
Noname manuscript No.
(will be inserted by the editor)

Dual-Data Rate Transpose-Memory Architecture Improves the
Performance, Power and Area of Signal-Processing Systems

Mohamed El-Hadedy · Xinfei Guo · Martin Margala · Mircea R. Stan ·
Kevin Skadron

Received: date / Accepted: date

Abstract This paper presents a novel type of high-
speed and area-efficient register-based transpose mem-

Dr. Mohamed El-Hadedy
is a research scientist with the Coordinated Science Labora-
tory, University of Illinois at Urbana-Champaign, 1308 West
Main Street, Urbana, Illinois 61801-2307.
A part of this work was done while Dr. Mohamed EL-Hadedy
was a research associate with the Department of Computer
Science at the University of Virginia, 85 Engineer’s Way,
P.O.Box 400740, Charlottesville, Virginia.
Tel.: +1 (312)-566-3128
Fax: +1 (217)-244-1764
E-mail: hadedy@illinois.edu, mea4c@virginia.edu

Xinfei Guo
is a Ph.D. candidate with the Department of Electrical and
Computer Engineering at the University of Virginia, 330 Rice
Hall, 85 Engineer’s Way, Charlottesville, VA 22904.
Tel.: +1 (434)-227-7800
E-mail: xg2dt@virginia.edu

Professor. Martin Margala
is the chair of the Department of Electrical and Computer
Engineering at the University of Massachusetts Lowell, Ball
Hall 301, One University Avenue, Lowell, MA 01854.
Tel.:+1 (978)-934-2986
E-mail: martin_margala@uml.edu

Professor. Mircea R. Stan
is a professor with the Department of Electrical and Com-
puter Engineering at the University of Virginia, 312 Rice Hall,
85 Engineer’s Way, Charlottesville, VA 22904.
Tel.:+1 (434)-924-3503
E-mail: mircea@virginia.edu

Professor. Kevin Skadron
is the Harry Douglas Forsyth professor and chair of the De-
partment of Computer Science at the University of Virginia,
85 Engineer’s Way, Charlottesville, VA 22904.
Tel.: +1 (434)-982-2042
E-mail: skadron@virginia.edu

ory architecture enabled by reporting on both edges of
the clock. The proposed new architecture, by using the
double-edge triggered registers, doubles the through-
put and increases the maximum frequency by avoiding
some of the combinational circuit used in prior work.
The proposed design is evaluated with both FPGA and
ASIC flow in 28/32nm technology. The experimental re-
sults show that the proposed memory achieves almost
4X improvement in throughput while consuming 46%
less area with the FPGA implementations compared to
prior work. For ASIC implementations, it achieves more
than 60% area reduction and at least 2X performance
improvement while burning 60% less power compared
to other register-based designs implemented with the
same flow. As an example, a proposed 8X8 transpose
memory with 12-bit input/output resolution is able to
achieve a throughput of 107.83Gbps at 647MHz by tak-
ing only 140 slices on a Virtex-7 Xilinx FPGA platform,
and achieve a throughput of 88.2Gbps at 529MHz by
taking 0.024mm2 silicon area for ASIC. The proposed
transpose memory is integrated in both 2D-DCT and
2D-IDCT blocks for signal processing applications on
the same FPGA platform. The new architecture allows
a 3.5X speed-up in performance for the 2D-DCT algo-
rithm, compared to the previous work, while consuming
28% less area, and 2D-IDCT achieves a 3X speed-up
while consuming 20% less area.

Keywords Transpose · FPGA · ASIC · Signal
Processing · Adaptive Systems

1 Introduction

A wide range of applications, such as computer graph-
ics, medical imaging and telecommunications, all rely

2 Mohamed El-Hadedy et al.

on signal-processing technology. Signal processing re-
quires fast math, often on complex numbers, but many
applications require computations in real-time: i.e., the
signal is a continuous function of time that must be
sampled and converted to digital form and analyzed
for real-time monitoring or control purposes. Thus, the
processor must be able to execute algorithms perform-
ing discrete computations on the samples as they ar-
rive. Many media processors and digital signal proces-
sors (DSPs) use special memory architectures that are
able to fetch multiple data and instructions for supply-
ing multiple computational functional units at the same
time.

Many signal-processing algorithms, such as discrete
cosine transform (DCT) and inverse DCT (IDCT) [1]
must repeatedly transpose matrices. Besides signal pro-
cessing applications, the transposing operations are also
widely used in numerous applications, such as Linear
Algebra [2,3], spectral methods for partial differential
equations [4], quadratic programming [5], and so on.
Furthermore, DWT [6], FFT [7], and encryption [8] re-
quire transposition operations as they are dominated
by matrix techniques.

Transposing a matrix using conventional operations–
reading out rows and writing columns from/to the cache,
or vice-versa—is expensive, requiring many clock cycles
(thus burning more power). These read/write opera-
tions are a form of overhead, and a prime target for
optimization to improve the performance and energy
efficiency of algorithms involving transpose operations.
To support efficient transpositions, memory architec-
tures have been proposed (see related work below) that
allow direct access to both the rows and columns (in
contrast to conventional memory structures that only
allow row access). Transpose memory (TRM) can be
implemented either with shift registers or SRAM. The
register-based design can be shifted in both row and col-
umn direction. The intermediate results of the row are
shifted into the row direction. After the row transforma-
tion is finished, the results stored in registers are shifted
out in column direction. The SRAM-based design works
differently by only accessing column or row directions.
The intermediate results of row transform are written
into the transpose memory in the row direction and are
read out by column transform in the column direction
[9,10]. Solutions based on RAM usually lead to high
latency and have a high cost in power efficiency [11,12,
13]. Furthermore, when it comes to the design flow, de-
signing SRAM needs more effort. Although most of the
SRAM array can be generated from the memory com-
piler, optimizing the memory cell is very hard because
it is usually hard-coded [14]. Thus, implementations of
the transpose memory with configurable size [15] and

low latency [16,17] are usually based on shift-register
structures because of their flexibility and lower control
overhead.

The disadvantage of the register-based transpose
memory architecture is usually that the area efficiency
is lower than in the SRAM-based design, as the register-
based transpose memory needs to store the interme-
diate results [18,19,9]. The hardware cost makes the
ASIC implementation unaffordable for big transforma-
tions like 32X32. To solve the previous challenges and
achieve both area and performance efficiency, this paper
describes the changes necessary to previously proposed
transpose-memory organizations to support operations
on both edges of the clock, doubling the throughput
while keeping the design compact for both FPGA and
ASIC implementations. This module also consumes low
power and can be used in a wide variety of DSPs and
other organizations to support DCT, IDCT[20,21], and
other algorithms requiring efficient transpose operations
such as 2D-FFT [22,8,23]. The total area scales up more
slowly with the matrix size compared to other register-
based designs. This paper describes the design and im-
plementation of the double-edge transpose memory unit
on both FPGA and ASIC platforms, as well as its use
within both DCT and IDCT units for signal processing
applications.

The rest of the paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 presents the
transpose memory architecture. Section 4 presents the
transpose memory performance based on the FPGA im-
plementations along with comparisons with previously
proposed schemes. Sections 5 shows the ASIC imple-
mentations of the proposed architecture in 28/32nm
and compares against other previous ASIC implemen-
tations. In addition, the impacts of resolution and ma-
trix size on different metrics are studied in that section.
Section 6 presents the potential applications that could
benefit from the proposed transpose memory (TRM).
Finally, some concluding remarks about the applica-
tions of this memory architecture are presented in Sec-
tion 7.

