
Programmable Processing Element for Crypto-Systems on
FPGAs

Mohamed El-Hadedy
∗

mea4c@virginia.edu
Kevin Skadron

†

skadron@virginia.edu
Hristina Mihajloska

‡

hristina.mihajloska@finki.ukim.mk

Danilo Gligoroski
§

danilog@item.ntnu.no

ABSTRACT
This paper presents the design and analysis of an area-
efficient programmable processing element (PPE) for im-
plementing diverse cryptographic systems and diverse bit-
widths (currently 16, 32, and 64). To evaluate the effec-
tiveness of our design, we implement π-Cipher and BMW
on the PPE. π-Cipher is a new algorithm for authenticated
encryption that offers advantages over AES-GCM and is a
candidate in the CAESAR competition. BMW is a SHA-3
candidate and is used for the QuarkCoin crypto-currency.
The design of the programmable processing element PPE
requires the use of on-chip memory for storing the internal
structure of one round of the π-function as well as for the
PPE instruction logic. With the new processing element, on
Xilinx Virtex-5, we implemented the PPE in just 227 slices,
achieving a throughput of 1.17 Gbps/block for the π-Cipher
64-bit version and 256 Mbps/block for BMW at 250 MHz.
The PPE is designed to be modular, for inclusion in larger
FPGA designs or SoCs, and is also easily extended to wider
bit-widths.

Keywords
PiCipher, Crypto-systems, CAESAR, FPGA

1. INTRODUCTION
Cryptography is essential to the modern IT economy. In

2013, the National Institute of Standards and Technology
NIST funded a new Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness (CAESAR) [3]

∗Dr.Mohamed El-Hadedy is a research associate with the
Department of Computer Science at the University of Vir-
ginia, 85 Engineer’s Way, P.O.Box 400740, Charlottesville,
Virginia
†Professor. Kevin Skadron is the chair of the Department of
Computer Science at the University of Virginia, , 85 Engi-
neer’s Way, P.O.Box 400740, Charlottesville, Virginia, USA
‡Hristina is a Phd student with the Faculty of Computer Sci-
ence and Engineering at Ss. Cyril and Methodius University,
Rugjer Boshkovikj, 16, P.O. Box 393, Skopje, Macedonia
§Professor Danilo Gligoroski is with the Department of
Telematics at the Norwegian University of Science and Tech-
nology(NTNU), O.S.Bragstads plass 2B, N-7491, Trond-
heim, Norway

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 1-2, 2015.

to identify a portfolio of authenticated ciphers that offer ad-
vantages over AES-GCM and are suitable for widespread
adoption. In addition to security considerations, availability
of an efficient hardware implementation will be a factor in
the CAESAR selection. Yet algorithm-specific, fixed-logic
processing elements cannot support the Babel of crypto-
graphic standards already present today or diverse data-
path widths, let alone the rapid innovation in cryptographic
standards. We therefore design a new programmable crypto-
processor. In this paper, we present the design and analy-
sis of an area-efficient Programmable Processing Element
(PPE) for use in cryptographic systems. The introduced
PPE can be used to implement all the crypto-systems that
are based on ARX (Adding, Rotation and Xor’ing) opera-
tions and supports multiple data-path widths. In addition,
the PPE is designed to be modular, for use in more complex
systems.

As a proof of concept, we used the PPE to introduce the
first hardware implementation of the π-Cipher algorithm.
π-Cipher is one of CAESAR candidates which core permu-
tation function is based on ARX operations. This cipher
is parallelizable sponge-based design with associated data.
π-Cipher is designed for different word sizes, different block
sizes and different security levels [9]. The modes that are
supported are for small word sizes on low-power micro con-
trollers (16-bit registers) π16-Cipher, 32-bit platform π32-
Cipher and for 64-bit platform π64-Cipher. In addition, we
used the proposed PPE for the implementation of the Blue
Midnight Wish (BMW) hash function. BMW was one of
the second-phase SHA-3 competition candidates [5]. At the
moment the BMW algorithm is one of the selected hash al-
gorithms for the crypto-currency QuarkCoin [1]. The PPE
architecture is evaluated in an FPGA implementation using
a Xilinx Virtex-5 FPGA.

