
PPE-ARX: Area- and Power-Efficient VLIW
Programmable Processing Element for IoT

Crypto-Systems
Mohamed El-Hadedy∗‡, Xinfei Guo†, Mircea R. Stan†, Kevin Skadron‡

∗Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904

‡Department of Computer Science, University of Virginia, Charlottesville, VA 22904
Email: {mea4c, xg2dt, mircea, skadron}@virginia.edu

Abstract—In this paper, we propose a novel programmable
processing element (PPE) for various cryptographic systems
that can be used in IoT applications. The design enables the
programmability, thus supporting a wide range of bit-widths
(such as 16, 32, and 64). It employs a very long instruction
word (VLIW) architecture with an instruction set and memory
hierarchy specialized for crypto-processing. Both FPGA and
ASIC implementations demonstrate that the design utilizes a very
tiny area and consumes very low power. For example, it takes
only 227 slices for FPGA implementations to include 512-byte
instruction and coefficient memory along with the computational
unit by achieving a maximum clock frequency of 250 MHz. For
ASIC implementation (in 28/32nm technology), the design takes
only 0.15mm2 of silicon area and consumes only 34.5µW of
total power while achieving a maximum frequency of 952MHz.
To evaluate the effectiveness of the design in a larger system,
we implement Blue Midnight Wish (BMW) hash function with
the PPE. Compared to the previous BMW-512 implementation
which stores the intermediate coefficients of the BMW-512 in
2048 bytes, the proposed design just uses 512 bytes. Meanwhile,
we reduce the instruction memory size from 4864 bytes to 1792
bytes.

Index Terms—IoT, PPE, FPGA, ASIC, Crypto, BMW

I. INTRODUCTION

Over the next few years, smart “things” and wearable
devices will be part of the same ecosystem. The Internet of
Things (IoT) will become an important asset in the busi-
ness intelligence; it will provide an integrated view of the
production environments, as well as it will tighten monitor-
ing and control domains typically managed as independent
worlds [1]. Control systems and human operators will reach
a significantly stronger level of interaction. However, new
operational scenarios will require security and privacy, which
will be no more an option on smart things. The attack to
the Target company through the HVAC (Heating, Ventilating
and Air Conditioning) system shows that smart and controlled
devices are significant weak points that must be protected
from hackers of any kind [2]. So far, security facilities for
IoT have been inadequate for this aim. IoT architectures

A part of this work was done while Dr. Mohamed EL-Hadedy was
a Research Associate with the Department of Computer Science at the
University of Virginia.

dedicate most of their limited energetic resources to guarantee
operational continuity for elementary services, mostly sensor
signal sampling, transmission and basic computation. Security
is thus simple and ineffective against targeted attacks.

There are numerous applications of IoT applications which
have strict security requirements, such as the pacemaker for
medical implanting. The pacemaker is a tiny device generating
electrical impulses, delivered by electrodes that contract the
heart muscles to regulate the heartbeat [3]. The pacemaker
comes without security primitives that secure the data transfer
between the internal components and the device parts. Without
a strong security mechanism in the pacemaker, the patient’s
life is simply in danger, the hacker can send a deadly signal
to the device to increase the heart rate of the patient to
unexpected level, and cause a serious damage to the heart
muscle [4], [5], [6]. Furthermore, wearable gadgets collecting
body parameters to track the human activities most notably
smartwatch and fitbit need to be secure enough to prevent
hackers to catch sensitive data and use it against persons for
malicious aims [7], [8]. Securing these types of small gadgets
can be achieved by employing cryptographic scientific theories
and technical primitives. In general, these security solutions
need to be adaptive to any IoT applications while consuming
few resources (either silicon area or power consumptions).

