
Accelerating SQL Database Operations on a GPU
with CUDA: Extended Results

University of Virginia Department of Computer Science
Technical Report CS-2010-08

Peter Bakkum and Kevin Skadron
Department of Computer Science

University of Virginia, Charlottesville, VA 22904
{pbb7c, skadron}@virginia.edu

ABSTRACT
Prior work has shown dramatic acceleration for various data-
base operations on GPUs, but only using primitives that are
not part of conventional database languages such as SQL.
This paper implements a subset of the SQLite virtual ma-
chine directly on the GPU, accelerating SQL queries by ex-
ecuting in parallel on GPU hardware. This dramatically
reduces the effort required to achieve GPU acceleration by
avoiding the need for database programmers to use new pro-
gramming languages such as CUDA or modify their pro-
grams to use non-SQL libraries.

This paper focuses on accelerating SELECT queries and
describes the considerations in an efficient GPU implemen-
tation of the SQLite command processor. Results on an
NVIDIA Tesla C1060 achieve speedups of 20-70x depend-
ing on the size of the result set. This work is compared to
the alternative query platforms developed recently, such as
MapReduce implementations, and future avenues of research
in GPU data processing are described.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel Programming;
H.2.4 [Database Management]: Parallel Databases

Keywords
GPGPU, CUDA, Databases, SQL

1. INTRODUCTION
GPUs, known colloquially as video cards, are the means by
which computers render graphical information on a screen.
The modern GPU’s parallel architecture gives it very high
throughput on certain problems, and its near universal use in
desktop computers means that it is a cheap and ubiquitous
source of processing power. There is a growing interest in

applying this power to more general non-graphical problems
through frameworks such as NVIDIA’s CUDA, an applica-
tion programming interface developed to give programmers
a simple and standard way to execute general purpose logic
on NVIDIA GPUs. Programmers often use CUDA and sim-
ilar interfaces to accelerate computationally intensive data
processing operations, often executing them fifty times faster
on the GPU [5]. Many of these operations have direct par-
allels to classic database queries [9, 17].

The GPU’s complex architecture makes it difficult for
unfamiliar programmers to fully exploit. An effective CUDA
programmer must have an understanding of six different
memory spaces, a model of how CUDA threads and thread
blocks are mapped to GPU hardware, an understanding of
CUDA interthread communication, etc. CUDA has brought
GPU development closer to the mainstream but program-
mers must still write a low-level CUDA kernel for each data
processing operation they perform on the GPU, a time-
intensive task that frequently duplicates work.

At a high level, the GPU is a heavily parallelized pro-
cessor. While CPUs generally have 1 to 4 heavily optimized
and pipelined cores, GPUs have hundreds of simple and syn-
chronized processing units. The programmer assigns work
to threads, which are grouped into thread blocks which the
GPU assigns to its streaming multiprocessors, which contain
groups of CUDA cores. Each thread executes an identical
program, and this execution remains synchronous within a
thread block unless the execution path within a thread di-
verges based on its data. This is called the Single-Instruction
Multiple Thread (SIMT) programming model. A thread
can access data from the high-latency global memory, work
within its own memory space, called the register space, and
share data with other threads in the thread block using
shared memory. Global memory accesses can be accelerated
by coalescing accesses among threads or using the texture
memory cache.

SQL is an industry-standard generic declarative language
used to manipulate and query databases. Capable of per-
forming very complex joins and aggregations of data sets,
SQL is used as the bridge between procedural programs and
structured tables of data. An acceleration of SQL queries
would enable programmers to increase the speed of their
data processing operations with little or no change to their

1



source code. Despite the demand for GPU program acceler-
ation, no implementation of SQL is capable of automatically
accessing a GPU, even though SQL queries have been closely
emulated on the GPU to prove the parallel architecture’s
adaptability to such execution patterns [10, 11, 17].

There exist limitations to current GPU technology that
affect the potential users of such a GPU SQL implementa-
tion. The two most relevant technical limitations are the
GPU memory size and the host to GPU device memory
transfer time. Though future graphics cards will almost
certainly have greater memory, current NVIDIA cards have
a maximum of 4 gigabytes, a fraction of the size of many
databases. Transferring memory blocks between the CPU
and the GPU remains costly. Consequently, staging data
rows to the GPU and staging result rows back requires signif-
icant overhead. Despite these constraints, the actual query
execution can be run concurrently over the GPU’s highly
parallel organization, thus outperforming CPU query exe-
cution.

