
Hardware Overhead Analysis of Programmability in ARX
Crypto Processing

Mohamed El-Hadedy
∗

mea4c@virginia.edu
Kevin Skadron

†

skadron@virginia.edu

ABSTRACT
This paper evaluates the area and performance overhead of a
programmable cryptographic accelerator specialized to sup-
port ARX (Add, Rotate, and Xor) based encryption stan-
dards, which are common in symmetric cryptography. This
overhead is measured by comparing to a variety of custom
ARX implementations optimized specifically for π−Cipher.
This is a new algorithm for authenticated encryption that
offers advantages over AES-GCM and is a candidate in the
CAESAR competition. The programmable processor is de-
signed to accommodate different word sizes, different block
sizes and different security levels. The custom variants re-
quire separate versions to support these diverse capabilities.
We find that the overhead of the programmability is quite
high. For example, we implemented the Programmable Pro-
cessing Element PPE in 227 slices, achieving a throughput of
about 1.2 Gbps/block, regardless of the word size. In com-
parison, our best custom 64-bit implementation so far re-
quires 445 slices, achieving 3.09 Gbps. This means that two
PPEs running in parallel can achieve 75% of the throughput
of the custom 64-bit solution, while providing flexibility to
support diverse cryptographic standards.

Keywords
FPGA, Encryption, Crypto-systems, CAESAR

1. INTRODUCTION
Cryptography is essential to the modern IT economy. In

2013, the National Institute of Standards and Technology
NIST funded a new Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness (CAESAR) [1]

∗Dr.Mohamed El-Hadedy is a research associate with the
Department of Computer Science at the University of Vir-
ginia, 85 Engineer’s Way, P.O.Box 400740, Charlottesville,
Virginia
†Professor. Kevin Skadron is the chair of the Department of
Computer Science at the University of Virginia, , 85 Engi-
neer’s Way, P.O.Box 400740, Charlottesville, Virginia, USA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
HASP ’15, June 13 2015, Portland, OR, USA
c© 2015 ACM 978-1-4503-3483-9/15/06 ...$15.00

DOI: http://dx.doi.org/10.1145/2768566.2768574.

to identify a portfolio of authenticated ciphers that offer ad-
vantages over the current AES-GCM and are suitable for
widespread adoption as a next-generation standard. In ad-
dition to security considerations, availability of an efficient
hardware implementation will be a factor in the CAESAR
selection. Yet algorithm-specific, fixed-logic processing el-
ements cannot support the Babel of cryptographic stan-
dards already present today or diverse data-path widths,
let alone the rapid innovation in cryptographic standards.
Many of these standards are based on ARX (Add, Rotate,
and Xor) operations, including such well-known standards as
AES and SHA. A generic ARX crypto-processing architec-
ture can therefore support a variety of important encryption
standards.

We therefore designed a new, area-efficient programmable
crypto-processor, the PPE, tailored for use with any encryp-
tion algorithms based on, with an associated, tailored VLIW
architecture[2]. The PPE architecture is also designed to
support different word sizes, block sizes, and security levels.
In this paper, to evaluate the area and performance overhead
of the resulting flexibility, we compare the PPE to three dif-
ferent custom implementations of the ARX engine that are
optimized for one algorithm, π-Cipher. All different archi-
tectures are evaluated in an FPGA implementation using a
Xilinx Virtex-7 FPGA. π-Cipher is one of the CAESAR can-
didates, whose core permutation function is based on ARX
operations. This cipher is a parallelizable, sponge-based de-
sign. π-Cipher is designed to accommodate different word
sizes, different block sizes and different security levels [3, 4].

2. π-CIPHER
π-Cipher is a nonce-based authenticated encryption ci-

pher with associated data. The π permutation is based on
ARX operations and uses a two pass counter based sponge
component that is denoted as a triplex component. More
details can be found in the official documentation [3]. The
core part of every sponge construction is the permutation
function, and the whole security of the primitive relies on
it. π-Cipher has an ARX based permutation function which
is denoted as the π function[3]. One round of the permu-
tation function consists of eights blocks of the π function
(ARX operations). Four of the π function blocks generate
the intermediate coefficients from the input message blocks.
The other four blocks generate the round results from the
intermediate coefficients.