In this paper, we present the design and analysis of a novel
type of area- and power-efficient VLIW-based Programmable
Processing Element (PPE) for use in IoT cryptographic sys-
tems. The proposed PPE can be used to implement all the
crypto-systems that are based on ARX (Adding, Rotation and
Xor’ing) operations and supports multiple data-path widths. In
addition, the PPE is designed to be modular, for use in more
complex systems. The presented PPE can be used as crypto-
graphic coprocessor for secure communications on resource-
constrained devices, and in particular, IoT applications. The
key features of this VLIW PPE are 1) low power dissipation,
2) small area, 3) reconfigurability. The PPE architecture is
prototyped in an FPGA implementation on a Xilinx Virtex-5
FPGA, and also implemented with a Top-down ASIC flow in
a 28/32 nm technology node to demonstrate its potentials of
being used as an IP macro for more complex designs.

As a proof of concept, we employ the PPE to implement the

64 bits

RAM 512
bytes

A
L

U

Rotator

64 bits

64 bits

64 bits

M
U

X
 2X

1

5 bits

MUX 2X1

1 bit

Accumulator

64 bits
64 bits

64 bits

1 bit

Port A

Port B

Yin

Xin

1 bit

6 bitsADDR A

11 bits

MODE

4 bits

4 bits

4 bits

4 bits
6 bitsADDR B

64 bits

1 bit

Ram_inf

In
p

u
t

/O
u

tp
u

t

6
4

 b
its P

ro
ce

ssin
g e

le
m

e
n

t

o
u

tp
u

t

6 bits

ADDR W
2 bits

WR

MUX 2X1

Instruction Memory

7 bits27 bits
20 bits2 bits

IO memory Rotator ALU (Mux/ACC)

Fig. 1: Top level architecture of the proposed programmable processing element (PPE)

Blue Midnight Wish (BMW) hash function, which was one of
the second-phase SHA-3 competition candidates [9]. It is also
one of the selected hash algorithms for the crypto-currency
QuarkCoin [10].

The rest of the paper is organized as follows. Section II
discusses the previous work. The detailed architecture of
the proposed PPE is introduced in Section III. Section IV
presents the evaluation results on FPGA, followed by ASIC
evaluation results in Section V. Section VI shows an example
of implementing such PPE is bigger systems like BMW. The
paper is concluded in Section VII.

II. RELATED WORK

There are various types of architectures for compact cryp-
tosystems that were proposed in literature. [11] proposed a
CGRA coprocessor CoARX which supports diverse ARX-
based cryptographic primitives, the implementation was eval-
uated with 90nm, and achieved 700MHz of core performance.
But in that work, they focused on performance-driven appli-
cations, and can’t be easily adapted into resource-constrained
applications, like IoT. Different from this work, our proposed
architecture is targeting area and power-constrained IoT appli-
cations, and the idea is to reuse the limited on-chip resources to
implement necessary security functions while keeping metrics
optimal.

In [12], an architecture named “Blake” was presented as
one of the SHA competition’s candidates. It was implemented
in just 56 slices with two block memories and can achieve
115 Mbps of throughput. [13] introduced a low area processor
being used for implementing different versions of BMW
(BMW-256, BMW-512). BMW-256 is implemented in just 51

slices, achieving a throughput of 68.71 Mbps, and BMW-512
in just 105 slices achieving a throughput of 112.18 Mbps. Both
BMW implementations need two block memories to store the
hash function internal values as well as the instruction sets.
Eve though above two previous implementations offer a small
area on the FPGA platform with reasonable throughput, the
entire program must be loaded at once (overlapping of com-
pute with streaming in of new instructions is not supported),
thus requiring a much larger instruction memory. Different
from their approaches, our approach avoids this by allowing
only a much smaller instruction memory and significantly
reduces the size of the processing element. Furthermore, their
processors cannot process different data sizes with the same
design. While our proposed architecture has the flexibility and
programmability of implementing multiple data sizes.

