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Glossary

Alternating Current (AC)– A term that is used to describe current that is bidirectional (i.e.

alternates polarity). Electrical outlets provide AC current.

Ammeter– A tool used to measure the current flowing in a circuit.

Amplifier– A circuit that can be used to increase the power level of an electrical signal.

Clock Frequency– Determines the rate at which the CPU can complete computations

Clock Signal– The signal that synchronizes the operations that occur in a microprocessor.

CMOS– Complementary Metal-Oxide Semiconductor. The semiconductor technology

used to create today’s microchips.

Current (I)– The directed flow of current in a circuit, measured in Amperes (A).

Die Size– Overall physical area of a circuit

Direct Current (DC)– A term used to describe current that is unidirectional. Electrical

devices accept DC current.

Dynamic Voltage Scaling (DVS)– A power saving technique that will dynamically lower a

CPU’s voltage based on the CPU’s activity

HTTP– Hypertext Transfer Protocol, the language of the World-Wide Web.

Low-pass filter– A filter that passes all frequencies below a specified frequency with little

or no loss, but strongly attenuates higher frequencies

Oscilloscope– A device used to measure the electrical characteristics of a circuit.

Power (P)– The amount of energy used per unit time, measured in watts (W)

Resistance– An opposition to current, measured in ohms.
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Sense Resistor– A resistor that is used to indirectly determine the current in a circuit.

Voltage (V)– The potential that causes a directed flow of charge (current), measured in

volts (V).

Voltmeter– A tool that is used to measure the voltage level of a circuit.

Web Server– A program that responds to HTTP requests (i.e. serves webpages)
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Abstract

Excessive power consumption in a microprocessor has several negative impacts: a

decrease in system reliability, an increase in both the initial cost and the operation expenses

of computers, and a reduction in the battery life of power-critical portable and handheld

systems. Dynamic voltage scaling is a technique used to solve these and other power-

related CPU problem by lowering the CPU voltage dynamically, when doing so will not

significantly impact system performance. The CPU voltage is quadratically related to CPU

power, so this can lead to a significant power savings. The system described in this report

is designed to be a power measurement platform for DVS algorithms that optimize the

power efficiency of webserver workloads. IBM’s Austin research lab [4] first made the

claim that DVS could be a useful technique to manage power in server systems, since

servers experience long periods of inactivity. They were able to prove their claim using

simulated data. This measurement system can be used to validate their work and build

upon it using real-world experimental data. This research project produced a usable power

measurement system. This measurement platform will allow researchers at UVA to more

effectively develop DVS algorithms. Moreover, this has produced real-world power data

in a modern server-class DVS system. Such data had not existed before in the research

literature. Ultimately, this work may lead to better DVS algorithms and thus more power

efficient servers, improving the overall quality of electronic services that depend on these

servers.
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Chapter 1

Introduction

Excessive power consumption in a microprocessor has several negative impacts:

a decrease in system reliability, an increase in both the initial cost and the operation ex-

penses of computers, and a reduction in the battery life of power-critical portable and

handheld systems. There are a number of techniques to reduce power consumption, but

this project focuses on dynamic voltage scaling (DVS). Dynamic voltage scaling is a tech-

nique to reduce the power consumption of a microprocessor by lowering the CPU voltage

dynamically, when doing so will not significantly impact system performance. In previous

efforts researchers have constructed simulations to model DVS behavior. This project has

broken from this tradition and produced a measurement platform that captures real-world

power data from a modern DVS-capable system, specifically an AMD mobile Athlon ma-

chine. This captured power data was subsequently used to develop and verify a simple

DVS algorithm.

1.1 Problem Definition

Traditionally, microprocessor designers focused all of their efforts on optimizing

two CPU characteristics: CPU performance and die size (i.e. overall chip area). There are

sound reasons for the original bias toward these parameters. As software engineers work
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to bring more useful and complex applications to the public, the performance capability of

CPUs must increase in order to facilitate the increased complexity. Die size, or overall chip

area, is also an important constraint, since larger dies lead to higher manufacturing costs

and ultimately higher prices for the consumer. Recently, power has become the third chief

design characteristic for microprocessors, so there is much interest in power management

techniques such as DVS [5] [6] [7].

There are several reasons for this new interest in DVS. First, portable and handheld

systems (e.g. PDAs, cellular phones) have limited battery usage, so a power savings will in-

crease battery life. Second, a reduction in power consumption leads to increased reliability

in microprocessors. Higher power devices dissipate more heat. Excessive heat can perma-

nently damage a chip, so lowering a processor’s power reduces the likelihood of failure [8].