2 Related Work

In the past, several architectures for transpose mem-
ory have been proposed. In [24,25], an SDRAM-based
transpose memory on FPGA is proposed for FFT and
transposing applications. Their designs are for large size
matrix transposition, while, because the access latency
of SDRAM is usually huge, the designs in [24,25] are
not preferable for high-performance systems. [26] uses
four single-port SRAM blocks to implement the trans-
pose memory. The width of each SRAM block is 512-bit

Title Suppressed Due to Excessive Length 3

and the depth is 8 (8X512), and [27] proposes a 32X15
bit SRAM-based design, while in both cases, the data
width of SRAMs is larger than the data parallelism of
IDCT, so the I/O of SRAMs are not fully used. [19]
solves the utilization issues by proposing a cyclic data
mapping that can achieve 100% I/O utilization for each
SRAM and utilize the two-port SRAM instead of sin-
gle port SRAM. However, the throughput of the de-
sign is still low. In [9], a new diagonal data mapping
scheme is proposed for improving the speed of SRAM-
based transpose memory, which usually allows only col-
umn access. In this new design, the intermediate results
of the transform are written into the transpose mem-
ory in diagonal direction instead of row direction.[28]
describes a transpose memory architecture for a row-
column DCT architecture on FPGAs that relies on two
RAM structures. However, the first RAM is receiving
the data from the first stage of the 1D-DCT, the sec-
ond stage of 1D DCT reads the input values column by
column from the other RAM. Those two RAMs are con-
trolled by a control block that decides whether a RAM
should be in read or write mode at each memory-access
step. The authors’ reason for using RAMs for the trans-
pose memory implementation is the availability of RAM
blocks on the FPGA. In addition, the use of registers in
FPGAs is costly in terms of logic cells. However, block
RAM is inefficient when both row and column access
are frequent.

[29] introduces an 8x8 transpose memory as an ar-
ray of register pairs. The data are input to the trans-
pose memory in row-wise fashion until all the 64 reg-
isters are loaded. Then, the transpose memory outputs
the transposed version serially. The transpose memory
has a latency of 64 clock cycles, and this is inefficient
compared to our design for transposing an 8x8 ma-
trix; the latency in this case is just four cycles. [30]
and [31] also propose a register-based architecture for
floating-point 8X8 2-D IDCT and 2-D 4X4 DCT/IDCT
of H.264. However, [9] shows that these two designs ([30]
and [31]) are not area-efficient for large transpose mem-
ory applications. [32] implements two transposed mem-
ories to support the high-efficiency inverse transform
(IDCT) for a 32-point transform unit using a single
one-dimensional (1D) transform core, but the transpose
memory is not the focus of that paper. [33] introduces a
double-buffered transpose memory and implements the
design with both FPGA and ASICs, but the area of
the memory is huge. [34] proposes a similar design by
integrating two transpose memories into the 2D-DCT
accelerator. However, details of the memory architec-
ture are not mentioned. [27], [35], [36] and [37] imple-
ment the register-based transpose memory for HEVC

(high-efficiency video coding) applications, but the syn-
thesized results show that the area is very high.

In this paper, our new memory transpose architec-
ture is an improvement upon two prior implementations
of similar FPGA-based, flip-flop-based transpose mem-
ory organizations. In the method proposed in [16], a
single-edged memory subsystem for data transposition
is detailed. This subsystem, in its NXN implementa-
tion, takes N clock cycles to saturate all of its cells with
values, and then N clock cycles to output the values be-
fore the next set of data can be input into the transpose
memory. The transpose memory can only receive val-
ues in the horizontal direction and can only output val-
ues in the vertical direction. Thus, 2N clock cycles are
consumed to obtain each transposed output set. The
method proposed in [17] remedies this shortcoming by
creating a memory subsystem that allows values to be
input and output in both the horizontal and vertical
directions. This allows for decreased latency because,
while data is being output in a particular direction, in-
put data can be fed into the transpose memory subsys-
tem in the same direction, i.e. in a pipe-lined fashion.
This means that, for every N cycles (in an NXN im-
plementation), a new set of inputs will be loaded and
a new set of outputs will be produced. Over many in-
puts, the number of clock cycles consumed to obtain
each output converges to N cycles, which is half that
of the memory transpose implementation proposed in
[16].

Both architectures rely on using a register file con-
sisting of connected cells to shift the data in horizontal
and vertical dimensions based on the inputs’ direction.
The difference comes from using a different cell archi-
tecture. For instance, in [17], the cell consists of an in-
put 2X1 multiplexer for choosing which input should
be processed first. This is followed by a set of flip-
flops (register) reporting on the positive edge of the
clock to store the data, which are shifting every-cycle.
The output from the register is connected to a 2X1 de-
multiplexer to choose to which direction (X-direction
or Y-direction) the output should be assigned.

On the other hand, as shown in Fig. 3, the cell
architecture of the new TRM relies on using a 2X1
multiplexer to choose which input dimension should be
processed—the row or column inputs. This is followed
by two sets of flip-flops, one of them reporting on the
positive edge and the other on the negative edge. The
outputs of these registers can then be used without a
2X1 de-multiplexer [17]. Although the actual hardware
changes are small, these insights yield a significant im-
provement in terms of speed. With the new architec-
ture, by using the double-edge register, we decrease
the latency by half, plus we increase the maximum fre-

4 Mohamed El-Hadedy et al.

quency by removing the combinational circuit of the
2X1 de-multiplexer in the prior work [17]. This speeds
up the new memory by almost 4X compared to [17]. In
other words, this new transpose memory module can
produce a transposed output matrix every N/2 clock cy-
cles, assuming an NXNmemory transpose system. Most
of the previous work is implemented only on FPGAs by
utilizing the SDRAM resources (e.g. [24,25,28,38]) or
LUT resources (e.g. [16,17,39,40]). Only few works pro-
vide the ASIC implementations. For example, [41] and
[42] implement the design in 0.6um and 0.35um, [9] im-
plements in 130nm, and [37,43] synthesizes the design
in 90nm. While in all of the previous ASIC implementa-
tion work, only area and throughput/performance are
addressed, the power consumption (including leakage)
related analysis is missing in most of the literature. Al-
though [44] provides the power analysis, it is for the
whole system. Also in that work, no explicit transpose
memory is mentioned. Besides, a complete scalability
analysis like impact of the matrix size and resolutions
on power and other metrics is also not provided in the
previous work. In this paper, we validate the proposed
design with both FPGA platform and ASIC design flow
in the advanced technology node (28/32nm). We thor-
oughly evaluate the power consumption of the design
with the standard ASIC design flow. We also explore
the new design tradeoffs and design space by conduct-
ing the scalability analysis. To further evaluate the pro-
posed design, we integrate the memory architecture in
both 2D-DCT algorithms and 2D-IDCT algorithms on
a FPGA platform.

3 Transpose Memory Architecture

As shown in Fig. 1, the architecture of the transpose
memory consists of three primary components: the reg-
ister file, the cell mapper, and the control unit. The
NXNXM register file, shown in Fig. 2, operates on M-
bit-long inputs. Each cell in the register file has a clock
and an asynchronous reset signal, which synchronizes
operation and reset. In addition, the selector signal dic-
tates the direction of data flow within the memory trans-
pose matrix: X or Y. At the end, the TRM has a display
signal, which controls the direction of the outputs.