Several cryto-processors designed for IoT security appli-
cations were also presented recently. In [14], a multi-mode
architecture which can support three different public-key cryp-
tography (PKC) engines was proposed and demonstrated with
silicon. Another multi-mode reconfigurable processor for AES
applications was introduced in [15], the novelty of that work
was to simplify the control logic and remove the pipelines
to reduce the gate count. A novel SHA-3 implementation
using instruction set extension based on a 32-bit LEON3
processor was proposed in [16], and the design is validated
with KECCAK algorithm. [17] presented an efficient and
flexible dual-field ECC processor using the hardware-software
approach, while it focused on Elliptic curve cryptography only.
[18] extended the work and applied on sensor nodes. [19]
proposed a compact prime field (GF(p)) elliptic curve digital
signature algorithm (ECDSA) engine suitable for use in IoT

Port APort BPort APort BPort APort BPort APort B

ALU 16 bitsALU 16 bitsALU 16 bitsALU 16 bits

Xin

Yin

FSM

Port CPort CPort CPort C

Zout

64 bits

64 bits

64 bits

16 bits16 bits16 bits16 bits16 bits16 bits16 bits16 bits

16 bits16 bits 16 bits 16 bits

2 bits3 bits
O

p
eration

M
od

es

ALU can process different word sizes as one 64-bit, two 32-bit, or four 16-bit operations per clock cycle

Fig. 2: Programmable architecture of the ALU

TABLE I: The truth table of the Arithmetic Logic Unit (ALU)

applications. In summary, all these work mentioned above
provide various flavors of IoT security engine and clearly
demonstrated the high demands of securing IoT devices with
a low cost in terms of hardware. Our proposed PPE differs
from previous work in several aspects. Firstly, the architecture
is able to target various cryto-systems that are based on ARX
operations. Secondly, the design supports a wide range of bit-
width, thus a wide range of applications. Last but not least,
most of the previous work were prototyped on FPGA only,
our design has been implemented on both FPGA and ASIC
platforms, and this provides a comprehensive evaluations. The
results have demonstrated very low cost in terms of area and
power consumption.

The proposed PPE is based on a very long instruction word
(VLIW) architecture as shown in Fig. 1. It consists of an Arith-
metic and Logic Unit (ALU), a Rotator block, an intermediate
512-byte coefficient memory, a 448-byte instruction memories.
Multiplexers are used for organizing the data traffic from

Input/Output ports and the feedback from the computational
part to the coefficient memory. The VLIW architecture enables
an efficient way to issue multiple operations in one clock cycle.
Changes of control-flow (e.g., branches) are not supported
since this is not needed in this design (we examined this
for ciphers). The programs are created manually for now, but
the limited set of operations and the regular structure of the
VLIW architecture make it possible to include a compiler at
the software potentially to support high level synthesize. The
PPE proposed in this paper implements the ARX engine, and
it assumes the input text has already been padded if necessary.

For instance, the mode control bits are 111 and the operation
bits are 01 will enable addition of two 64-bit words.

III. ARCHITECTURE OF THE PPE

A. ALU

Although ripple carry adders RCA is the most area-efficient
adder, its worst-case propagation delay can be severe. For

O
u

tp
u

t

16 b
its

Rotator 16 bit Rotator 16 bit

O
u

tp
u

t

16 b
its

Rotator 16 bit

O
u

tp
u

t

16 b
its

In
p

u
t

16 b
its

In
p

u
t

16 b
its

In
p

u
t

16 b
its

R
C

0

R
C

1

R
C

3

Rotator 16 bit

O
u

tp
u

t

16 b
its

In
p

u
t

16 b
its

R
C

2

Finite State Machine (FSM)

16 bits

11 bits

4 bits4 bits4 bits4 bits

16 bits16 bits16 bits

Modes

64 bits

Input

16 bits16 bits16 bits
16 bits

64 bits

Output

Fig. 3: The Rotator

Operation Mode RC3 RC2 RC1 RC0 Data width

ROR (1 →15) 00001010101 1→F 1→F 1→F 1→F

64 B
its M

od
e

ROR (16 →31) 01101010101 1→F 1→F 1→F 1→F

ROR (16 →31) 01101010101 1→F 1→F 1→F 1→F

ROR (32 →47) 10001010101 1→F 1→F 1→F 1→F

ROR (48 →63) 11101010101 1→F 1→F 1→F 1→F

ROR (1 →15)

ROR (1 →15)
00011011101 1→F 1→F 1→F 1→F

32B
its M

od
e

ROR (16 →31)

ROR (16 →31)
01111011101 1→F 1→F 1→F 1→F

TABLE II: The truth table of the Rotator

instance, for a 32-bit adder, the delay would be about 63 ns
if one assumes a gate delay of 1 ns [20].