Third, reducing power can reduce cost. Processor designers build their cooling systems for

peak thermal characteristics that are far more stringent than the average thermal behavior,

though the peak value is almost never reached. Power management techniques can be used

to indirectly regulate the thermal characteristics such that the peak thermal value is much

closer to the average value, thus allowing designers to employ less costly cooling systems

at the CPU level [9].

The problems of excessive power consumption are magnified for datacenters with

hundreds or thousands of server machines. A typical datacenter will house hundreds or

thousands of machines, densely packed in order to maximize floor space. America On-

line’s server farm, a representative example, is depicted in Figure1.1. This form of server

consolidation can lead to increased reliability concerns unless more expensive cooling sys-

tems are employed [4]. Furthermore, power and cooling costs comprise a significant part of

a datacenter’s budget. For example, a datacenter with 8,000 servers can consume 2,000,000

watts of power, which accounts for 25% of the operating cost of such a facility [10]. Fur-

thermore, the server racks, in many cases, cannot be fully populated, since the rack cannot

power all its constituent servers. Thus, datacenters must purchase a larger physical area to
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house the same number of servers, increasing costs. These problems will only worsen if the

trend of newer server machines offering higher performance levels at the cost of increased

power consumption continues [4].

Figure 1.1: America Online’s datacenter [1].

1.2 Related Work

There is a significant body of research on applying DVS to compilation, real-time

scheduling, and embedded systems applications [11] [12] [8] [13] [14]. IBM’s Austin Re-

search Lab [4] was the first to suggest that DVS should not be restricted to handheld devices

as it had been previously, but should be extended to server machines. The IBM group deter-

mined experimentally that the CPU is the highest power consumer in server systems. They

also demonstrated that web servers experience long periods of low utilization and, thus, are

prime candidates for voltage scaling. Consequently, they built a simulator application that
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models a DVS-capable system for webserver workloads. Using real server workloads as

input to the simulator, they were able to show that DVS can reduce power consumption by

up to 36%.

1.3 Project Contributions

This project has several contributions. First, it produced a measurement platform

that can be used by researchers at UVA in order to design and analyze the effectiveness of

their DVS techniques. Although the power measurement system is geared towards server

applications, it can be readily adapted to other applications broadening the impact of this

research. Second, it has produced real-world power data that clearly shows that DVS can

be an effective technique for reducing power consumption. Third, this research effort pro-

duced a rudimentary DVS algorithm used to validate the measurement platform. This al-

gorithm can be used as a basis for further DVS algorithm research.

1.4 Thesis Overview

This report begins by covering the fundamentals of CPU power consumption and

power measurement in Chapter2. It then covers the experimental setup that is used to

obtain power measurements of the DVS system in Chapter3. Chapter4 describes the ex-

periments used to test the functionality of the measurement system, as well as the produced

results. The report concludes in chapter5.
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Chapter 2

Power Fundamentals

This chapter will provide a brief introduction to power measurement fundamentals.

It will define some fundamental terms and prepare the reader for the discussion of the mea-

surement platform in the following chapter. Furthermore, this chapter will further explore

the relationship between DVS and power consumption.

2.1 CPU Power and DVS

In order to fully understand DVS’s effect on power consumption, it is important to

look at the power equation (2.1) for all CMOS (Complementary Metal-Oxide Semiconduc-

tor) circuits, including microprocessors. Power in CMOS circuits has two components: a

dynamic component which is caused by 0-to-1 and 1-to-0 logic transitions and a static com-

ponent that exists regardless of whether the circuit switches logic states. Dynamic Voltage

Scaling only attacksPdynamic; there are a number of other power saving techniques that

addressPstatic. Equation2.2shows the factors that make upPdynamic. The capacitive load

(CL) is an intrinsic property of the circuit. The switching probability (c) determines how

often the circuit will make a transition. Neither of these factors are related to DVS [15]

[16].
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Pavg = Pdynamic + Pstatic (2.1)

Pdynamic = cCLfV 2
dd (2.2)

Dynamic Voltage Scaling is able to effectively reduce power consumption because

of the other two factors in Equation2.2. The CPU’s voltage (Vdd) is quadratically related

to power - a reduction in the CPU’s voltage supply leads to an inverse squared reduction in

power. There is one important caveat: reducing the CPU voltage requires a corresponding

decrease in the clock frequency (f) of the processor for correct operation. This has a positive

impact on power consumption, since scaling frequency and voltage down concurrently

leads to an inverse cubed reduction in power. On the other hand, lowering the CPU’s

clock frequency leads to decreased performance. The clock is a signal that synchronizes

the operations that occur in a microprocessor. Reducing the clock frequency will slow

down the processor. Thus, a decrease in the clock frequency of the CPU will cause a

corresponding decrease in processor performance. Fortunately, the CPU rarely needs to

operate at peak efficiency. Consequently, the CPU may operate at a reduced voltage level

at these times, saving power without negatively impacting performance. [6].