3. ARCHITECTURE OF THE PPE
The proposed PPE is based on a very long instruction

word VLIW architecture as shown in Fig. 1. It consists

1

Figure 1: Top level architecture of the pro-
grammable processing element

of an Arithmetic and Logic Unit ALU, Rotator block, in-
termediate 512 byte coefficient memory, and Multiplexers
to organize the data traffic from Input/Output port and
the feedback from the computational part to the coefficient
memory.

A VLIW architecture was chosen as an efficient way to
issue multiple operations in each clock cycle. Changes of
control-flow (e.g., branches) are not supported (or needed,
for ciphers we have examined), one major source of effi-
ciency. We currently create programs by hand; a compiler
is future work, but the limited set of operations and the reg-
ular structure of the VLIW architecture should make this
straightforward.

The PPE proposed here implements the ARX engine; it
assumes the input text has already been padded if necessary.

3.1 ALU
Although ripple carry adders RCA are the most area-

efficient adders, their worst-case propagation delay can be
severe. Many fast adders have been proposed. We use a
carry look-ahead adder (CLA), which solves the carry-delay
problem by calculating the carry signals in advance, based
on the input bits [5]. The Virtex-5 FPGA has LUTs with
six inputs and one output; a single LUT can output one bit
data from six-bit input data. If this resource is properly
used for the circuit design, it is possible to obtain a higher
performing circuit. We use these capabilities to build the
CLA ALU based on the CLA. The ALU offers three differ-
ent operations: word XOR, word addition, and subtraction
(modulo 2n). The ALU can process data either from both
coefficient memory ports (Port A and Port B) or from xin
port and the accumulator register as shown in Fig. 1. In
each cycle, the ALU can process 4 data words of 16 bits,
2 data words of 32 bit, or 1 data word of 64 bit, based on
the value of the control mode bits For instance, the mode
control bits have to be 111 and the operation 01 if we would
like to add two 64 bit words.

3.2 Rotator
The Rotator consists of four 16-bit sub rotations, con-

trolled by the finite state machine (FSM) Each 16 bit rota-
tor consists of a 64 x 4 array of 2x1 multiplexers, controlled
by four, 4-bit RC control bits. Based on the value of the
mode control bits, the rotator can rotate right four 16-bit
words, two 32-bit words, or one 64-bit words.

3.3 Coefficient Memory
As shown in fig. 1, the coefficient memory has two output

ports 64 bits (Port A and Port B). There are two address
ports, ADDRA and ADDRB, to control the value of Port A
and Port B. ADDRW is responsible for writing data into the
memory through ram inf. The memory size is 512 bytes.

3.4 Instruction Memory
The dual-ported instruction memory of 448 bytes holds

the program that implements the chosen cipher algorithm,
expressed as a sequence of VLIW instructions. The instruc-
tion memory has two address ports; the first 6-bit port acts
as an instruction fetch address. The other 6-bit port speci-
fies a write address, to change the values of the instruction
memory. There are two enable bits: one permits read for
instruction fetch and the other port is used to change the
values of the instruction memory.

This dual-ported design allows a new cipher program to
be streamed in while the current program progresses, or an
early start on a new program while the rest of the program is
still loading, or seamless processing of a program that cannot
fit entirely into the on-chip memory. The instruction-fetch
ADDR works as a pointer moving sequentially and wrap-
ping around. While this processing is happening, the write
ADDR is loading the new code. Each instruction consists
of 2 bits to control the input/output interface, 20 bits for
controlling the coefficient memory, 27 bits for controlling the
different sections of the Rotator, and 7 bits for controlling
the ALU.