We employ a carry lookahead adder (CLA), which calcu-
lates the carry signals in advance during adding based on the
input bits to increase the computing performance [21].

The Virtex-5 FPGA has LUTs with six inputs and one
output; a single LUT can output one bit of data from six-
bit input data. If this resource is properly used for the circuit
design, it is possible to obtain a higher performing circuit.

We use these capabilities to build the ALU based on the
CLA as shown in Fig. 2. The ALU offers three different op-
erations: word XOR, word addition, and subtraction (modulo
2n). The ALU can process data either from both coefficient
memory ports (Port A and Port B) or the coefficient memory
(Port A) and the accumulator register as shown in Fig. 1. In
each cycle, the ALU can process 4 data words of 16 bits, 2
data words of 32 bit, or 1 data word of 64 bit based on the
mode control bits In each cycle, the ALU can process 4 data
words of 16 bits, 2 data words of 32 bit, or 1 data word of 64
bit, based on the value of the control mode bits as shown in
Table. I.

B. Rotator

The Rotator consists of four 16-bit sub rotations, controlled
by the finite state machine (FSM). as shown in Fig. 3. Each

16 bit Rotator consists of a 64×4 array of 2×1 multiplexers,
controlled by four 4-bit RC control bits. Based on the value of
the mode control bits, the Rotator can rotate to the right four
16-bit words, two 32-bit words, or one 64-bit words. Table. II
shows how the proposed Rotator operates. For instance, to
rotate the 64 bit input data 12 times to the right, the Mode
signal has to be 00001010101, and RC0, RC1, RC2, and RC3
have the same value of 1100 (0xC). On the other hand, if we
have four data words of 16 bits, to rotate the first word 12
times to the right, the second word 5 times to the left, the
third word 7 times to the right, and the fourth word 10 times
to the left, the mode signal is 00000000000, and RC0 = 1100,
RC1 = 1011 , RC2 = 0111, and RC3 = 0110.

C. Coefficient Memory

As shown in Fig. 1, the coefficient memory has two output
ports of 64-bits (Port A and Port B). There are two address
ports, ADDRA and ADDRB, which are used to control the
value of Port A and Port B. ADDRW is responsible for writing
data into the memory through ram_inf. The memory size is
512 bytes.

D. Instruction Memory

As shown in Fig. 4, The dual-port instruction memory of
448 bytes stores the program that implements the chosen ci-
pher algorithm, expressed as a sequence of VLIW instructions.
The instruction memory has two address ports; the first 6-
bit port acts as an instruction fetch address. The other 6-bit
port specifies a write address, to change the values of the
instruction memory. There are two enable bits: one allows
read for instruction fetch and the other port is used to change
the values of the instruction memory.

This dual-ported design allows a new cipher program being
streamed in while the current program progresses. Also it
enables an early start on a new program while the rest of
the program is still loading. In the case that a program cannot
fit entirely into the on-chip memory, the dual-port can still
guarantee the seamless processing. The instruction-fetch signal
(ADDR) works as a pointer moving sequentially and wrapping

Instruction Block RAM

1 bit
1 bit 56 bits

6 bits

20 bits 27 bits 7 bits

Software Level

6 bits

Instruction ADDR
Programmable
ADDR

2 bits

RAM insts Rotator insts ALU instsIO interface insts

P
rogram

m
ab

le

E
n

ab
le

C
on

figu
ration

E
n

ab
le

In
stru

ction

S
ets

Fig. 4: The VLIW instruction memory

ADDRA, ADDRB, and ADDRW are the coefficient-memory address ports. R/W is used to control the coefficient memory
input/output ports. OP is used to control the ALU’s operations. Mode is used to control the ALU’s word sizes. ACC is used
to control the accumulator in the ALU. RC0, RC1, RC2, RC3, and Modes are used to control Rotator. IO is used to control

the input/output ports

Fig. 5: The Instruction Set

around. While this processing is happening, the write ADDR
is loading the new code. Because only one read and write
are allowed per cycle, conflicts are thus avoided unless the
read and write addresses are initialized to the same values,
which we usually verify. Fig. 5 shows a snapshot of each row
in the instruction memory. Each instruction consists of 2 bits
to control the input/output interface, 20 bits for controlling
the coefficient memory, 27 bits for controlling the different
sections of the Rotator, and 7 bits for controlling the ALU.