2. RELATED WORK
Several architectures have been proposed for compact crypto-

systems.In 2010, Beuchat et al. [4] presented a compact ar-
chitecture of one of the last SHA competition’s candidates,
BLAKE. Blake-32 is implemented in just 56 slices with two
block memories, achieving 115 Mbps. In 2011, El-Hadedy
et al. [6] introduced a low area processor to be used for im-
plementing different versions of BMW (BMW-256, BMW-
512). BMW-256 is implemented in just 51 slices, achieving a
throughput of 68.71 Mbps, and BMW-512 in just 105 slices
achieving a throughput of 112.18 Mbps. Both BMW im-
plementations need two block memories to store the hash
function internal values as well as the instruction sets. Even

though previous implementations [4, 6] offer a small area on
the FPGA platform with reasonable throughput, the entire
program must be loaded at once (overlapping of compute
with streaming in of new instructions is not supported), re-
quiring a much larger instruction memory (see Section 5.2
for details). Our approach avoids this, allowing a much
smaller instruction memory, significantly reducing the size of
the processing element. Furthermore, their processors can-
not process different data sizes using the same design. This
is important for supporting the widest variety of algorithms.

3. ARCHITECTURE OF THE PPE

Figure 1: Top level architecture of the pro-
grammable processing element

The proposed PPE is based on a very long instruction
word VLIW architecture as shown in Fig. 1. It consists of
an Arithmetic and Logic Unit ALU, Rotator block, interme-
diate 512 byte coefficient memory, and multiplexers to orga-
nize the data traffic from Input/Output ports and the feed-
back from the computational part to the coefficient memory.
A VLIW architecture was chosen as an efficient way to issue
multiple operations in each clock cycle. Changes of control-
flow (e.g., branches) are not supported (or needed, for ci-
phers we have examined). We currently create programs by
hand; a compiler is future work, but the limited set of oper-
ations and the regular structure of the VLIW architecture
should make this straightforward.

The PPE proposed here implements the ARX engine; it
assumes the input text has already been padded if necessary.

3.1 ALU

ALU can process different word sizes as one 64-bit, two 32-bit, or
four 16-bit operations per clock cycle

Figure 2: Programmable architecture of the ALU

Although ripple carry adders RCA is the most area-efficient
adder, its worst-case propagation delay can be severe. We
use a carry lookahead adder (CLA), which solves the carry-
delay problem by calculating the carry signals in advance,

based on the input bits [10]. The Virtex-5 FPGA has LUTs
with six inputs and one output; a single LUT can output
one bit of data from six-bit input data. If this resource is
properly used for the circuit design, it is possible to obtain a
higher performing circuit. We use these capabilities to build
the CLA ALU as shown in Fig. 2 based on the CLA. The
ALU offers three different operations: word XOR, word ad-
dition, and subtraction (modulo 2n). The ALU can process
data either from both coefficient memory ports (Port A and
Port B) or from xin port and the accumulator register as
shown in Fig. 1. In each cycle, the ALU can process 4 data
words of 16 bits, 2 data words of 32 bit, or 1 data word of 64
bit, based on the value of the control mode bits For instance,
the mode control bits have to be 111 and the operation 01
if we would like to add two 64 bit words.
3.2 Rotator

Figure 3: The Rotator

The Rotator consists of four 16-bit sub rotations, con-
trolled by the finite state machineFSM as shown in Fig. 3.
Each 16 bit Rotator consists of a 64 X 4 array of 2 X 1 mul-
tiplexers, controlled by four, 4-bit RC control bits. Based on
the value of the mode control bits, the Rotator can rotate to
the right four 16-bit words, two 32-bit words, or one 64-bit
words. For instance, to rotate the 64 bit input data 12 times
to the right, the Mode signal has to be 00001010101, and
RC0, RC1, RC2, and RC3 have the same value 1100 (0xC).
On the other hand, if we have four data words of 16 bits,
to rotate the first word 12 times to the right, the second
word 5 times to the left, the third word 7 times to the right,
and the fourth word 10 times to the left, the mode signal is
00000000000, and RC0 = 1100, RC1 = 1011 , RC2 = 0111,
and RC3 = 0110.