4. ARX CUSTOM PROCESSOR
In this paper, we introduce three different custom hard-

ware implementations for π-Cipher.
The ARX is presented in three different versions based on

the data width size. For the 16 bit version, each memory
block consists of three 4-byte random-access memories and
one 4-byte read-only memory to hold the ARX coefficients.
For the 32-bit version, each memory block contains three
8-byte RAMS and one 8 byte ROM to hold the ARX coeffi-
cients. For the 64 bit version, each memory block consists of
three 16-byte RAMs and one 16-byte ROM to hold the ARX
coefficients. Each memory controller is simply a finite state
machine controlling two different counters. The first counter
is used as a write address to get the input for both directions
and located in the memory. Once the data are located, the
read counter is used to move the data from the memory to
the parallel adders to process the intermediate coefficients
based on the adder-controller finite state machines.

4.1 Single Width
The basic ARX architecture consists of two memories, ten

16-bit adders, two Rotators, and two Xoring banks, dis-
tributed in two groups. One part is used to calculate the
Y equations, and the other part is used to calculate the X
equations. Each direction is controlled by a controller, to
organize the data flow from the input ports to the output
ports.

4.1.1 ALU (Single-Width Core)
Once the reading process starts, the adders between the

memory and rotators calculate the first intermediate coef-
ficients controlled by the ADDER controller. In the 16-bit
version, the controller moves in one cycle per each equa-
tion; then rotator starts to calculate the other phase of the

2

equation and hold it in the Xoring bank. The operation will
continue until the all four equation have been calculated (see
Sec. 2) . Then the Xoring bank starts to calculate final val-
ues of Y and X in one cycle. The Y and X directions are
running in parallel. The output of X and Y are going to
be summed by four 16-bit adders to produce the output.
The final controller is responsible to receive a control signal
from both Xoring blocks in each direction and generate the
output flag, which is used to trigger the further blocks.

4.1.2 Rotator (Single Width)
The rotator is receiving data from the adders and sending

data to the Xoring bank, based on the ROL controller. Sim-
ply, the rotator left-rotates the data coming from the adders
(see Sec. 2).

4.1.3 Xoring bank (Single Width)
The Xoring bank recieves the data from the Rotator and

buffers them one by one, until the four equations have fin-
ished their work in the adder section. Once the four values
are ready in the Xoring bank, the Xoring operation starts,
controlled by the Xoring controller, to produce the final re-
sult of each direction. Once the data has been processed by
the Xoring Bank in each direction, the combination between
both outputs produces the final output of the ARX engine.

4.1.4 Final Controller (Single Width)
The final controller, once it has received the xor flag from

the Xoring controller, will generate the output flag, which is
used in further blocks in the π-Cipher.

4.2 Double-Width Core
Instead of using three adders and one rotator in each di-

rection to compute the equations as in the single core, we use
six adders and two rotators in each direction. This decreases
execution cycles for a given amount of work. However, this
increases memory output ports to 8 instead of 4 ports.

4.3 Quad-Width Core
Instead of using six adders and two rotators in each di-

rection to compute the equations as in the double core, we
use twelve adders and four rotators in each direction. This
increases memory output ports to 16 instead of 8 ports.

5. HARDWARE IMPLEMENTATION
Both the custom ARX engines and the proposed PPE

were synthesized for and verified on the Xilinx Virtex-7
architecture, specifically a XC7VX485T-2FFG1761. They
have been described on the FPGA platform in VHDL and
were synthesized using ISE design suite 14.7.

5.1 FPGA Implementation of PPE
The PPE has been implemented in just 227 slices, includ-

ing the 512-byte coefficient memory, 448 byte instruction
memory, and the computational unit (rotator and ALU),
and can be clocked at 250 MHz. The slice logic distribution
and utilization of the PPE on Virtex 7 show the area used
for implementing the PPE is just 2% of the XC7VX485T-
2FFG1761 device.