IV. FPGA IMPLEMENTATION OF THE PPE

The functionality of the proposed PPE was verified on
the Xilinx Virtex-5 XC5VLX110 device. The PPE has been
described in VHDL and was synthesized using ISE design
suite 14.7. The results show that the PPE takes only 227
slices of the FPGA fabric, and this includes the 512-byte
coefficient memory, a 448 byte instruction memory, and all
the computational units (Rotator and ALU) and control logic.
The design can be clocked at 250 MHz. Since the Virtex-
5 FPGA has LUTs with six inputs and one output; a single
LUT can output one bit of data from six-bit input data. This
unique feature could be potentially used to further optimize
the performance.

ALU

370um

37
0u

m

Rotator

Coefficient

Instruction
Memory

Memory

Fig. 6: The layout the 64-bit PPE design (core utilization =
80%)

Fig. 7: The area breakdown of a 64-bit PPE (um2)

V. ASIC IMPLEMENTATION OF THE PPE

As silicon area for IoT devices becomes a huge constraint
due to the considerations of size and weight, implementing a
lightweight security blocks is crucial. Since the proposed PPE
is digital in nature and doesn’t need any special SRAM blocks,
this makes it very adaptive to the standard ASIC flow. In this
work, we implement the design in a Synopsys ASIC flow
(from RTL to GDS II) with a 28/32nm design kit [22] from
Synopsys. To estimate the extreme case, the design is synthe-
sized on the worst case corner (Slow-Slow, high temperature
and nominal voltage) of the technology. The maximum clock
frequency is estimated by running timing analysis and timing
closure to meet the positive slack requirement for both setup
and hold time, and it is about 952MHz. The average power is
evaluated with the Prime-time PX tool. The synthesized gate-
level net-list is fed into the IC Compiler for place and route
(P&R), after which the area information can be got.

Shown in Fig. 6 is the layout after P&R with the core
area utilization of 80%. Fig. 7 shows the corresponding area
breakdown, the total area is only 0.15mm2, with cell area of
about 0.1mm2 and the rest are interconnects. Although most
of the area are from memory (instruction and coefficient), the
overall area is very small. With the design being in a modular
fashion, it is flexible to be expanded, the interconnect overhead
between modules become minimal and the main area will
be from the macro itself. The compact design makes it very
suitable to be embedded as an IP macro into a larger IoT
system which requires security and crypto features. Also the
portability and programmability of the design provide huge
potentials of being employed in various IoT applications.

Power is critical in IoT devices since these devices are

TABLE III: Average Power Breakdown under Maximum
Frequency of 952MHz and Nominal Vdd of 0.95V (uW)

Dynamic Leakage Total
Combinational Logic 18.324 5.978 24.302

Sequential Logic 5.05242 5.148 10.2
Total Power 23.38 11.126 34.5

usually powered by battery or through energy harvesting from
the environment [28], [29]. The logic (or key function) blocks
on these chips are already big “power hunters”, thus the margin
left for security block is really tiny. Also the leakage power
in these devices need to be minimal due to that it directly
determines the batter lifetime. Since the proposed PPE is
compact and simple compared to other designs (shown in
Section III), the leakage power will be reduced. Presented
in Table III is the power breakdown of the 64-bit design
at the maximum frequency. The total average power is only
34.5uW with a leakage of 11.126 uW. The expected power
consumption will linearly increase as the bit width increases.
As the first-order estimation, the total power consumption for
a 512-bit width will be only about 260uW, which can be
further reduced by lowering the voltage and relaxing the clock
frequency, which are widely used in IoT systems to meet the
SPEC.