2.2 Power Measurement

Power (P), the amount of energy a system uses per unit time, cannot be measured

directly. Instead, power measurements must be derived from two other electrical character-

istics: current and voltage. Current (I) is defined as the directed flow of current in a circuit.

Voltage (V) is defined as the potential that causes a directed flow of charge (current). Cur-

rent and voltage are related to power via Equation2.3.

7



P = IV (2.3)

Voltage is measured directly by connecting a voltmeter across the load, as shown in

Figure2.1. One of the voltmeter’s leads is connected to one side of the component, while

the other lead is connected to the other side of the component.

Figure 2.1: Voltage Measurement Method [2].

There are two methods to measure the current in a circuit. First, current can be

measured by inserting an ammeter in the current path. Thus, the circuit must be broken

and the meter must be inserted so that current flows through the meter as shown in Figure

2.2. Second, current may be measured indirectly by breaking the circuit, connected a sense

resistor in series with the circuit, and measuring the voltage drop across the sense resistor. A

sense resistor is a resistor with a small, know resistance (R) value. Since the sense resistor’s

resistance value is known, the current of the circuit can subsequently be determined using

Equation2.4. Actually, this is what the ammeter does internally [2].

I = V/R (2.4)
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Figure 2.2: Current Measurement Method [2].

It is important to use a small sense resistor value. A larger resistor value will de-

crease the accuracy of power measurements, since power will be dissipation across the

resistor. Equation2.5shows that an increase in the resistance value (R) while holding the

voltage across the resistor constant will lead to an increase in the power consumed across

the resistor and thus will lead to error in our measurements [2].

P = V 2R (2.5)

Now that the fundamentals of power measurement have been reviewed, the mea-

surement system’s design can be discussed.
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Chapter 3

Measurement System

This chapter will provide an overview of the measurement system developed in this

project. Section3.1will cover the hardware and software platform used for DVS. Section

3.2 will explain the measurement methodology. Section3.3 will discuss the webserving

platform as well as the platform used to simulate web clients.

3.1 Dynamic Voltage Scaling Platform

Determining a suitable platform for DVS study required considerable research.

There are a number of possible CPU options for DVS systems: Transmeta’s Crusoe, In-

tel’s mobile Pentium, and AMD’s mobile Athlon. Crusoe-based system were ruled out,

since they cannot meet the high-performance requirements of a server-class system. Sys-

tems based on the mobile Pentium were also ruled out, since Intel’s Speedstep technology

only allows for two performance levels. This would hamper the effectiveness of DVS al-

gorithms, since the limited number of performance levels translates to fewer opportunities

for power saving by lowering CPU voltage and/or frequency. The mobile Athlon XP was

finally chosen, since it would allow for the most flexibility in terms of performance lev-

els. Moreover, a number of manufacturers create high performance systems based on the

mobile Athlon processor.
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The Compaq Evo n1015v, an Athlon XP based system, served as the DVS system

whose power would be measured. An actual server system would have been preferable,

since this research project is geared towards server-class systems. At present there are no

desktop or server systems that incorporate DVS, so a laptop had to serve the purpose. Nev-

ertheless, the Evo should prove more than adequate, since it performs very well. This is

clear from the system specifications shown in Table3.1. This system supports five perfor-

mance levels (i.e. frequency/voltage pairs) as seen in Table3.2.

Processor AMD Mobile Athlon XP 1800+ (1533/266 MHz)
Northbridge Chipsets IGP 320 M north bridge
Southbridge Chipsets ALi M1535+
RAM 256MB PC2100 SDRAM
Hard Disk Toshiba MK4018GAP ATA-5 40GB/4200rpm/2MB
CD/DVD ROM Toshiba SDR2102 (ATA-2) 8x/8x8x24xDVD/CDRW Combo
Graphics Chipset Integrated, 64 MB video memory
Display Size 15.1”
Audio SoundMax Integrated Digital Audio
Ethernet Realtek 8139C 10/100 MBit Ethernet card
AC Adapter 18.5V/4.9A DC

Table 3.1: DVS system specifications

Performance Level Speed (MHz) Voltage (V)
1 533 1.20
2 666 1.20
3 800 1.20
4 1200 1.35
5 1533 1.50

Table 3.2: AMD Athlon XP 1800+ frequency and voltage pairs

The DVS system runs the testing version of Debian GNU/Linux operating system.