3.3 Coefficient Memory
As shown in fig. 1,the coefficient memory has two output

ports of 64-bits (Port A and Port B). There are two address
ports, ADDRA and ADDRB, to control the value of Port A
and Port B. ADDRW is responsible for writing data into the
memory through ram inf. The memory size is 512 bytes.

3.4 Instruction Memory
The dual-ported instruction memory of 448 bytes holds

the program that implements the chosen cipher algorithm,
expressed as a sequence of VLIW instructions. The instruc-
tion memory has two address ports; the first 6-bit port acts
as an instruction fetch address. The other 6-bit port speci-
fies a write address, to change the values of the instruction
memory. There are two enable bits: one permits read for
instruction fetch and the other port is used to change the
values of the instruction memory.

This dual-ported design allows a new cipher program to
be streamed in while the current program progresses, or an
early start on a new program while the rest of the program is
still loading, or seamless processing of a program that cannot

fit entirely into the on-chip memory. The instruction-fetch
ADDR works as a pointer moving sequentially and wrap-
ping around. While this processing is happening, the write
ADDR is loading the new code. Because only one read and
write are allowed per cycle, conflicts are not possible, as
long as the read and write addresses are not initialized to
the same value, which we verify. Figure 4 shows a snapshot
of each row in the instruction memory. Each instruction
consists of 2 bits to control the input/output interface, 20
bits for controlling the coefficient memory, 27 bits for con-
trolling the different sections of the Rotator, and 7 bits for
controlling the ALU.

4. DEMONSTRATION ALGORITHMS
Many cryptographic algorithms are ARX based, but the

algorithms vary widely in the number and sequence of ARX
operations. In this paper, we evaluate two ARX algorithms
as case studies. We introduce the first hardware implemen-
tation of the π-Cipher, as well as an efficient implementation
of the BMW hash function.

4.1 π-Cipher
π-Cipher is a nonce-based authenticated encryption cipher

with associated data. Its design is based on several canonical
cryptographic concepts but has some intrinsic differences. In
all cases, the independent processing of the message blocks
provides straightforward parallelism and incrementality, and
two important mechanisms to protect against forgeries, the
inclusion of the ordinal number of the message blocks, and a
publicly-known nonce. Furthermore, the π-cipher also pro-
vides an option of using a secret nonce in addition to the
public one. The π permutation is based on ARX operations
and uses a two pass counter based sponge component that is
denoted as a triplex component. More details can be found
in the official documentation [8].

The core part of every sponge construction is the per-
mutation function, and the whole security of the primitive
relies on it. π-Cipher has an ARX based permutation func-
tion which is denoted as the π function. The permutation
operates on b bits of state and updates the internal state
through a sequence of R successive rounds. The state IS
can be represented as a list of N 4-tuples, each of length
ω-bits (ω = 16, 32 or 64), where b = N ×4×ω. The general
permutation function π consists of three main transforma-
tions µ, ν, σ : Z4

2ω → Z4
2ω , where Z2ω is the set of all integers

between 0 and 2ω−1. These transformations perform diffu-
sion and nonlinear mixing of the input. It uses the following
operations: addition + modulo 2ω; left rotation (circular
left shift) ROTLr(X), where X is an ω–bit word and r is
an integer, 0 ≤ r < ω; and bitwise XOR operation ⊕ on
ω–bit words. An algorithmic description of the ∗ operation
over two 4–dimensional vectors X and Y for ω-bit words,
together with the values of the rotation vectors and of the
constants of µ and ν transformations, are given in the offi-
cial documentation of the π-Cipher [8]. One round of the
permutation function is depicted in Figure 5.