VI. BLUE MIDNIGHT WISH (BMW) HASH FUNCTION
WITH THE PROPOSED PPE

Many cryptographic algorithms are ARX based, but the
algorithms vary widely in the number and sequence of ARX
operations. In cryptography and information security, hash
functions are considered the “Swiss army knife”. They are
used in countless protocols and algorithms. In this paper,
we present the hardware implementation of the BMW hash
function with the proposed PPE design. In the future, we
intend to examine the proposed PPE by implementing wide-
range of algorithms such as SHA-1 and SHA-2.

BMW is a wide-pipe Merkle-Damgård hash construction
with an unconventional compression function [24]. The non-
linearity in BMW is derived from the overlap of modular XOR
and addition operations. The BMW-n hash function family
contains four instances for n =224, 256, 384, and 512, where
n is the size of the hash value. BMW performs four different
operations in the hash computation stage: bit-wise logical word
XOR, word addition and subtraction, shift operations (left or
right), and rotate left operations. The size of a word is 32
bits for BMW-224/256 and 64 bits for BMW-384/512. As
shown in Fig. 8, the computation engine of the BMW consists
of three sub-functions called f0, f1, and f2, in sequence to
generate the chaining value. More details can be found in
[30]. The i value is from 0 to 15. Inputs for the function f0
are two arguments. The first argument consists of sixteen 32-
bit words, which serve as initial double pipe values H

(i−1)
0 ,

H
(i−1)
1 ,....,H(i−1)

15 . The second arguments consists of sixteen
64-bit words, which represent the input message block: M (i)

0 ,
M

(i)
1 ,....,M (i)

15 for BMW-512. The second function f1 takes
f0 output values Q0(i), Q1(i),, Q15(i) and the output
operation of processing the message into the AddElement
block to produce the second part of the quadruple pipe Q16(i),
Q1(i),, Q31(i). The final function f2 produces the H

(i)
0 ,

H
(i)
1 , H(i)

2 ,..., H(i)
15 by processing the output of the message,

f0, and f1.
For using the PPE to implement BMW-512 on FPGA, f0,

f1, and f2 can be executed in just 1000 cycles. The throughput

TABLE IV: BMW-512 performance using the PPE

Algorithm FPGA Type Area(slice) Frequency (MHz) Throughput (Mbps) Memory Blocks Throughput/Area(slice)
PPE (BMW-512) XC5VLX110 227 250 256 — 1.3
BMW-512 [13] XC5VLX110 105 115 112.18 3 1.09
BMW-512 [23] XC5VLX330T 9810 10.004 287 — 0.028
BMW-256 [24] Xilinx Virtex 5 1980 56 5 — 0.025

TABLE V: Comparisons with Published ASIC Results (Both ARX-based and other IoT cryto-architectures)

Design Name Technology Maximum Frequency (MHz) Total Power Area Programmable
CoARX[11] 90nm 700 - 95k Yes
BLAKE[12] 90nm 532 2.93mW 79k No

Skein-512[25] 90nm 251 - 43.13k No
Salsa20 4xS-QR[26] 90nm 365 - 22.81k No
ChaCha 4xS-QR[26] 90nm 366 - 22.44k No

PKC-based IoT Security Protocols[14] 90nm 50 15.8mW 116.3k No
Dual-Field Elliptic Curve Cryptographic Processor[17] 55nm 316 - 189k Yes

BMW[27] 65nm 800 1.11mW 50K No
This Work (BWM with PPE) 28/32nm 952 120.75uW 30.2k Yes

Input message M is divided to M
(i)
0 , M (i)

1 ,....,M (i)
15 . H(i−1)

0 , H(i−1)
1 ,....,H(i−1)

15 are the initial values. Q0(i), Q1(i),,
Q15(i) are the output of the Bijective function f0. Q15(i), Q16(i),, Q31(i) are the output of the expansion function f1.

