor or a local predictor.

Figure 7 presents X-Y scatter graphs for four benchmarks,go,
m88ksim, gcc and compress. Each point represents one branch
site; only branches executed 100,000 times or more are plotted.
The graph’s x-coordinate gives the number of times that a par-
ticular branch can only be predicted with global history; its y-
coordinate gives the number of times that a branch can only be pre-
dicted with local history. Branches that consistently use one com-
ponent lie on one or the other axis. Frequency counts were plotted
rather than percentages, because this format reflects how often a
branch executes (less-frequently executed branches lie closer to
the origin no matter what their behavior).

For all four benchmarks, a substantial amount of mass lies at
the origin: branches that are easily predicted by either structure,
and branches that are mispredicted by both structures. Mass that

lies in the middle of the graph indicates branches that need access
to both types of history. These branches are penalized in a static-
hybrid predictor.Goandgcchave many such branches;compress
has fewer, but they execute a huge number of times.M88ksim’s
branches, on the other hand, need only one or the other type of
history. Further data can be found in [8].

These data show that for the most part, individual branches
do alternate between using global and local history. While some
branches might conceivably change between history types just
once, preliminary measurements suggest that the frequency of this
alternation is rapid for most branches. We are unaware of any prior
recognition or characterization of this “individual-branch” wrong-
history effect. This data indicates that, unless static selection can
do a substantially better job of eliminating conflicts, dynamic se-
lection ought to outperform static selection.

To see which is better in practice, we compared the perfor-
mance of dynamic-selection and static-selection hybrid predictors
at 64 Kbits and 8 Kbits, this time using realistic (finite) BHTs.
To make the comparison fair, we used the predictor configurations
that perform best overall for the benchmark suite, first testing a
wide range of component sizes, selector sizes, and history lengths.
The configurations eventually chosen are the ones used in Sec-
tion 3.6 (see Tables 3 and 4). Note that the equal-area comparison
includes the presence/absence of the dynamic selector, so that dy-
namic selection is appropriately penalized for the area required by
its selection table. Indeed, to further benefit static selection, we
did not cross-train, using the same input data for measurement as
for assigning the static selection.

For 8 Kbit predictors, where conflicts are a more serious prob-
lem, static selection is better for a few benchmarks, but only by
a small margin. Yet despite our attempts to favor static selection,
dynamic selection is still better for 8 of the 12 benchmarks. For
64 Kbits, dynamic selection is almost uniformly superior—static
selection is better for only a single benchmark. Curiously, these
results contradict those reported by Grunwaldet al. [6]. They
find that more benchmarks prefer static selection than dynamic
selection. We suspect that the difference either arises from area
calculations—they use a 4-way associative BHT and do not count
the BHT tags against the area—or from training methodology.
They apparently use shorter inputs and do no warmup, a proce-
dure which penalizes the dynamic selector.

6. Related Work
A great deal of literature focuses on characterizing why mis-

predictions happen in two-level predictors. Most, however, fo-
cus on PHT interference. For example, Younget al. [23] charac-
terized PHT interference, and showed that while both significant
amounts of both constructive and destructive interference occur,
the destructive interference consistently dominates. Leeet al. [9]
observed that conflicting substreams may be strongly biased, just
in opposite directions, and this led to the development of the bi-
mode predictor. Most recently, Everset al. [5] moved beyond
the question of conflicts to focus on the correlation characteris-
tics of branches, and found that many branches do benefit from
global history. Yet for a given prediction, most global history bits
go unused—adding to interference—while often the most useful
branch outcomes have already been forced out of the history.

Hybrid prediction was originally proposed by McFarling [10].
Changet al. [2] extended his work, finding—as we did—that the
most beneficial components are a global-history predictor and a
local-history predictor. They also showed that a global-history se-
lector outperforms a bimodal selector. Most recently, Grunwaldet
al. [6] have proposed eliminating the selector in favor of a static
selection mechanism. Our results suggest this does not work well
for two-component hybrid predictors. But the selection mecha-
nism becomes more complex in multi-hybrid predictors [4] that
contain more than two components, and in this case static selec-
tion might be beneficial.
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Other than the bi-mode work [9], we are unaware of any pub-
lished work describing alloying. Other researchers have described
a variety of aggressive techniques for reducing conflict mispredic-
tions. The YAGS predictor [3] is the most recent. It extends the
bi-mode predictor by identifying when branches disagree with the
predicted bi-mode bias. It is important to note that MAs can easily
be extended to incorporate such anti-aliasing schemes.

7. Conclusions and Future Work
A great deal of prior branch prediction work has focused on

ways to improve two-level predictors that use either local or global
history, but not both. Such work has mainly focused on reducing
conflict mispredictions due to aliasing in the pattern history table.

This paper has presented a new taxonomy of misprediction
types to better understand what categories of mispredictions are
important. Using the taxonomy, we have shown that conflict mis-
predictions are important, but other categories are often more im-
portant. In particular,wrong-historymispredictions are often the
most important source of mispredictions, comprising up to 50%
of the total mispredictions. Wrong history occurs when a branch
requires one type of history (global or local) but the predictor pro-
vides the other type. Hybrid predictors can attack these mispredic-
tions, but analloyedpredictor is superior for several reasons. We
also showed that dynamic references by the same branch instruc-
tion can also suffer wrong-history mispredictions—that is, some
individualbranches dynamically alternate between needing global
history and needing local history. In conventional hybrid predic-
tors [2, 10], this favors dynamic selection over static selection [6].

An alloyed predictor merges local and global history bits to-
gether in a single PHT index. This is a generalization of the bi-
mode branch predictor proposed by Lee, Chen, and Mudge [9].
Although such an organization is a minor change to existing two-
level designs, it makes both types of history available all the time.
This attacks wrong-history mispredictions, as well as a further but
less important category of mispredictions in which branches need
both types of history simultaneously. Alloying can also reduce
PHT aliasing, because branches that alias with one type of his-
tory are often distinguished by the other type of history. Our pro-
posed alloyed predictor, MAs, achieves substantially better pre-
diction accuracies than other solo, two-level predictors, and also
performs well against hybrid predictors, especially at smaller sizes
where the components in a hybrid organization become too small.
Conventional hybrid predictors perform poorly at small sizes, and
conventional two-level predictors reach a domain of diminishing
returns too early and therefore perform poorly at large sizes.

There are several promising avenues for further research.
The most important additional work is on understanding branch-
prediction behavior, extending our characterization of mispredic-
tion sources and individual-branch wrong-history effects. A sec-
ond area for future work lies in further exploring alloying. For ex-
ample, alloying might provide further benefits as part of a hybrid
predictor, and in particular, might work well with static selection,
where it could expose both types of history in one component and
possibly obviate the need for dynamic selection. New hash func-
tions might also be considered, and comparisons of alloyed pre-
diction against newly proposed predictors like YAGS [3] would
be informative. Finally, isolating exactly which branches benefit
most from alloying and characterizing the reasons for this would
also be informative.
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