GNU/Linux is an ideal research platform, since a significant number of the servers on the

Internet run GNU/Linux. Moreover, GNU/Linux is the only operating system with drivers

that allow for the manual adjustment of CPU performance level. Without this capability

any research endeavor into DVS would prove impossible.
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The DVS system is running a development version of the Linux kernel (2.5.65),

since it has the most recent frequency/voltage scaling drivers. Using the Linux scaling

drivers, CPU performance levels can be set by writing to relevant files in the sysfs filesys-

tem, a filesystem that exposes Linux kernel data structures to user applications. The 2.5

development series is technically considered unstable, yet the use of this kernel has not

hindered this research effort at all.

3.2 Measurement Platform

Accurate measurement of power is an important part of this research. Consequently,

significant time was devoted to devising and constructing the power measurement platform.

The measurement platform consists of three main parts: a measurement PC, a digital oscil-

loscope, and a breadboard with custom circuitry. An overview of the entire measurement

platform is shown in Figure3.1. The DVS laptop normally receives power through its AC

adapter, which is connected to an electrical outlet. The AC adapter converts the alternating

polarity current (AC) that the wall socket produces and converts it to a direct (i.e. fixed

polarity) current that electrical components can use. Chapter2 explained that current mea-

surements require breaking the circuit path in order to place a sense resistor in series with

the circuit to be measured. That is precisely what has been done here. The AC adapter

has been cut and the ends have been spliced into the custom circuit board. The AC adapter

must be cut on the DC side of the AC adapter in order to measure the current of the laptop.

The digital oscilloscope digitizes the current and voltage data and sends this data to the

Measurement PC. The measurement PC is running custom software that computes power

data using the signals it receives from the digital oscilloscope. Furthermore, the measure-

ment PC will log the power data to a file. The measurement system/digital oscilloscope

combination is able to take 80 power readings per second.
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Figure 3.1: Measurement Platform Overview.

Now that the measurement platform has been discussed as a whole, the power mea-

surement circuitry will be explained. Figure3.2shows the main components of the circuit

board. A sense resistor with a value of 0.01 ohms is used. The voltage drop measured

across the sense resistor is amplified by the LT1787 current sense amplifier and sent to the

pin labeled output. This voltage can be measured by placing probes at both the output node

and the ground node. This voltage can then be used to determine the current via Equa-

tion 2.4. This equation is determined by taking into account the sense resistor’s resistance

value and the amplifier gain (i.e. level of amplification). The laptop’s system voltage level

can be measured by placing one probe at the node that connects to the laptop and another

probe at ground. Power can be determined using voltage and current using Equation2.3.

The voltage regulator allows the circuit board to derive power from the AC adapter. This

will introduce slight error into the power measurements, since the power consumption of

the circuit board is also measured. This error is negligible, since the laptop system con-

sumes considerably more power than the circuit board. A capacitor (i.e. low pass filter) is

connected across the output pin in order to filter out noise.

I = 0.8 ∗ Output (3.1)
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Figure 3.2: Circuit Overview (Adapted from [3]).

It is important to note that this system measures the power of the overall laptop

system, not just the CPU. Measuring CPU power would require opening up the laptop case

and modifying the motherboard. Unfortunately, there was not enough time for this, nor was

there a spare laptop free for experimentation. Consequently, some of the interesting DVS

effects on power will be masked by the power characteristics of other components of the

system. Nevertheless, useful data was still collected.

3.3 Web Serving Platform

Since this measurement platform is geared towards webserver applications, it is

necessary to run a webserver application on the DVS laptop. For this purpose the Apache

webserver was chosen, since it is the most popular webserver on the Internet and it runs

well on GNU/Linux systems. In the future the measurement system will be adapted to use

Apache 2.0.

A tool called Httperf (version 0.8) was used to simulate the effect of numerous

clients connecting to the Apache webserver running on the DVS system. Httperf provides

a flexible facility for generating various HTTP workloads and for measuring server per-

formance. The primary use of this tool was to generate workloads for the webserver, thus

varying the activity of the CPU and subsequently providing opportunities for DVS tech-
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niques to save power. Httperf makes it possible to simulate hundreds of web clients using

only one computer.
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Chapter 4

Experiments and Results

This chapter will discuss the experiments conducted using the DVS measurement

platform and the real-world power data that it has produced.