H
(i)
0 , H(i)

1 ,....,H(i)
15 are the final hash value

Fig. 8: BMW Hash Compression Function

of the design is given in Equation 1. As summarized in
Table IV, the throughput/area ratio (area efficiency) for the
proposed PPE in BMW-512 is much higher than three of the
closest previous implementations. Compared to [13] which
used 3 block memories for storing the intermediate coefficients
and the instruction sets, we don’t use any block memories
at all. This contributed directly to the huge area saving and
throughput improvement. The BMW design in [23] needs to
store the intermediate coefficients of the BMW-512 in 2048
bytes, while we only uses 512 bytes. Meanwhile, they dedicate
4864 bytes for storing the instructions, while we use in total
just 1792 bytes. In [23] and [24], they implemented BMW-
512 on the FPGA without using the BRAMs but with much
larger area (slices) than the proposed design. Overall, the
proposed implementation of BMW using PPE achieved the
best throughput/area.

Throughput =
Number of input bits×Maxfrequency

Number of clock cycles per block
(1)

Shown in Table V is the comparison between the BWM
algorithm implemented with the proposed PPE against other
ASIC implementations of cryto-processors for ARX-based
functions and for IoT security in general. Since most of
previous ARX-based implementations focus on performance-
driven applications, power consumptions were missing in their
work. Overall, our proposed design outperforms most of the
designs in terms of the area (we pick # of gate to make
fair comparisons across different technology nodes), only two
designs presented in [26] employ lower area than us, but they
don’t support programmbility and variable bit-widths. In terms
of performance, our design outperforms all the rest, one reason
is that we implement with the more advanced technology
node than others, but even we do a simple first-order scaling,
the performance is at least comparable to other designs. The
proposed design consumes lowest total power among all the
designs as well. In summary, the proposed processing element
is small and ultra low power (8.4nW/bit) while keeping the
performance optimal. Thus it has huge potentials of being

embedded in IoT applications where security is becoming
crucial.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented both the FPGA and ASIC imple-
mentations of a novel area- and power-efficient, programmable
VLIW processing element based on ARX (add, rotate, xor)
operations to be used in IoT cryptographic systems. We have
implemented the ARX engine and demonstrated its effec-
tiveness for the BMW-512 hash function. The results show
great improvement compared to previous implementations in
terms of throughput, area (number of slices or silicon area),
frequency, and the throughput/area.

As the future work, the effectiveness of this PPE will
be evaluated with more IoT cryptographic systems. Also,
a compiler for the proposed architecture is expected to be
proposed.

ACKNOWLEDGEMENTS

This work was supported in part by NSF Grant No. CDI-
1124931 and by the Center for Future Architectures Research
(C-FAR), one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA. Furthermore, this work was supported by Azure
Research Hardware Program, Grant Award No. CRM0518510.

REFERENCES

[1] Gi-chur Bae and Kyung-wook Shin. An Efficient Hardware Imple-
mentation of Lightweight Block Cipher Algorithm CLEFIA for IoT
Security Applications. Journal of the Korea Institute of Information
and Communication Engineering, 20(2):351–358, 2016.

[2] Kaveh Paridari et al. Cyber-Physical-Security Framework for Building
Energy Management System. In 2016 ACM/IEEE 7th International
Conference on Cyber-Physical Systems (ICCPS), pages 1–9. IEEE, 2016.

[3] Daniel Halperin et al. Pacemakers and implantable cardiac defibrilla-
tors: Software radio attacks and zero-power defenses. In 2008 IEEE
Symposium on Security and Privacy, pages 129–142. IEEE, 2008.

[4] C. Osborne. Samartwatch Security Fails to Impress: Top Devices
Vulnerable to Cyberattach, 2015.

[5] B. Cole. How Secure are Smartwatches? Not Very, 2015.
[6] Steven J Johnston et al. Recommendations for securing Internet of

Things devices using commodity hardware. WF-IoT, 2016.
[7] Kat Austen. The trouble with wearables. Nature, 525(7567):22, 2015.
[8] Charles Walter et al. Toward Predicting Secure Environments for

Wearable Devices. In Proceedings of the 50th Hawaii International
Conference on System Sciences, 2017.

[9] Meltem Sönmez Turan et al. Status report on the second round of the
SHA-3 cryptographic hash algorithm competition. NIST Interagency
Report, 7764, 2011.

[10] J. Stevenson. Bitcoins, litecoins, what coins?: A global phenomenon.
Stevenson, J., 2013.