3.1 Register File

The register file consists of a set of cells (NXN), each cell
receives data from both X and Y directions, as shown in
Fig. 3, and directly streams one direction’s input to the
appropriate output, shifting the data on each half-clock
edge. The cell consists of a 2X1 (M-bit) multiplexer, as

Fig. 1: NXNXM-bit Transpose Memory Architecture

Fig. 2: NXNXM-bit register file architecture

shown in Fig. 3a, which is controlled by a 1-bit selector
signal, and an M-bit register. The 2X1 multiplexer is
used to select the direction from which the M-bit regis-
ter receives data. The M-bit register is used to transfer
the multiplexers’ output on either the positive or neg-
ative edge of the clock CLK. The double-edge register
architecture, as shown in Fig. 3b, is based on two sets of
flip-flops running in parallel, one for the positive edge
and the other for the negative. Both sets are connected
to a 2X1 multiplexer, and the control bit of the multi-
plexer is connected to the clock.

In this way, the TRM processes the data in both
edges of the clock. Removing the de-multiplexer from
the TRM in [17] decreases the propagation delay, which
helps increase the maximum frequency compared to [17].

Title Suppressed Due to Excessive Length 5

(a) M-bit Cell Architecture

(b) Register structure

Fig. 3: Cell internal architecture

The register also has an asynchronous reset signal RST,

Fig. 4: Cell mapper architecture

that has a priority over the clock CLK and is used to
clear the cell’s output.

3.2 Cell Mapper

As shown in Fig. 4, the cell mapper works as a multi-
plexer, which takes the outputs (X and Y directions) of
the register file as inputs. The “Disp” signal determines
which output values (X or Y) will be the output from
the cell mapper on every clock edge.

3.3 Control Unit

The size of the control unit depends on the (TRM)
dimensions. For instance, if the TRM is NXN, the con-
trol unit will function as a 2N-bit counter, counting on

both edges of the clock. The most significant bit of the
control unit (2N-1) determines the direction of the in-
puts and the outputs. The selector signal is connected
to the most significant bit of the control unit. On the
other hand, the disp’s signal is connected to the inverse
of the same bit. That allows the output to be taken
from the Y-direction, while the input is sent from the
X-direction, and vice versa.

4 Transpose Memory Performance on FPGA

In this paper, the functionality of the proposed TRM
was verified on the Xilinx Virtex-7 XC7VX485T-2FFG1761
device. The prior works were implemented on the Xil-
inx Virtex XCV800 [16,17] so for fair comparison, the
prior works are re-implemented on the new Virtex-7
(VC707). In this paper, VHDL is used for describing
the prior and proposed works on the FPGA platform
and was synthesized using ISE design suite 14.7.

Fig. 5 and Fig. 6 show the resource utilization of
the 8X8 dual-edge TRM with different input/outputs
resolutions on Virtex-7 platform. As shown in Fig. 7,
the total area of the proposed memory is a function
of the input/output resolution. The area steadily in-
creases with resolution. While the maximum frequency
is almost unchanged, it varies from 626 to 656 MHz.

In FPGA platforms, the area is typically reported
based on the total number of slices. Each slice con-
tains some number of Look-Up-Tables (LUTs), flip-flops
(FFs), and multiplexers (MUX). For example, a Virtex-
7 slice contains four LUTs and eight flip-flops [45]. As
shown in Fig. 6, the proposed dual-edge TRM relies on
using these LUTs and FFs, and the utilization increases
with the resolution.

As shown in Fig. 7, in terms of area, the proposed
TRM is 39% smaller than the design in [16] and 46%
smaller than the design in [17]. In terms of max. fre-

6 Mohamed El-Hadedy et al.

Fig. 5: TRM 8X8 Performance, Area/Throughput

Fig. 6: TRM 8X8 performance: resource utilization
comparison with different word-sizes

Fig. 7: TRM 8X8X12 comparisons on VIRTEX-7,
Area/Max.Freq comparison

quency, the proposed TRM works at 647 MHz, which
is 3.5% better compared to [16] and 71% better com-
pared to [17]. In terms of latency, for the TRM8X8,
the proposed TRM has fewer cycles of latency com-
pared to prior works; for example, for the 8X8 TRM,
the proposed TRM has just four cycles, compared to
eight cycles in [17] and sixteen in [16].

The results of Fig. 8 show that the proposed TRM
consumes 350% more full LUT-FF pairs than the design
in [16] and 11% less than the design in [17]. However, for

Fig. 8: TRM 8X8X12 on ViRTEX-7: resource utiliza-
tion comparison with 12-bit word-size

the total LUT-FFs used (unused FF + unused LUT +
full used LUT-FF pairs), the proposed TRM consumes
almost 50% less than [16], and 39% less than [17]. The
proposed TRM, in terms of LUT-FF pairs compared to
prior work, is expensive because of using these LUTs for
building the double-edge sets of registers per each cell
in the register file. However it still yields area savings
and performance improvement.

The results in Fig. 7 and Fig. 8 show that the pro-
posed TRM, using just LUTs and FFs, achieves better
performance in terms of area and frequency compared
to prior work.

Fig. 9: Speed/Area Performance

By applying equation. 1 on the posted data in Fig.
7 and Fig. 8, we can find in Fig. 9 that the proposed
TRM is 3.7X faster than [16] and around 3.4X times
faster than [17].

Throughput =
Number of input bits×Max frequency

Number of clock cycles per block
(1)

Title Suppressed Due to Excessive Length 7

C
o

n
tr

o
l U

n
it

Cell Mapper

Register

92.7um
91

.2
u

m

File

(a) (b)

C
o

n
tr

o
l U

n
it

Cell Mapper

Register
File

15
6.

8u
m

157.7um

Fig. 10: Layout of the proposed transposed memory after place and route (P&R) with core utilization of 70%.
(a) 8X8X4, (b) 8X8X12

5 ASIC Implementations

To explore the potential benefits of the proposed trans-
pose memory architecture on the ASIC platforms, the
design is implemented and synthesized with the stan-
dard top-down ASIC design flow using the Synopsys
28/32nm standard cell library [46]. As the proposed de-
sign is register-based and comprises only basic design
elements, such as MUXs, registers and AND/OR gates,
which can be taken directly from the regular standard
cell library, this makes it easier for it to be implemented
in a standard design flow compared to the SRAM based
architecture (e.g. [9]), where memory macro cells are
necessary for the memory compiler to be able to gen-
erate the memory array; this might increase the design
complexity and limit the design flexibility. In addition,
the memory cells are usually hard coded, optimizing
the design becomes very challenging.

5.1 Design flow

The design (written in VHDL) is synthesized with the
Synopsys Design Compiler on the worst case corner
(0.95V instead of nominal voltage of 1.2V and 125◦C in-
stead of room temperature of 25◦C) of the technology to
guarantee the design works even under the extreme con-
ditions. The upper limit of the clock frequency (maxi-
mum frequency) is decided by achieving positive slacks
for all paths during static timing analysis and timing
closure in Primetime. The average power is evaluated
with the Primetime PX tool. The synthesized gate-level
netlist is fed into the IC Compiler for place and route
(P&R), which will later report the area information.

Fig. 11: Area comparison against other work for
8X8X12 design

Fig. 10 shows two example layouts for the proposed
8X8 designs with different resolutions after P&R (with
the core utilization of 70%).

5.2 Comparisons against other designs

The proposed TRM, and the other register-based de-
signs in [16] and [17] are implemented on the same tech-
nology node with the same flow, to make a fair compar-
ison. Fig. 11 shows that the proposed design (8X8X12)
achieves about 63.1% of area reduction compared to the
design in [16], and 62.5% of area reduction compared
to the design in [17]. The area improvement leads to
the reduction of both parasitic capacitance and leakage
power, which contributes more than 10% of the total
power.