5.2 π-Cipher on PPE

Throughput =
Number of input bits×Maxfrequency

Number of clock cycles per block
(1)

As discussed in Section 2, the π-function consists of 4 rounds,
and each round has eight ARX operation blocks. The through-
put of the design is given in Equation 2. For 64-bit opera-
tion, implementing each operation block costs only 371 bytes
in the instruction memory and 384 bytes in the coefficient
memory, requiring 54 cycles to process 256 input bits (64 X
4) per block, achieving a throughput of 1.17 Gbps/block at
250 MHz for the 64-bit version. For the 16-bit version, each
block costs 91 bytes in the instruction memory executed in
13 cycles to process 64 input bits, achieving a throughput of
1.2 Gpbs/block at 250 MHz. For example, implementing one
full round of the π-function (64-bit version) with eight blocks
used 512 bytes for storing the coefficients and intermediate
values, and the instruction memory will be reprogrammed
eight times. As mentioned before, the reconfiguration time
is overlapped with the processing time, so for one round
of π-function on PPE, the overall data throughput is 150
Mbps. The area, clock rate, and throughput of the custom
ARX processing units is summarized in Tables 1 and 2.

6. PERFORMANCE AND OVERHEAD COM-
PARISON

In this section, we compare the performance of the dif-
ferent implementations of the different word-size versions
of π-Cipher. The comparison is made between the PPE
and three custom implementations, based on performance,
area, throughput, and throughput/area. Table 1 shows the
comparison between the PPE, single-, double-, and quad-
width implementations of the ARX engine. Even though
the custom hardware implementations are much more effi-
cient than the PPE, the PPE still has two advantages. It
is a programmable element which can be used to implement
different algorithms based on the ARX paradigm; and it can
support different word sizes. The word size (16, 32, or 64) is
important, because the π-Cipher equations change as a func-
tion of the word size. Thus, even though 16-bit word sizes
yield the most efficient custom-hardware implementation,
in terms of both raw performance as well as area efficiency,
supporting 64-bit operation on a 16-bit data-path requires
additional effort. The PPE supports this natively. In 64-bit
mode, the PPE acts as a single core, using the full data-path
width. Similarly, in 16-bit mode, the PPE acts as a quad-
width core. All three modes in the PPE are supported, with
a total cost of 227 slices. All three modes operate at 250
MHz.

The PPE design we have so far is handicapped because
it uses a native 64-bit ALU, which we suspect lowers the
achievable frequency by increasing the critical path. Nar-
rower word-sizes are handled by treating the 64-bit data-
path as a SIMD unit, ala MMX/SSE. The 64-bit single-wide
custom version uses 16-bit adders instead of increasing the
arithmetic data-path width. Exploring the impact of ALU
width on the PPE’s performance is an urgent next step in
this analysis.

The closest performance between the PPE and the custom
implementations occurs for the 64-bit word size. This is also
the fairest comparison for the PPE, which was designed to
accommodate up to 64-bit operation. For the area required

3

Table 1: The ARX Performance (π16-Cipher)

PPE Single Width Double Width Quad Width
Throughput 1.2 Gpbs 3.57 Gbps 3.68 Gpbs 4.34 Gpbs
Area(Slices) 227 132 154 266

Frequency(MHz) 250 371 324 347
Throughput/Area (Mbps/slices) 5.4 27.69 24.47 16.71

Table 2: The ARX Performance (π64-Cipher)

PPE Single Width Double Width Quad Width
Throughput 1.17 Gpbs 3.09 Gbps 3.68 Gpbs 4.22 Gpbs
Area(Slices) 227 445 447 634

Frequency(MHz) 250 254 243 245
Throughput/Area (Mbps/slices) 5.28 7.13 8.4 6.8

in our 64-bit custom solution, the PPE can be duplicated,
using two PPEs running in parallel to process the X and Y
directions in ARX engine concurrently. A small amount of
bridge logic will be needed between the intermediate memo-
ries to keep both computational core in the PPEs connected
and combine the final results. We expect this overhead to
be negligible; quantifying this overhead is in progress. So
in almost exactly the same area as the single-width 64-bit
custom core, we can achieve about 2.3 Gbps, or 75% of the
64-bit custom-core’s throughput, but with greater flexibility.