4.1 Static Test

After the DVS system was fully implemented, the first real test involved varying the

CPU’s performance level manually. The average power consumption was measured both

when the CPU was mostly idle and when the CPU had a utilization of 100%. The data in

Table4.1clearly shows that the measurement system is able to observe variances in system

power due to changes in the performance level. It is interesting to note that the power

readings do not change drastically when an idle CPU’s performance level is changed. On

the other hand, a fully utilized CPU’s power level changes dramatically as the performance

level is changed. The changes are most noticeable between voltage steps (e.g. the shift from

performance level 3 to performance level 4). This is to be expected due to the quadratic

relation between power and voltage level.
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Speed (MHz) Voltage (V) Idle CPU Avg. Power (W) 100% CPU Util. Avg. Power (W)
533 1.20 24.45 34.20
666 1.20 24.64 36.62
800 1.20 24.65 39.22
1200 1.35 26.71 54.47
1533 1.50 29.71 80.85

Table 4.1: Average Power at Various Performance Levels

4.2 Dynamic Test

A more thorough test of the measurement platform was conducted when an actual

DVS algorithm executed on the laptop while running a webserver. The DVS algorithm used

in this test was adapted from a program written by Carl Thompson. The algorithm is fairly

simplistic; it raises or lowers the CPU performance level based on what percentage of the

time the CPU is idle. If the CPU is idle for more 75% of the time, the performance level

decreases to the next level. If the CPU is idle for less than 25% of the time, the performance

level increases to the next level. These thresholds were arbitrarily chosen. This algorithm

is merely used for validation purposes, though it could be used as the foundation for future

DVS work.

Table4.2shows the result of this experiment. The power saving that DVS provides

diminishes as the connection rate increases. This is to be expected, since a CPU’s activity

rate increases with the connection rate. Thus, there a fewer opportunities to scale down

voltage.

Connection Rate (conn./sec)Avg. Power (W) Avg. Power w/DVS (W)
100 38.48 26.49
200 42.18 29.69
300 55.91 53.45
400 72.43 70.75
500 74.26 73.37

Table 4.2: Average Power With and Without DVS at Various Connection Rates
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Chapter 5

Conclusions

This project has produced a power measurement platform and methodology for

DVS-enabled webserver systems. The measurement platform is comprised of a digital

oscilloscope, custom circuitry, and a PC that processes and logs power data to disk. The

system can take 80 power readings per second.

A modern DVS-enabled laptop machine serves as the test subject of this measure-

ment system. The DVS-enabled laptop runs the Apache webserver software. Httperf gen-

erates simulated web clients that connect to Apache webserver, providing stimulus for the

DVS power efficiency tests. In this webserver power measurement methodology, power

data is collected as the connections rate (i.e. number of web clients connecting to the

server per second) increases.

In addition, this project has produced real-world power data for a modern DVS-

capable system. The system ran both static and dynamic scaling tests. In each trial of

the static test, the CPU was manually placed into one of the five performance levels and

remained at that level for the duration of the test. The system power was measured when

the CPU was in both an idle and a fully loaded state for each of the performance levels. As

expected the data from this test (found in Table4.1) shows that lowering the CPU’s voltage

level can lower the system’s power level dramatically. The second test is more relevant to
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the project objective, since the test produced power consumption data for a system acting in

a webserver capacity. The data from this test (Table4.2) shows DVS is able to save power

in webserver systems at lower connection rates.

Furthermore, a basic DVS algorithm has been developed in order to verify the mea-

surement platform. This DVS laptop runs this algorithm in the dynamic webserver test.

This algorithm will scale the voltage based on the what percentage of the time the CPU is

idle.

5.1 Interpretation

This project has met its goal of creating a measurement system that obtains real-

world power data of a DVS-capable system under a webserving workload. This is signifi-

cant since all previous power data for DVS-capable server systems has relied on simulation.

This is the first project to produce real-world power data for such systems. Consequently,

this system can be used to validate the Austin Research Lab’s claim that DVS is an effective

technique for power reduction in webserver systems. Indeed, the results shown in Table4.2

suggest that IBM’s claim is true. Further testing needs to be done, however, to determine

how effectively DVS can save power under real web traffic workloads. Currently, Httperf

is used to generate simulated client traffic.

There are some other limitations to the current power measurement methodology.