8 Mohamed El-Hadedy et al.

Fig. 12: Comparing power against other work for
8X8X12 design at 444.4MHz

Fig. 13: Throughput comparison against other work
based on equation (1)

Fig. 12 shows the power breakdown of the three
designs (8X8X12) at the same frequency of 444MHz,
which is the maximum clock frequency of [17]. The re-
sult shows that the proposed design consumes about
62.2% less total power compared to the design in [16],
and 60% less total power compared to the design in [17].
The leakage power reduction of the proposed design is
about 63.1% compared to other designs.

The performance comparison is presented in Fig. 13,
where the proposed design achieves about 3.95X and
2.1X throughput improvement over [16] and [17]. As
a result of the small area, the proposed design shows
huge performance/area improvement (about 12X and
6X over other the two designs). This provides a big po-
tential of implementing the proposed design in a speed
critical applications that have extreme demands on lim-
ited silicon area, such as in portable electronic devices.

Fig. 14: Area comparison with different resolution

In [9], a metric, Equivalent Gate Count per bit (EGC),
is used to measure the efficiency of the transpose mem-
ory across different technologies. It is defined in the
following:

EGC =
The transpose memory gate count or Cell area

N*N*Resolution
(2)

where N * N * resolution (M) is the overall trans-
pose memory size. The lower the EGC, the better area
efficiency will be. As the gate count is not directly re-
ported from the synthesis tool, it is estimated based on
a method suggested in [47], where it is given by

Gate Count ∼ Total cell area
Smallest NAND Cell Area

(3)

The total cell area is reported by the tool, and the
smallest NAND cell area is provided with the tech-
nology design kit. In our case, it is 2.795584um2 for
a NAND2 cell [46].

Table 1 summarizes the comparisons of the proposed
transpose memory against previous works (with ASIC
implementations), including the SRAM-based designs.
Although these designs might be implemented in dif-
ferent technology nodes, EGC can provide a rough es-
timate of the area efficiency assuming that cell area is
a function of gate counts for all designs. It shows that
the proposed design has the lowest EGC compared to
other work implemented with registers or SRAMs. The
area efficiency remains almost unchanged with different
resolutions for the proposed design.

5.3 Resolution Analysis

Because the resolution for different applications varies,
it is important to see how the proposed design performs
with large data size. In this section, detailed analysis
based on the 8X8 design will be presented.

Title Suppressed Due to Excessive Length 9

Table 1: Comparison with previous work (with ASIC implementations)

Memory Type Memory Size Technology Area (um2) Gate Count EGC (Equivalent Gate Count/bit)
[16] Register 8X8X12 28/32nm 65142 14K 18.1
[17] Register 8X8X12 28/32nm 63959.3 13.8K 18
[9] Register 8X8X16 130nm - 10.08K 9.84
[31] SRAM 8X8X16 - - 10.03K 9.8
[48] SRAM 8X8X16 - - 8.66K 8.5
[37] Register 8X8X16 90nm - 70K 68.3

This work Register 8X8X12 28/32nm 24014.33607 5.2K 6.7
This work Register 8X8X16 28/32nm 22806.37465 6.9K 6.7

Fig. 15: Maximum frequency with different resolution

Fig. 16: Average power with different resolutions at
their maximum frequency

Shown in Fig. 14 is the area comparison with dif-
ferent resolutions ranging from 2 to 32 bits. Similar to
what has been shown in the FPGA implementations,
the total area is a function of resolution and increases
almost linearly with the resolution. It is worth mention-
ing that for ASIC implementations, the overall area in-
creases slower than that of the FPGA implementations.
For example, in ASIC design, if the resolution increases
from 12 to 16, the area is only 1.3X larger, while it
is about 2X in FPGA (shown in Fig. 5). This further
shows the area efficiency of the proposed design and in-
dicates great potential of being embedded into compact
ASIC designs.

It has been already shown in Section 4 (Fig. 5) that
the maximum frequency is almost unchanged as the
resolution increases. Fig. 15 shows the maximum fre-
quency trend for the ASIC implementations. The fre-
quency scales down slowly, the reason is that with the
increase of the resolution, the area increases, as well
as the parasitic capacitance. In addition, the critical
path becomes longer as the resolution increases. These
facts together will impact the performance and result in
the slight reduction of achievable maximum frequency.
However, for FPGA fabrics, the number of LUTs each
node drives doesn’t change with the configurations, so
the parasitic capacitance for each node is almost un-
changed even with different resolutions. One observa-
tion that can be made from Fig. 15 is that the reduc-
tion rate of the maximum frequency is much smaller
than the increase rate of the resolutions. Therefore, this
still guarantees the good performance with larger reso-
lutions.

Fig. 16 presents the average power consumption with
different resolutions. The power is obtained under their
maximum frequency respectively. For both leakage power
and dynamic power, it shows a linear increase with the
resolution bits. The power for the 8X8X32 design is al-
most comparable with the 8X8X12 design implemented
in [16] and [17]. Based on the results, it can be estimated
for the large memory size design like 8X8X64, the av-
erage power is expected to be less than 10mW under
500MHz.

5.4 Scalability Analysis

Besides the resolution, the matrix size (NXN) will also
affect all the metrics. In this section, we study the scal-
ability of the proposed design by implementing designs
with different matrix sizes N.

To make the analysis complete, the design is im-
plemented with both resolutions of 4 bit and 12 bit.
The matrix size scales up from 4X4 to 16X16. Here,
we define the scaling factor (SF_X) as the quality im-
provement/loss that are normalized to the 4X4 design
for metric X. For example, if SF_power = 2, this means

10 Mohamed El-Hadedy et al.

Fig. 17: Scaling factors for 4X4X4 to 16X16X4 (All
metrics are normalized to the 4X4X4 design)

Fig. 18: Scaling factors for 4X4X12 to 16X16X12 (All
metrics are normalized to the 16X16X12 design)

the power consumption of the design is twice larger than
the baseline design (e.g. 4X4) with the same resolution.

Fig. 17 and Fig. 18 show the scaling factor of all
metrics for both 4 bit and 12 bit. In both cases, it gives
a similar trend. The area increases as expected, while
the scaling factors for the total area (including the inter-
connect overhead) for 4X4 to 8X8 are less than 4 (2X2),
and from 8X8 to 16X16 roughly 4. This indicates that
the total area doesn’t scale up with N quadratically for
smaller design. It ends up increasing much slower. For
larger design, because of the complexity of the intercon-
nect, the area increases faster, but even in this case, the
total area almost increases with N quadratically. The
maximum frequency decreases because of the increased
parasitics and logic depth. But the reductions are still
within 30%. The throughput improves because of the
bigger input size. Power consumption also increases as
the area increases. SF_Leakage is almost the same as
SF_Total Area for all three cases.

Fig. 19: Scaling factor comparison for 4 bit and 12 bit
design (from 4X4 to 8X8)

Fig. 20: Scaling factor comparison for 4 bit and 12 bit
design (from 8X8 to 16X16)

Fig. 19 and 20 compare the scaling factors for both
4 bit and 12 bit resolution. Although the interconnect
area increases faster (SF_Interconnect is bigger) for 12
bit, the total area scaling factor (SF_Total Area) re-
mains almost the same. And this suggests that the total
area increase caused by expanding the matrix is almost
independent of the resolution. Based on the through-
put and maximum frequency comparisons, it shows that
as the resolution increases, the performance reduction
is larger for bigger resolutions, which results in the
power consumption for bigger resolution (12 bit) in-
creases much slower (22% slower) than the smaller res-
olution (4 bit) design. In summary, bigger resolution
is preferable for reducing the power consumption while
sacrificing some of the performance.