[11] Khawar Shahzad et al. CoARX: a coprocessor for ARX-based cryp-
tographic algorithms. In Proceedings of the 50th Annual Design
Automation Conference, page 133. ACM, 2013.

[12] Nuray At et al. Compact Hardware Implementations of ChaCha,
BLAKE, Threefish, and Skein on FPGA. IEEE Transactions on Circuits
and Systems I: Regular Papers, 61(2):485–498, 2014.

[13] Mohamed El-Hadedy et al. Area efficient processing element architec-
ture for compact hash functions systems on VIRTEX5 FPGA platform.
In AHS, 2011 NASA/ESA Conference on, pages 240–247. IEEE, 2011.

[14] Cheng-Rung Tsai et al. A 1.96 mm2 low-latency multi-mode crypto-
coprocessor for PKC-based IoT security protocols. In Circuits and
Systems (ISCAS), 2015 IEEE International Symposium on, pages 834–
837. IEEE, 2015.

[15] Ning Ma et al. A hierarchical reconfigurable micro-coded multi-core
processor for iot applications. In Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2014 9th International Symposium
on, pages 1–4. IEEE, 2014.

[16] Yi Wang et al. Fpga-based sha-3 acceleration on a 32-bit processor via
instruction set extension. In Electron Devices and Solid-State Circuits
(EDSSC), 2015 IEEE International Conference on, pages 305–308.
IEEE, 2015.

[17] Zilong Liu et al. An Efficient and Flexible Hardware Implementation
of the Dual-Field Elliptic Curve Cryptographic Processor. IEEE Trans-
actions on Industrial Electronics, 2016.

[18] Zhe Liu et al. On emerging family of elliptic curves to secure internet
of things: Ecc comes of age. IEEE Transactions on Dependable and
Secure Computing, 2016.

[19] T. YalÃğin. Compact ECDSA engine for IoT applications. Electronics
Letters, 52(15):1310–1312, 2016.

[20] B. Gadamsetti and A.D. Singh. Current sensing completion detection for
high speed and area efficient arithmetic. In APCCAS, pages 240–243,
Dec 2010.

[21] Sean Kao et al. A 240ps 64b carry-lookahead adder in 90nm CMOS.
In ISSCC, pages 1735–1744. IEEE, 2006.

[22] Synopsys. 32/28nm Generic Library for Teaching IC Design.
[23] B.Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. ONeill, and

W. P. Marnane. FPGA Implementations of the Round Two SHA-3
Candidates. In Proceedings of the NIST SHA-3 Conference.

[24] M. El-Hadedy et al. Low area FPGA and ASIC implementations of
the hash function “Blue Midnight Wish-256”;. In 2009 International
Conference on Computer Engineering Systems, pages 10–14, Dec 2009.

[25] M. Knezevic et al. Fair and Consistent Hardware Evaluation of Fourteen
Round Two SHA-3 Candidates. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 20(5):827–840, May 2012.

[26] L. Henzen et al. VLSI hardware evaluation of the stream ciphers
Salsa20 and ChaCha, and the compression function Rumba. In 2008
2nd International Conference on Signals, Circuits and Systems, pages
1–5, Nov 2008.

[27] Xu Guo et al. On the impact of target technology in sha-3 hardware
benchmark rankings. IACR Cryptology ePrint Archive, 2010:536, 2010.

[28] Uming Ko. Ultra-low power SoC for wearable & IoT. In VLSI-TSA,
pages 1–1. IEEE, 2016.

[29] Mihai Sanduleanu and Ibrahim Abe M Elfadel. Ultra low power
integrated transceivers for near-field IoT. In DAC, page 143. ACM,
2016.

[30] D. Gligoroski et al. Blue Midnight Wish. In Proceedings of The First
SHA-3 Candidate Conference, Feb 2009.

	Introduction
	Related Work
	Architecture of The PPE
	ALU
	Rotator
	Coefficient Memory
	Instruction Memory

	FPGA Implementation of THE PPE
	ASIC Implementation of THE PPE
	Blue Midnight Wish (BMW) Hash Function with The Proposed PPE
	Conclusions and Future Work
	References