The system only measures overall system power. It would be helpful to measure CPU

power as well. DVS works to lower the CPU’s power consumption. Thus, measuring

CPU power separately would show the effects of DVS more clearly, since system power

aggregates the power characteristics of all the components in the system. Consequently,

events unrelated to DVS (e.g. disk drives powering up) can distort the power consumption

picture given by system power.

The lack of CPU power measurements should not significantly impact the conclu-
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sions of this paper, since the tests that were run are CPU-intensive. Thus, the majority of

the power difference can be attributed to CPU power consumption and thus DVS’ effects.

Furthermore, the CPU is the highest power consumer in the system, so it will affect the

power characteristics of the system more than other components. In fact, the results show

that DVS does reduce CPU power. Moreover, the captured power data clearly shows that

DVS can affect system power dramatically.

5.2 Recommendations

This research presents several opportunities for future work. First, the power mea-

surement methodology can be improved by instrumenting the system to measure CPU

power. In addition, the oscilloscope can be replaced with a data acquisition card that would

allow for a higher sampling rate (i.e. faster collection of data), also improving the accuracy

of results. The dynamic test could employ more realistic traffic loads by using web server

logs from actual websites. In order to truly measure the effectiveness of a DVS-enabled

webserver, the server system should respond to more realistic web traffic. Httperf can be

configured such that it reads traffic logs from actual websites. Httperf simulates webserver

traffic fairly well, but real traffic is still preferred.

Additionally, this project focused primarily on measuring the power efficiency of

DVS-enabled webserver systems, though it should be extended to measure the performance

of these systems as well. Generally, performance is a more important design constraint than

power consumption in webserver systems. Few datacenters will deploy DVS-enabled sys-

tems if performance is impacted significantly. Httperf can be readily used for this purpose.

Unfortunately, there was not enough time to incorporate this into the project.

The measurement system could also be extended to provide power data for other

applications such as databases and graphics-intensive programs. Furthermore, the rudi-

mentary DVS algorithm used for system validation could be developed into full-fledged
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DVS algorithm. The performance measurement additions to the measurement platform

would ultimately be necessary for DVS algorithm development, since an effective DVS

algorithm strikes the right balance between performance and power savings.

Though there are still many improvements that can be made to the system, re-

searchers at UVA can use this system in their DVS algorithm research. Computer scientists

at other institutions can use the methodology described in this report in order to develop

similar systems of their own.

The measurement platform described in this project will facilitate the development

of more effective DVS algorithms. Eventually, these new DVS algorithms may find their

way into the server systems of large electronic services companies such as America Online.

Ultimately, these new DVS-enabled servers would allow such companies to reduce their

operating costs and increase the reliability of their services thereby reducing consumer

prices and improving the end user’s online experience.
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Appendix A: DVS algorithm

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <sys/errno.h>
#include <stdarg.h>
#include <time.h>

// print debugging output
#define DEBUG 0

// set this to 1 for CPUFreq with sysfs interface, 0 for /proc/sys/cpu/*
#define SYSFS 1

// Maximum number of speed steps. Must be 2 or greater
#define MAX_SPEEDS 20

// To activate debug printings
#if DEBUG
# define errprintf(A...) fprintf(stderr,A)
#else
# define errprintf(A...)
#endif

#if SYSFS
# define MIN_SPEED_FILE "/sys/devices/sys/cpu0/scaling_min_freq"
# define MAX_SPEED_FILE "/sys/devices/sys/cpu0/scaling_max_freq"
# define CURRENT_SPEED_FILE "/sys/devices/sys/cpu0/scaling_setspeed"
# define GOVERNOR_FILE "/sys/devices/sys/cpu0/scaling_governor"
# define USERSPACE "userspace"
#else
# define MIN_SPEED_FILE "/proc/sys/cpu/0/speed-min"
# define MAX_SPEED_FILE "/proc/sys/cpu/0/speed-max"
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# define CURRENT_SPEED_FILE "/proc/sys/cpu/0/speed"
# define GOVERNOR_FILE "/proc/cpufreq"
# define USERSPACE "0%0%100%userspace"
#endif

// defines what info we care about for each speed step
struct {

unsigned khz;
//unsigned volts;
//unsigned fsb;

} speeds[MAX_SPEEDS + 1];

// display an error message and exit the program
void
die(bool system_error, const char *fmt, ...)
{

fprintf(stderr, "Error: ");

va_list ap;
va_start(ap, fmt); // get variable argument list passed
vfprintf(stderr, fmt, ap); // display message passed on stderr
va_end(ap);

fprintf(stderr, "\n");
if (system_error)

fprintf(stderr, "Error: %s\n", strerror(errno));

exit(1);
}

// read a line from a file
void
read_line(const char * filename, char * line, unsigned len)
{