Table. 2 compares the scaling factor of the proposed
design against previous SRAM-based work [9], which
conducts similar analysis. In that work, only area data
are available, so only SF_Area is included in the table.

Title Suppressed Due to Excessive Length 11

Table 2: Scaling-factor comparison

Resolution Matrix size SF_Area

[9] 16 4X4 → 8X8 3.52
[9] 16 8X8 → 16X16 3.8
[9] 16 16X16 → 32X32 3.9

This design 4 4X4 → 8X8 3.51
This design 12 4X4 → 8X8 3.52

As shown in the table, the proposed design achieves the
comparable scaling factor for the total area.

The above tradeoff analysis opens great opportuni-
ties of optimizing the design by picking the right matrix
size and resolution for the given data set size.

6 Applications

For better comparisons, the proposed transpose mem-
ory has been integrated in both 2D-DCT and 2D-IDCT
blocks [49]. Specifically, the 2D-DCT and 2D-IDCT im-
plementations and transpose-memory structures in [17]
have been re-implemented on the Virtex-7. Section 6.1
shows the fast version of the 2D-DCT that has two 1D-
DCT computations, one in the X and one in the Y di-
mension, with a transpose unit between them. Section
6.2 shows the fast version of the 2D-IDCT, followed by
Section 6.3, which shows the compact version of the 2D-
DCT. The fast version can be used in high-performance
applications, while the compact version can be used for
the area-efficient applications.

6.1 2D-DCT component

Numerous applications, from lossy compression of im-
ages (e.g. JPEG [50], watermarking [16]) to spectral
methods for numerical solutions of partial differential
equations [51], depend on using the DCTs.

Although 2D-DCT can be performed on blocks of
various sizes, experiments have shown that compression
is always a trade-off. One can always get sharper images
by keeping more information. Experience shows that
8x8 blocks provide a good balance between fidelity and
compression [52]. Equation 4 describes the formula of
the 2D-DCT (omitting normalization and other scale
factors), where N and M represent each dimension size,
f(i,j) is the intensity of the pixel in row i and column j,
and F(u,v) is the DCT coefficient in row k1 and column
k2 of the DCT matrix. For instance, in 8X8 2D-DCT
N = M = 8.

F (u, v) =

(
2

N

) 1
2
(

2

M

) 1
2

Λ(i)Λ(j)

N−1∑
i=0

M−1∑
j=0

cos
[πu
2N

(2i+ 1)
]
cos
[πv
2M

(2j + 1)
]
f(i, j)

where,

Λ(ε) =


1√
2

, for ε = 0

1 , otherwise
(4)

Computing a 2-dimensional DCT is typically achieved
by two 1D-DCT computations, one in the X and one in
the Y dimension, with a transpose unit between them.
This is known as a row-column algorithm. El-Hadedy
et al [17] relied on a combinational architecture to build
the 1D-DCT followed by a register processing the data
every cycle to decrease the effect of the critical path. In
this paper, we used the same structure of the 1D-DCT
in the prior work while modifying the end-stage register
to perform every half cycle by applying the approach
in Fig. 3b.

Fig. 21: Performance result of the 8X8 2D-DCT using
the proposed TRM

The performance comparison between [17] and the
proposed double-edge TRM in Fig. 21 shows that the
double-edge TRM improves the performance of 2D-DCT,
with 3.5X speedup and a 28% reduction in area.

6.2 2D-IDCT component

The IDCT decodes an image back into the spatial do-
main from a frequency-domain representation of the
data better suited to compression. It is the inverse op-
eration of the DCT in Section 5.1.

The 2D-IDCT consists of three blocks. The first and
the last blocks are 1D-IDCT and the middle block is

12 Mohamed El-Hadedy et al.

the transpose memory. The 1D-IDCT in this paper re-
lies on using the modified Loeffler’s technique [49] with
modifications in [17], so that one 1D-ICT operation re-
quires 11 multiplications and 29 additions, using the
pipelined approach as shown in [17]. In Fig. 22, each√
2Cn block consists of three multiplication and three

adders/subtractors [16].

Fig. 22: Modified 1D-IDCT [16]

As shown in Fig. 23, by integrating the proposed
TRM in the 2D-IDCT, a speedup of 3X is achieved
compared to the prior work [17], while the total area
decreases by 20%.

Fig. 23: Performance result of the 8X8X12 2D-IDCT
using the proposed TRM

6.3 Compact 2D-DCT processor

Area is critically important for many applications, such
as medical, military, and space applications. Instead of
capturing the data from a local sensor and transmitting
the raw data, it is preferable to compress it, or perhaps
perform a local analysis and send only results. These
operations rely on algorithms, such as DCT and IDCT.

The speed improvements of the TRM in Section 4
can be invested to build a compact version of the 2D-
DCT that relies on using one 1D-DCT connected to the
TRM and looping back. This provides almost the same
speed as the fastest version of the prior work [17], with
a much smaller area.

As shown in Fig. 24, the new processor processes
8X8 blocks with 8-bit input resolution per element. It
consists of a “padder”, a parallel data-bus, a 1D-DCT,
a TRM, and a control unit. The total latency of this
processor is 10.5 cycles.

6.3.1 Padder

The padder is a combinational circuit that converts the
input stream resolution from 8-bit to 12-bit width by
adding four zeros on the most significant bits (The extra
bits are needed by the 1D-DCT).

6.3.2 Parallel Data_Bus

The parallel data_bus works as two parallel multiplex-
ers. The first multiplexer takes the output streams of
the padder and the TRM and sends them to the 1D-
DCT unit according to the control unit’s DBIN_CTRL(1-
bit) signal. The second multiplexer takes the output
streams from the TRM (for debugging purposes) and
the 1D-DCT and sends them as 2D-DCT outputs ac-
cording to the control unit’s DBOT_CTRL signal. The
same architecture of the 1D-DCT and TRM in Section
5.1 and Section 3, respectively are used.

6.3.3 2D-DCT Control Unit

The control unit consists of a 5-bit counter, which is re-
porting the output every half cycle. It controls the par-
allel data-bus unit and DBIN_CTRL(1-bit) through
DBOT_CTRL(1-bit), DBIN_CTRL(1-bit), and
DCT_CTRL respectively.

6.3.4 The Performance of the 2D-DCT Compact
Processor

The processor has been implemented in 256 slices, re-
quiring 13.5 cycles to process 96-byte blocks of data,

Title Suppressed Due to Excessive Length 13

Fig. 24: 2D-DCT compact processor

Table 3: Performance Comparison

Proposed Fast Proposed Compact ref[53] ref[54] Ref[55] arch(1) Ref[55] arch (2)

Device Virtex-7
XC7VX485t

Virtex-7
XC7VX485t XC2VP3 Spartan XC3S500E Virtex-7

XC7VX330T
Virtex-7
XC7VX330T

Throughput (Gpbs) 15 5.6 8.36 3.44 1.84 1.97
Area 322 256 2823 1145 1354 1110
Throughput/Area (Mbps/Slices) 47.7 22.4 3.03 3.07 1.39 1.82
Maximum Frequency (MHz) 300 100 107 84.81 338.5 256

achieving throughput of 5.6 Gbps at 100 MHz. The
throughput/area (Mbps/Slices) ratio of the compact
processor is 22.4, which is higher than the ratio of the
implementation of the 2D-DCT in [17] by 54%. On an
FPGA, this frees up area, which allows a smaller FPGA
to be used, or allows the FPGA to support a greater
amount of functionality. It is also suggestive of the po-
tential savings in an ASIC implementation.