4.2 Blue Midnight Wish Hash Function (BMW)
BMW is a wide-pipe Merkle-Damg̊ard hash construction

with an unconventional compression function. The nonlin-
earity in BMW is derived from the overlap of modular XOR
and addition operations. The BMW-n hash function family
contains four instances for n =224, 256, 384, and 512, where
n is the size of the hash value. BMW performs four different
operations in the hash computation stage: bit-wise logical

I0, I1, ..., In are the input message blocks. z0, z1,, zn are the
intermediate values. Cl0, Cl1, .., Cl3 are the left constant values.
CR0, CR1, .., CR3 are the right constant values. In this paper,
input message blocks are 16 (n = 15), which means one round

requires 8 blocks of ARX operations

Figure 5: π-Cipher (one round of the permutation
function)

word XOR, word addition and subtraction, shift operations
(left or right), and rotate left operations. The size of a word
is 32 bits for BMW-224/256 and 64 bits for BMW-384/512.
The computation engine of the BMW consists of three sub-
functions called f0, f1, and f2, in sequence to generate the
chaining value. More details can be found in [7].

5. IMPLEMENTATION OF THE PPE
The functionality of the proposed PPE was verified on

the Xilinx Virtex-5 XC5VLX110 device. The PPE has been
described on the FPGA platform in VHDL and was synthe-
sized using ISE design suite 14.7. The PPE has been imple-
mented in just 227 slices, including the 512-byte coefficient
memory, 448 byte instruction memory, and the computa-
tional unit (Rotator and ALU), and can be clocked at 250
MHz.
5.1 π-Cipher on PPE

Throughput =
Number of input bits×Maxfrequency

Number of clock cycles per block

As discussed in Section 4.1, the π-function consists of four
rounds, and each round has eight ARX operation blocks.
The throughput of the design is given in Equation 2. For
64-bit operation, implementing each operation block costs
only 371 bytes in the instruction memory and 384 bytes in
the coefficient memory, requiring 54 cycles to process 256 in-
put bits (64 X 4) per block, achieving a throughput of 1.17
Gbps/block at 250 MHz for the 64-bit version. For the 32-bit
version, each block costs 189 bytes in the instruction mem-
ory, executed in 27 cycles, to process 128 input bits (32 X 4)
per block, achieving a throughput of 1.15 Gpbs/block at 250
MHz. And for the 16-bit version, each block costs 91 bytes
in the instruction memory executed in 13 cycles to process
64 input bits, achieving a throughput of 1.2 Gpbs/block at
250 MHz. For example, implementing one full round of the
pi-function (64-bit version) with eight blocks used 512 bytes
for storing the coefficients and intermediate values, and the
instruction memory will be reprogrammed eight times. As
mentioned before, the reconfiguration time is overlapped
with the processing time, so for one round of π-function

Figure 4: The instruction set

Table 1: BMW-512 performance using the PPE

Algorithm FPGA Type Area(slice) Frequency (MHz) Throughput (Mbps) Memory Blocks Throughput/Area(slice)

PPE (BMW-512) XC5VLX110 227 250 256 — 1.3

BMW-512 [6] XC5VLX110 105 115 112.18 3 1.09

BMW-512 [2] XC5VLX330T 9810 10.004 287 — 0.028

on PPE, the throughput is 150 Mbps.

5.2 Blue Midnight Wish on PPE
For using the PPE to implement BMW-512, f0, f1, and f2

can be executed in just 1000 cycles. The throughput/area
ratio for the using the PPE to implement BMW-512 is higher
than previous implementations, as shown in Table 1. We
have not used the any block memories at all, compared to
the implementation in El-Hadedy et al. [6], which used 3
block memories for storing the intermediate coefficients and
the instruction sets. That means that, in terms of area, the
size of the BMW-512 processor introduced by El-Hadedy et
al. [6] is larger than our proposed PPE. For instance, El-
Hadedy et al. [6] store the intermediate coefficients of the
BMW-512 in 2048 bytes, while our proposed PPE just uses
512 bytes. Meanwhile, they use 4864 bytes for storing the
instructions, while we use in total just 1792 bytes.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented the FPGA implementation of

a new, area-efficient, programmable, VLIW processing ele-
ment to be used in cryptographic systems based on ARX
(add, rotate, xor) operations. We have implemented the
ARX engine and demonstrated its effectiveness for one of
the CAESAR competition candidates, π-Cipher, by using
the PPE. This implementation is the first hardware im-
plementation of the π-Cipher 16, 32, and 64 bit versions.
Also, the BMW-512 hash function has been implemented
and the result compared with previous implementations in
terms of throughput, area (number of slices), frequency, and
the throughput/area.