FILE * fp = fopen(filename, "r");
if (!fp)

die(true, "Could not open file for reading: %s", filename);
if ( (!fgets(line, len, fp)) )

die(true, "Could not read from file: %s", filename);
fclose(fp);

}

// write a line to a file
void
write_line(const char * filename, const char *fmt, ...)
{

FILE * fp = fopen(filename, "w+");
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if (!fp)
die(true, "Could not open file for writing: %s", filename);

va_list ap;
va_start(ap, fmt); // get variable argument list passed
if (vfprintf(fp, fmt, ap) < 0)

die(true, "Could not write to file: %s", filename);
va_end(ap);
fclose(fp);

}

// read an integer value from a file
unsigned
read_value(const char * filename)
{

char line[256];
read_line(filename, line, sizeof line);
return atoi(line);

}

// get the current CPU speed
unsigned get_speed()
{

return read_value(CURRENT_SPEED_FILE);
}

// set the current CPU speed
void set_speed(unsigned value)
{

errprintf("Setting speed to: %uKHz\n", value);
write_line(CURRENT_SPEED_FILE, "%u\n", value);
usleep(10000); // CET - FIXME - Is this necessary for any CPUs?

}

void set_speed(unsigned current, unsigned target)
{

if (current == target)
return;

int delta = (current > target) ? -1 : 1;
do
{

current += delta;
set_speed(speeds[current].khz);

}
while (current != target);

}

// lowest speed step
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unsigned last_step;

// get the speed steps supported by the CPU
void
get_supported_speeds()
{

unsigned min = read_value(MIN_SPEED_FILE);
unsigned max = read_value(MAX_SPEED_FILE);
const unsigned step = 25000;

speeds[0].khz = max;
unsigned current_speed = 0;
for (unsigned current = max - step; current > min - step;

current -= step)
{

set_speed(current);
unsigned real = get_speed();
if (real != speeds[current_speed].khz)
{

speeds[++current_speed].khz = real;
if (current_speed + 1 == MAX_SPEEDS)

break;
}

}
speeds[current_speed + 1].khz = 0;

// go back to maximum speed because program expects to start there
set_speed(current_speed, 0);

// the last step is the lowest found speed
last_step = current_speed;

#if DEBUG
errprintf("Available speeds:\n");
for (current_speed = 0; speeds[current_speed].khz; current_speed++)

errprintf(" %2u: %9uKHz\n", current_speed,
speeds[current_speed].khz);

#endif
}

// gets the elapsed total time and elapsed idle time
//since it was last called
void
get_times(unsigned long & total_elapsed, unsigned long & idle_elapsed)
{

char what[32];
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unsigned long user_time, nice_time, system_time,
idle_time, total_time;

static unsigned long last_total_time = 0, last_idle_time = 0;

bool found;
char line[256];
FILE * fp = fopen("/proc/stat", "r");
if (!fp)

die(true, "Could not open /proc/stat for reading!");
while ( (found = fgets(line, sizeof line, fp)) )
{

sscanf(line, "%s %lu %lu %lu %lu", what, &user_time, &nice_time,
&system_time, &idle_time);

if (!strcmp(what, "cpu0"))
break;

}
fclose(fp);

if (!found)
die(false, "Could not find entry for cpu0 in /proc/stat!?");

// count nice time as idle time
idle_time += nice_time;

total_time = user_time + system_time + idle_time;
total_elapsed = total_time - last_total_time;
last_total_time = total_time;
idle_elapsed = idle_time - last_idle_time;
last_idle_time = idle_time;

}

// resets the elapsed total time and elapsed idle time counters
void reset_times()
{

unsigned long dummy1, dummy2;
get_times(dummy1, dummy2);

}

// are we currently dynamically scaling the CPU or at min or max?
enum Mode { DYNAMIC, MIN, MAX } mode;

// if CPU idle/work ratio is below this,
//CPU will be set to next higher speed
float clock_up_idle=0.25;
// if CPU idle/work ratio is above this,
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//CPU will be set to next lower speed
float clock_down_idle=0.75;

// handles the periodic check of idle and setting CPU speed
void
alarm_handler(int)
{

static unsigned new_speed = 0;
static unsigned current_speed = 0;

// current state
Mode state = mode;

char line[256], *p;

if (mode == DYNAMIC)
{

// figure out what our current speed should be
switch(state)
{

case DYNAMIC:
{

unsigned long elapsed_time, idle_time;
double idle_ratio;