Table 3 shows a comparison between the implemen-
tation of the 2D-DCT by using the proposed TRM
and others. The throughput/area (Mbps/slices) ratio
of both fast and compact processors are higher than
the ratio reported in the prior work. For instance, the
ratio of the fast processor is higher than the ratio of the
implementation in [53,54] by 15 times. Even though the
maximum frequency in [55] is higher than the proposed
fast version by 12.8%, the throughput/area ratio of the
fast version is 34 times higher. The throughput of the
proposed fast version is almost 2X higher than [53,54],
almost 5X higher than the implementation in [54], and
almost 8X higher than in [55].

7 Conclusions

In this paper, we presented both FPGA implementa-
tions and ASIC implementations of a novel transpose
memory architecture that leverages both edges of the
clock to improve throughput and area efficiency. In fact,
with careful organization, the transpose memory itself
can achieve a speedup of almost 4X over prior work,
while consuming 46% less area for FPGA implemen-
tations, and more than 2X performance improvement
and 60% area reductions for ASIC implementations.
In addition, the reported power reduction for ASIC
implementations is about 60% compared to two other
register-based architectures. The detailed scalability anal-
ysis for ASIC implementation shows that the area of the
proposed design scales linearly with the resolution and
sub-linearly with the matrix size. As the matrix size
increases, the power consumption increases slower for
larger resolutions, and this opens the opportunities of
implementing the proposed design for big matrix trans-
position while burning less power.

In transpose-heavy algorithms that rely heavily on
transpose operations, such as 2D-DCT and 2D-IDCT,
we also implement the computation logic on FPGAs

14 Mohamed El-Hadedy et al.

to benefit from new data every half cycle. The result-
ing architecture achieves 3.5X speedup on 2D-DCT and
3X speedup on 2D-IDCT with the FPGA implementa-
tion. This new TRM architecture allows a more com-
pact DCT architecture that needs only a single stage
of 1D-DCT, by looping data back through the TRM
to reuse the computation hardware, maintaining high
performance while further reducing the area. Both nor-
mal and compact implementations of the 2D-DCT by
using the proposed transpose memory show significant
improvements compared to the prior works in terms of
speed and area.

The future work in this area will be to explore and
implement more algorithms and applications, which are
able to benefit from the low latency of the proposed
transpose memory architecture. Additionally, integrat-
ing this memory structure into DSPs for signal process-
ing applications is another direction.

Acknowledgements This work was supported in part by
NSF grant no. CDI-1124931 and by the Center for Future
Architectures Research (C-FAR), one of six centers of STAR-
net, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

References

1. Nasir Ahmed, T Natarajan, and Kamisetty R Rao. Dis-
crete cosine transform. IEEE transactions on Comput-
ers, 100(1):90–93, 1974.

2. David C Lay. Linear algebra and its applications, 2005.
3. Gene H Golub and Charles F Van Loan. Matrix compu-

tations, volume 3. JHU Press, 2012.
4. Graham R. Dennis, Joseph J. Hope, and Mattias T.

Johnsson. Xmds2: Fast, scalable simulation of cou-
pled stochastic partial differential equations. Computer
Physics Communications, 184(1):201–208, 2013.

5. Paul T. Boggs and Jon W. Tolle. Sequential quadratic
programming, 1995.

6. Rahul Jain and Preeti Ranjan Panda. Memory architec-
ture exploration for power-efficient 2d-discrete wavelet
transform. In 20th International Conference on VLSI
Design held jointly with 6th International Conference on
Embedded Systems (VLSID’07), pages 813–818. IEEE,
2007.

7. Yutai Ma. An effective memory addressing scheme for
fft processors. Signal Processing, IEEE Transactions on,
47(3):907–911, Mar 1999.

8. Xinmiao Zhang and K.K. Parhi. Implementation ap-
proaches for the advanced encryption standard algo-
rithm. Circuits and Systems Magazine, IEEE, 2(4):24–
46, Fourth 2002.

9. Qing Shang, Yibo Fan, Weiwei Shen, Sha Shen, and Xi-
aoyang Zeng. Single-port SRAM-based transpose mem-
ory with diagonal data mapping for large size 2-D
DCT/IDCT. Very Large Scale Integration (VLSI) Sys-
tems, IEEE Transactions on, 22(11):2422–2426, 2014.

10. Ashfaq Ahmed, Muhammad Usman Shahid, et al. N
point DCT VLSI architecture for emerging HEVC stan-
dard. VLSI Design, 2012:6, 2012.

11. Avanindra Madisetti and Alan N Willson Jr. A 100 mhz
2-d 8× 8 DCT/IDCT processor for HDTV applications.
Circuits and Systems for Video Technology, IEEE Trans-
actions on, 5(2):158–165, 1995.

12. Gustavo A Ruiz and Juan A Michell. Memory efficient
programmable processor chip for inverse haar transform.
IEEE transactions on signal processing, 46(1):263–268,
1998.

13. Yu Li, Yun He, and Shunliang Mei. A highly parallel joint
VLSI architecture for transforms in H.264/AVC. Signal
Processing Systems, 50(1):19–32, 2008.

14. Andreas Burg, Ayse Coskun, Matthew Guthaus, Srinivas
Katkoori, and Ricardo Reis. VLSI-SoC: from algorithms
to circuits and system-on-chip design.

15. J.D. Bruguera and R.R. Osorio. A unified architecture
for h.264 multiple block-size dct with fast and low cost
quantization. In Digital System Design: Architectures,
Methods and Tools, 2006. DSD 2006. 9th EUROMICRO
Conference on, pages 407–414, 2006.

16. Mohamed E Elhadedy, Ahmed HMadian, Hassan I Saleh,
Mahmoud A Ashour, and Mohy A Aboelsaud. Hard-
ware implementation of the encoder modified mid-band
exchange coefficient technique (mmbec) based on fpga. In
2007 Internatonal Conference on Microelectronics, pages
43–46. IEEE, 2007.

17. Mohamed El-Hadedy, Sohan Purohit, Martin Margala,
and Svein J Knapskog. Performance and area effi-
cient transpose memory architecture for high throughput
adaptive signal processing systems. In Adaptive Hard-
ware and Systems (AHS), 2010 NASA/ESA Conference
on, pages 113–120. IEEE, 2010.

18. Mehul Tikekar, Chao-Tsung Huang, Chiraag Juvekar,
Vivienne Sze, and Anantha P Chandrakasan. A 249-
mpixel/s HEVC video-decoder chip for 4k ultra-HD
applications. Solid-State Circuits, IEEE Journal of,
49(1):61–72, 2014.

19. SUN Heming, Zhou Dajiang, and LIU Peilin. A low-
cost VLSI architecture of multiple-size IDCT for H.
265/HEVC. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences,
97(12):2467–2476, 2014.

20. Jiun-In Guo, Rei-Chin Ju, and Jia-Wei Chen. An efficient
2-D DCT/IDCT core design using cyclic convolution and
adder-based realization. Circuits and Systems for Video
Technology, IEEE Transactions on, 14(4):416–428, 2004.

21. Shen-Fu Hsiao, Yu Hen Hu, Tso-Bing Juang, and Chung-
Han Lee. Efficient VLSI implementations of fast
multiplier-less approximated DCT using parameterized
hardware modules for silicon intellectual property design.
Circuits and Systems I: Regular Papers, IEEE Transac-
tions on, 52(8):1568–1579, 2005.