7. CONCLUSIONS AND FUTURE WORK
In the paper, we presented different hardware implemen-

tations of the ARX engine. The first implementation was
based on a VLIW programmable processing element, spe-
cialized for ARX ciphers. Then, using π-Cipher as a case
study, we evaluated the overhead of this programmable ARX
processor by comparing its area and performance (on a Xilinix
Virtex-7 FPGA) to custom implementations of the ARX en-
gine specifically optimized for π-Cipher. In the custom im-
plementations, we introduced three different hardware im-
plementations to explore trade-offs between area and speed.
These implementations are the first hardware implementa-
tions of the the π-Cipher 16 and 64 bit versions.

The chief value of the PPE is its support for any ARX
algorithm. The increasing diversity in encryption algorithms
requires many computer systems to be able to accommodate
this diversity. However, our results show the overhead of
the PPE to be quite high, especially for narrow (16) bit-
width word sizes, e.g. for embedded systems. However,
our current version of the PPE was designed with a wide
data-path to accommodate up to 64-bit word sizes without
the need for multiple clock cycles per word. If only 16-
bit support is needed, the PPE can be shrunk considerably,
and the frequency most likely improved, while retaining the
ability to support diverse ARX protocols. For 64-bit word
sizes, two PPEs can be used together to achieve 75% of the
throughput of a single-wide 64-bit custom implementation,
using about the same area. While still a significant area
and performance overhead, 25% will in many cases be an

acceptable price to pay for the flexibility to support multiple
encryption protocols.

Acknowledgements
This work was supported in part by the Center for Fu-
ture Architectures Research (C-FAR), one of six centers of
STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

8. REFERENCES
[1] D. J. Bernstein, “Caesar: Competition for

authenticated encryption: Security, applicability, and
robustness,” CAESAR web page, 2013,
http://competitions.cr.yp.to/index.html.

[2] M. El-Hadedy, K. Skadron, H. Mihajloska, and
D. Gligoroski, “Area Programmable Processing Element
for Crypto-Systems on FPGAs,” in Proceedings of the
International Symposium on High-Efficient Accelerators
and Reconfigurable Technologies, HEART2015, June
2015.

[3] D. Gligoroski, H. Mihajloska, S. Samardjiska,
H. Jacobsen, M. El-Hadedy, and R. E. Jensen, “π-cipher
v1,” Cryptographic competitions: CAESAR, 2014,
http://competitions.cr.yp.to/caesar-submissions.html.

[4] D. Gligoroski, H. Mihajloska, S. Samardjiska,
H. Jacobsen, R. E. Jensen, and M. El-Hadedy,
“π-cipher: Authenticated encryption for big data,” in
Secure IT Systems - 19th Nordic Conference, NordSec
2014, Tromsø, Norway, October 15-17, 2014,
Proceedings, ser. Lecture Notes in Computer Science,
K. Bernsmed and S. Fischer-Hübner, Eds., vol. 8788.
Springer, 2014, pp. 110–128. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11599-3 7

[5] S. Kao, R. Zlatanovici, and B. Nikolic, “A 240ps 64b
carry-lookahead adder in 90nm cmos,” in Solid-State
Circuits Conference, 2006. ISSCC 2006. Digest of
Technical Papers. IEEE International, Feb 2006, pp.
1735–1744.

4

http://competitions.cr.yp.to/index.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-319-11599-3_7

	Introduction
	-Cipher
	Architecture of the PPE
	ALU
	Rotator
	Coefficient Memory
	Instruction Memory

	ARX Custom Processor
	Single Width
	ALU (Single-Width Core)
	Rotator (Single Width)
	Xoring bank (Single Width)
	Final Controller (Single Width)

	Double-Width Core
	Quad-Width Core

	Hardware Implementation
	FPGA Implementation of PPE
	-Cipher on PPE

	Performance and Overhead Comparison
	Conclusions and Future Work
	References