// get the elapsed and idle times since we last checked
get_times(elapsed_time, idle_time);

if (elapsed_time > 0)
{

idle_ratio = (double)idle_time / (double)elapsed_time;

if (idle_ratio <= clock_up_idle && new_speed != 0)
new_speed--;

else if (idle_ratio >= clock_down_idle
&& speeds[new_speed + 1].khz != 0)

new_speed++;

errprintf("Idle ratio: %.2f %4dKHz\n",
idle_ratio, speeds[new_speed].khz);

}
break;

}

case MIN:
new_speed = last_step;
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break;

case MAX:
new_speed = 0;
break;

}

// if the last set speed is not what it currently should be,
//set it

if (current_speed != new_speed)
{

errprintf("current speed: %uKHz new speed: %uKHz\n",
speeds[current_speed].khz, speeds[new_speed].khz);

set_speed(current_speed, new_speed);
current_speed = new_speed;

}
}

// handles the USR1 signal (stay at maximum performance)
void
usr1_handler(int)
{

mode = MAX;
}

// handles the USR2 signal (stay at minimum performance)
void
usr2_handler(int)
{

mode = MIN;
}

// handles the HUP signal (dynamically scale performance)
void
hup_handler(int)
{

reset_times();
mode = DYNAMIC;

}

long
get_int(const char * s)
{

char * end;
long r = strtol(s, &end, 10);
if (*end != ’\0’)

die(false, "Not an integer: %s", s);
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if (errno == ERANGE)
die(false, "Number is out of range: %s", s);

return r;
}

float
get_float(const char * s)
{

char * end;
float r = (float)strtod(s, &end);
if (*end != ’\0’)

die(false, "Not a floating point number: %s", s);
if (errno == ERANGE)

die(false, "Number is out of range: %s", s);

return r;
}

int
main(unsigned argc, char * argv[])
{

unsigned interval = 20; // 2 seconds
bool daemonize = false;

// parse argv
for(unsigned i = 1; i < argc; i++)
{

if(!strcmp(argv[i], "-d"))
daemonize = true;

else if(!strcmp(argv[i], "-i"))
{

if (argc <= i + 1)
die(false,

"The -i option must be followed by an interval
in tenths of a second\n");

interval = get_int(argv[++i]);
errprintf("Interval is %u\n", interval);

}
else if(!strcmp(argv[i], "-p"))
{

if (argc <= i + 3)
die(false,
"The -p option must be followed by 3 floats\n");
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clock_up_idle_fast = get_float(argv[++i]);
clock_up_idle = get_float(argv[++i]);
clock_down_idle = get_float(argv[++i]);
errprintf("Triggers are %f %f %f\n",

clock_up_idle_fast,clock_up_idle,clock_down_idle);
}
else if (!strcmp(argv[i], "-a"))
{

if (argc <= i + 1)
die(false,

"The -a option must be followed by a filename\n");

ac_filename = argv[++i];
}

}

// use the userspace governor
write_line(GOVERNOR_FILE, "%s\n", USERSPACE);

if (access(CURRENT_SPEED_FILE, W_OK) < 0)
die(true, "Cannot write to speed control file: %s",

CURRENT_SPEED_FILE);

// run in background if requested
if (daemonize)

daemon(0, 0);

// set up signal handling
struct sigaction signal_action;

sigemptyset(&signal_action.sa_mask);
sigaddset(&signal_action.sa_mask, SIGALRM);
sigaddset(&signal_action.sa_mask, SIGUSR1);
sigaddset(&signal_action.sa_mask, SIGUSR2);
sigaddset(&signal_action.sa_mask, SIGHUP);
signal_action.sa_flags = 0;

// set the SIGALRM handler to our function
signal_action.sa_handler = alarm_handler;
sigaction(SIGALRM, &signal_action, 0);

// set the SIGUSR1 handler to our function
signal_action.sa_handler = usr1_handler;
sigaction(SIGUSR1, &signal_action, 0);

// set the SIGUSR2 handler to our function
signal_action.sa_handler = usr2_handler;
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sigaction(SIGUSR2, &signal_action, 0);

// set the HUP handler to our function
signal_action.sa_handler = hup_handler;
sigaction(SIGHUP, &signal_action, 0);

// reset the speed steps
get_supported_speeds();
// reset the time counters
reset_times();

// we dynamically scale speed to start
mode = DYNAMIC;

// main loop
while (1)
{

raise(SIGALRM);
usleep(interval * 100000L);

}

// never reached
return 0;

}
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