22. Wendi Wang, Bo Duan, Chunming Zhang, Peiheng
Zhang, and Ninghui Sun. Accelerating 2d FFT with non-
power-of-two problem size on FPGA. In Reconfigurable
Computing and FPGAs (ReConFig), 2010 International
Conference on, pages 208–213, Dec 2010.

23. Tom Dillon. An efficient architecture for ultra long FFTs
in FPGAs and ASICs. Technical report, DTIC Docu-
ment, 2004.

24. Tu Baozhao, Li Dong, and Chengde Han. Two-
dimensional image processing without transpose. In Sig-
nal Processing, 2004. Proceedings. ICSP’04. 2004 7th
International Conference on, volume 1, pages 523–526.
IEEE, 2004.

25. Stefan Langemeyer, Peter Pirsch, and Holger Blume. Us-
ing SDRAMs for two-dimensional accesses of long 2 n× 2
m-point FFTs and transposing. In Embedded Computer

Title Suppressed Due to Excessive Length 15

Systems (SAMOS), 2011 International Conference on,
pages 242–248. IEEE, 2011.

26. Sha Shen, Weiwei Shen, Yibo Fan, and Xiaoyang Zeng.
A unified 4/8/16/32-point integer IDCT architecture for
multiple video coding standards. InMultimedia and Expo
(ICME), 2012 IEEE International Conference on, pages
788–793. IEEE, 2012.

27. Jia Zhu, Zhenyu Liu, and Dongsheng Wang. Fully
pipelined DCT/IDCT/Hadamard unified transform ar-
chitecture for HEVC codec. In Circuits and Systems (IS-
CAS), 2013 IEEE International Symposium on, pages
677–680. IEEE, 2013.

28. Luciano Volcan Agostini, Ivan Saraiva Silva, and Sergio
Bampi. Pipelined fast 2d dct architecture for jpeg image
compression. In Integrated Circuits and Systems Design,
2001, 14th Symposium on., pages 226–231. IEEE, 2001.

29. Mario Kovac and N Ranganathan. Jaguar: A fully
pipelined vlsi architecture for jpeg image compression
standard. Proceedings of the IEEE, 83(2):247–258, 1995.

30. Jun Rim Choi, Won Jun Hur, Kyoung Keun Lee, and
Ae Shin Kim. A 400 mpixel/s IDCT for hdtv by multibit
coding and group symmetry. In Solid-State Circuits Con-
ference, 1997. Digest of Technical Papers. 43rd ISSCC.,
1997 IEEE International, pages 262–263. IEEE, 1997.

31. Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang, and
Liang-Gee Chen. Parallel 4× 4 2d transform and inverse
transform architecture for MPEG-4 AVC/H. 264. In Cir-
cuits and Systems, 2003. ISCAS’03. Proceedings of the
2003 International Symposium on, volume 2, pages II–
800. IEEE, 2003.

32. Yuan-Ho Chen and Chieh-Yang Liu. Area-efficient video
transform for HEVC applications. Electronics Letters,
51(14):1065–1067, 2015.

33. Ramkrishna Swamy, Maziyar Khorasani, Yongjie Liu,
Duncan Elliott, and Stephen Bates. A fast, pipelined
implementation of a two-dimensional inverse discrete co-
sine transform. In Electrical and Computer Engineering,
2005. Canadian Conference on, pages 665–668. IEEE,
2005.

34. Antonino Tumeo, Matteo Monchiero, Gianluca Palermo,
Fabrizio Ferrandi, and Donatella Sciuto. A pipelined fast
2D-DCT accelerator for FPGA-based SoCs. In VLSI,
2007. ISVLSI’07. IEEE Computer Society Annual Sym-
posium on, pages 331–336. IEEE, 2007.

35. Heming Sun, Dajiang Zhou, Jiayi Zhu, Shinji Kimura,
and Satoshi Goto. An area-efficient 4/8/16/32-point in-
verse DCT architecture for UHDTV HEVC decoder. In
Visual Communications and Image Processing Confer-
ence, 2014 IEEE, pages 197–200. IEEE, 2014.

36. Jong-Sik Park, Woo-Jin Nam, Seung-Mok Han, and
Seong-Soo Lee. 2-D large inverse transform (16×
16, 32× 32) for HEVC (high efficiency video coding).
JSTS: Journal of Semiconductor Technology and Sci-
ence, 12(2):203–211, 2012.

37. Pai-Tse Chiang and Tian Sheuan Chang. A reconfig-
urable inverse transform architecture design for HEVC
decoder. In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pages 1006–1009. IEEE,
2013.

38. Ercan Kalali, Erdem Ozcan, O Yalcinkaya, and Ilker
Hamzaoglu. A low energy HEVC inverse transform hard-
ware. Consumer Electronics, IEEE Transactions on,
60(4):754–761, 2014.

39. Jian Huang, Matthew Parris, Jooheung Lee, and
Ronald F Demara. Scalable FPGA-based architecture
for DCT computation using dynamic partial reconfigura-

tion. ACM Transactions on Embedded Computing Sys-
tems (TECS), 9(1):9, 2009.

40. Jian Huang and Jooheung Lee. A self-reconfigurable plat-
form for scalable DCT computation using compressed
partial bitstreams and BlockRAM prefetching. Circuits
and Systems for Video Technology, IEEE Transactions
on, 19(11):1623–1632, 2009.

41. Toshihiro Masaki, Yasuo Morimoto, Takao Onoye, and
Isao Shirakawa. VLSI implementation of inverse discrete
cosine transformer and motion compensator for MPEG2
HDTV video decoding. Circuits and Systems for Video
Technology, IEEE Transactions on, 5(5):387–395, 1995.

42. Kun-Bin Lee, Hui-Cheng Hsu, and Chein-Wei Jen. A
cost-effective MPEG-4 shape-adaptive DCT with auto-
aligned transpose memory organization. In Circuits and
Systems, 2004. ISCAS’04. Proceedings of the 2004 Inter-
national Symposium on, volume 2, pages II–777. IEEE,
2004.

43. Andrew Kinane, Valentin Muresan, and Noel O’Connor.
An optimal adder-based hardware architecture for the
DCT/SA-DCT. In Visual Communications and Image
Processing 2005, pages 596045–596045. International So-
ciety for Optics and Photonics, 2005.

44. Rahul Rithe, Chih-Chi Cheng, and Anantha P Chan-
drakasan. Quad full-hd transform engine for dual-
standard low-power video coding. Solid-State Circuits,
IEEE Journal of, 47(11):2724–2736, 2012.

45. User Guide. 7 Series FPGAs Configurable Logic Block.
Xilinx, San Jose, CA, 1.7 edition, 11 2014.

46. Synopsys. 32/28nm generic library for teaching ic design.
47. Vijay Kumar Kodavalla. Ip gate count estimation

methodology during micro-architecture phase. IP based
Electronic System, 2007.

48. Mahdi Nazm Bojnordi, Naser Sedaghati-Mokhtari, Omid
Fatemi, and Mahmoud Reza Hashemi. An efficient self-
transposing memory structure for 32-bit video processors.
In Circuits and Systems, 2006. APCCAS 2006. IEEE
Asia Pacific Conference on, pages 1438–1441. IEEE,
2006.

49. Khurram Bukhari, Georgi Kuzmanov, and Stamatis Vas-
siliadis. DCT and IDCT implementations on different
FPGA technologies. In Proceedings of ProRISC 2002,
pp-232-235, 2002.