The next step in this work is to evaluate the effective-
ness of this PPE with more cryptographic systems. Other
avenues for future work are to develop a compiler for this ar-
chitecture, and to explore new system architectures that use
the PPE. For example, by replicating the PPE, we can im-
plement higher throughput, either by parallelizing the pro-
cessing of a single stream, or allowing processing of multiple
steams concurrently. Furthermore, because each process-
ing element is independently programmable, so these inde-
pendent concurrent streams can even use different crypto-
graphic systems. For example, we estimate that Virtex-5
(XC5VLX110) can hold at least 50 concurrent PPEs, (al-
though 50 independent input streams would not be feasible
due to I/O limitations).

7. ACKNOWLEDGEMENTS
This work was supported in part by the Center for Fu-

ture Architectures Research (C-FAR), one of six centers of
STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

8. REFERENCES
[1] Bitcoins, litecoins, what coins?: A global phenomenon.

Stevenson, J., 2013.

[2] B.Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. ONeill, and W. P. Marnane. FPGA
implementations of the round two SHA-3 candidates,
santa barbara. In In Proceedings of the NIST SHA-3
Conference, 2010.

[3] D. J. Bernstein. Caesar: Competition for
authenticated encryption: Security, applicability, and
robustness. CAESAR web page, 2013.
http://competitions.cr.yp.to/index.html.

[4] J.-L. Beuchat, E. Okamoto, and T. Yamazaki.
Compact implementations of BLAKE-32 and
BLAKE-64 on FPGA. In Proceeedings of the
Field-Programmable Technology (FPT), 2010
International Conference, pages 170–177, Dec 2010.

[5] U.D. Commerce. Nist Interagency Report 7764: Status
Report on the Second Round of the SHA-3
Cryptographic Hash Algorithm Competition.
Createspace Independent Pub, 2014.

[6] M. El-Hadedy, D. Gligoroski, and S.J. Knapskog. Area
Efficient Processing Element Architecture for
Compact Hash Functions Systems on VIRTEX5
FPGA Platform. In Proceedings of the Adaptive
Hardware and Systems (AHS), 2011 NASA/ESA
Conference, pages 240–247, June 2011.

[7] D. Gligoroski, V. Klima, S. J. Knapskog,
M. El-Hadedy, and J.Amundsen. Blue Midnight Wish.
In Proceedings of The First SHA-3 Candidate
Conference, Feb 2009.

[8] Danilo Gligoroski, Hristina Mihajloska, Simona
Samardjiska, Hakon Jacobsen, Mohamed El-Hadedy,
and Rune Erlend Jensen. π-cipher v1. Cryptographic
Competitions: CAESAR, 2014. http://
competitions.cr.yp.to/caesar-submissions.html.

[9] Danilo Gligoroski, Hristina Mihajloska, Simona
Samardjiska, H̊akon Jacobsen, Rune Erlend Jensen,
and Mohamed El-Hadedy. π-cipher: Authenticated
Encryption for Big Data. In Karin Bernsmed and
Simone Fischer-Hübner, editors, Secure IT Systems -
19th Nordic Conference, NordSec 2014, Tromsø,
Norway, October 15-17, 2014, Proceedings, volume
8788 of Lecture Notes in Computer Science, pages
110–128. Springer, 2014.

[10] S. Kao, R. Zlatanovici, and B. Nikolic. A 240ps 64b
Carry-Lookahead Adder in 90nm CMOS. In
Proceedings of the Solid-State Circuits Conference,
2006. ISSCC 2006. Digest of Technical Papers. IEEE
International, pages 1735–1744, Feb 2006.

http://competitions.cr.yp.to/index.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html

	Introduction
	Related work
	Architecture of the PPE
	ALU
	Rotator
	Coefficient Memory
	Instruction Memory

	Demonstration Algorithms
	-Cipher
	Blue Midnight Wish Hash Function (BMW)

	Implementation of THE PPE
	-Cipher on PPE
	Blue Midnight Wish on PPE

	Conclusions and Future Work
	Acknowledgements
	References