50. Nikolay Ponomarenko, Karen Egiazarian, Vladimir
Lukin, and Jaakko Astola. Additional lossless compres-
sion of jpeg images. In ISPA 2005. Proceedings of the
4th International Symposium on Image and Signal Pro-
cessing and Analysis, 2005., pages 117–120. IEEE, 2005.

51. Wikipedia. Discrete cosine transform, 2015. [Online; ac-
cessed 20 December 2015].

52. Gary J Sullivan and Richard L Baker. Efficient quadtree
coding of images and video. IEEE Transactions on Image
Processing, 3(3):327–331, 1994.

53. Antonino Tumeo, Matteo Monchiero, Gianluca Palermo,
Fabrizio Ferrandi, and Donatella Sciuto. A pipelined fast
2D-DCT accelerator for FPGA-based SoCs. In Proceed-
ings of the IEEE Computer Society Annual Symposium
on VLSI, ISVLSI ’07, pages 331–336, Washington, DC,
USA, 2007. IEEE Computer Society.

54. Enas Dhuhri Kusuma and Thomas Sri Widodo. Fpga
implementation of pipelined 2d-dct and quantization ar-
chitecture for jpeg image compression. In 2010 Interna-
tional Symposium on Information Technology, volume 1,
pages 1–6. IEEE, 2010.

55. Paris Kitsos, Nikolaos S Voros, Tasos Dagiuklas, and
Athanassios N Skodras. A high speed fpga implementa-
tion of the 2d dct for ultra high definition video coding.

16 Mohamed El-Hadedy et al.

In Digital Signal Processing (DSP), 2013 18th Interna-
tional Conference on, pages 1–5. IEEE, 2013.

Mohamed El-Hadedy received the
B.Sc and M.Sc degrees in Electronics
and Communication from Mansoura
University, Mansoura, Egypt in 2002
and 2006 respectively. He earned a PhD
degree in Electrical and Computer En-
gineering from the Telematics Depart-
ment at the Norwegian University of

Science and Technology, Trondheim, Norway in 2012.
From 2002 to 2004, he worked as a lecturer at the De-
partment of Electronics and communication at Man-
soura University. From 2004 to 2008, he worked as a
researcher at the Egyptian Nuclear Reactor, Anshas,
Egypt. From 2011 to 2014, he worked as a Senior De-
sign Engineer at Atmel AS, Trondheim, Norway. From
mid-2014 to the end of 2015, he worked as a Research
Associate at the Department of Computer Science at
the University of Virginia, VA, USA. Currently, he is
a Research Scientist at the Coordinated Science Lab-
oratory (CSL) at the University of Illinois at Urbana-
Champaign, IL, USA. He is a member of the π-Cipher,
which is one of the second-round candidates of the Com-
petition for Authenticated Encryption: Security, Ap-
plicability, and Robustness (CAESEAR). His main re-
search interests include Cryptography, Computer Secu-
rity, Computer Architecture Design, Signal Processing,
Image Processing, FPGA and ASIC implementations,
Robotics, Big-data accelerators, Coherent Accelerators
(Power8), and Genome Accelerators. He has one patent
is pending and is writing another one. He is a Member
of IEEE.

Xinfei Guo received the B.S. degree
in Microelectronics from Xidian Uni-
versity, Xi’an, China, in 2010 and the
M.S. degree in Electrical and Com-
puter Engineering from the University
of Florida, Gainesville, FL, in 2012.
Currently, he is a Ph.D. candidate in
Computer Engineering at the Univer-

sity of Virginia, Charlottesville, VA.
He has a broad interest in digital circuit and mi-

croarchitectures. His current research focuses on Reli-
ability (Aging and Accelerated Recovery Techniques),
Cross-layer power and reliability co-design methodol-
ogy, Low-power and Energy-efficient design. He received
the A. Richard Newton Young Student Fellowship in
2013 and the Achievement Award in 2010.

Martin Margala received a M.S. de-
gree in Microelectronics from Slovak
Technical University, Slovakia in 1990
and earned a Ph.D. degree in Electri-
cal and Computer Engineering from
the University of Alberta, Canada in
1998. From 1998 to 2003 he worked as
an Adjunct Scientist at the Telecom-

munications Research Labs in Edmonton, Canada. Cur-
rently, he is Fulbright Distinguished Chair and Pro-
fessor with the Electrical and Computer Engineering
Department at the University of Massachusetts Lowell
where his main research interests include Multi-Gigahertz
Testing and Reliability, Room Temperature Terahertz
Circuits and Systems, Ballistic Operation, Adaptable
Circuits and Architectures.

Martin is a member of STC, ITRS workgroup on
DFT, and a member of many program committees and
symposia in circuit design. He holds one patent, with
five others pending, and is the author or coauthor of
more than 100 publications in peer reviewed journals
and conference proceedings on integrated circuit design
and function. He is a Senior Member of IEEE and cur-
rently serves on the Editorial Board of JETTA.

Mircea R. Stan received the “Diploma”
degree from Politehnica University, Bucharest,
Romania, and the M.S. and Ph.D. de-
grees from the University of Massachusetts,
Amherst, MA, USA. He teaches and
does research in the areas of high-performance
low-power VLSI, temperature-aware cir-
cuits and architecture, embedded sys-

tems, and nano-electronics with the Department of Elec-
trical and Computer Engineering, University of Vir-
ginia, Charlottesville, VA, USA, where he is currently
a Professor.

Prof. Stan is a fellow of IEEE, a member of ACM,
Eta Kappa Nu, Phi Kappa Phi, and Sigma Xi. He re-
ceived the NSF CAREER Award in 1997. He was a
co-author on best paper awards at the International So-
ciety for Quality Electronic Design in 2008, the Great
Lakes Symposium on VLSI in 2006, the International
Symposium on Computer Architecture in 2003, and
SHAMAN in 2002. He is an Associate Editor of the
IEEE TRANSACTIONS ON NANOTECHNOLOGY.
He was an Associate Editor of the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS I from 2004
to 2008, and the IEEE TRANSACTIONS ON VERY
LARGE SCALE INTEGRATION SYSTEMS from 2001
to 2003. He was a Distinguished Lecturer of the IEEE
Circuits and Systems (CAS) Society from 2004 to 2005,

Title Suppressed Due to Excessive Length 17

and the IEEE Solid-State Circuits Society from 2007 to
2008. He is currently a Distinguished Lecturer of the
IEEE CAS Society.

Kevin Skadron received the B.S. and
B.A. degrees in computer engineering
and economics from Rice University, Hous-
ton, TX, USA, and the Ph.D. degree in
computer science from Princeton Uni-
versity, Princeton, NJ, USA.

He has been a Faculty Member with
the University of Virginia, Charlottesville,

VA, USA, since 1999, where he is currently the Harry
Douglas Forsyth Professor and Chair of Computer Sci-
ence. To support his research areas, he and his col-
leagues have developed the Rodinia benchmark suite
for heterogeneous computing and contributed to the
new SPEC ACCEL suite, and have also developed the
HotSpot, VoltSpot, and ArchFP modeling tools. His
current research interests include design and applica-
tions of accelerators and heterogeneous architectures,
including solutions to power, thermal, reliability, and
programming challenges.

Prof. Skadron is a Fellow of IEEE and ACM. He
was a recipient of the ACM SIGARCH Maurice Wilkes
Award.

	Introduction
	Related Work
	Transpose Memory Architecture
	Transpose Memory Performance on FPGA
	ASIC Implementations
	Applications
	Conclusions