There are a number of applications that fit into the do-
main of this project, despite the limitations described above.
Many databases, such as those used for research, modify
data infrequently and experience their heaviest loads during
read queries. Another set of applications care much more
about the latency of a particular query than strict adher-
ence to presenting the latest data, an example being Inter-
net search engines. Most high-traffic dynamic websites uti-
lize multiple layers of caching, such that a query that occurs
when a user accesses a certain page executes with a redun-
dant and marginally stale set of data. Many queries over
a large-size dataset only address a subset of the total data,
such as a single column of a table, thus inviting staging this
subset into GPU memory. Additionally, though the finite
memory size of the GPU is a significant limitation, allocat-
ing just half of the 4 gigabytes of a Tesla C1060 to store a
data set gives the user room for over 134 million rows of 4
integers.

The contribution of this paper is to implement and de-
monstrate a SQL interface for GPU data processing. This
interface enables a subset of SQL SELECT queries on data
that has been explicitly transferred in row-column form to
GPU memory. SELECT queries were chosen since they are
the most common SQL query, and their read-only charac-
teristic exploits the throughput of the GPU to the high-
est extent. The project is built upon an existing open-
source database, SQLite, enabling switching between CPU
and GPU query execution and providing a direct compari-
son of serial and parallel execution. While previous research
has used data processing primitives to approximate the ac-
tions of SQL database queries, this implementation is built
from the ground up around the parsing of SQL queries, and
thus executes with significant differences.

In this context, SQL allows the programmer to drasti-
cally change the data processing patterns executed on the
GPU with the smallest possible development time, literally
producing completely orthogonal queries with a few changes
in SQL syntax. Not only does this simplify GPU data pro-
cessing, but the results of this paper show that executing
SQL queries on GPU hardware significantly outperforms se-

rial CPU execution. Of the thirteen SQL queries tested in
this paper, the smallest GPU speedup was 20x, with a mean
of 35x. These results suggest this will be a very fruitful area
for future research and development.

2. RELATED WORK
The preliminary results of this research project were pub-
lished in and presented at the Proceedings of the Third Work-
shop on General-Purpose Computation on Graphics Process-
ing Units (GPGPU-3), March 14, 2010, under the same ti-
tle[2]. This workshop was part of the Fifteenth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS 2010).

2.1 GPU Data Mining
There has been extensive research in general data mining
on GPUs, thoroughly proving its power and the advantages
of offloading processing from the CPU. The research rele-
vant to this paper focuses on demonstrating that certain
database operations, (i.e. operations that are logically per-
formed within a database during a query execution) can be
sped up on GPUs. These projects are implemented using
primitives such as Sort and Scatter, that can be combined
and run in succession on the same data to produce the results
of common database queries. One paper divides database
queries into predicate evaluation, boolean combination, and
aggregation functions [17]. Other primitives include binary
searches, p-ary searches [25], tree operations, relational join
operations [11], etc. An area where GPUs have proven
particularly useful is with sort operations. GPUTeraSort,
for example, is an algorithm developed to sort database
rows based on keys, and demonstrated significant perfor-
mance improvements over serial sorting methods [16]. One
of the most general of the primitive-based implementations
is GPUMiner, a program which implements several algo-
rithms, including k-means, and provides tools to visualize
the results [12]. Much of this research was performed on
previous generations of GPU hardware, and recent advances
can only improve the already impressive results.

One avenue of research directly related to production
SQL databases is the development of database procedures
that employ GPU hardware. These procedures are written
by the user and called through the database to perform a
specific function. It has been shown using stored and ex-
ternal procedures on Oracle [3] PostgreSQL databases [22]
that GPU functionality can be exploited to accelerate cer-
tain operations. The novelty of this approach is that CUDA
kernels are accessed through a database rather than explic-
itly called by a user program. These kernels have little co-
ordination with the database query processor, and have no
effect on database queries that do not explictly call them as
a function.

The most closely related research is Relational Query
Coprocessing on Graphics Processors, by Bingsheng He, et
al. [21]. This is a culmination of much of the previous
research performed on GPU-based data processing. Its au-
thors design a database, called GDB, accessed through a
plethora of individual operations. These operations are di-
vided into operators, access methods, and primitives. The
operators include ordering, grouping, and joining function-
ality. The access methods control how the data is located

2



in the database, and includes scanning, trees, and hashing.
Finally the primitives are a set of functional programming
operations such as map, reduce, scatter, gather, and split.
GDB has a number of similarities to the implementation
described in this paper, notably the read-only system and
column-row data organization, but lacks direct SQL access.
In the paper, several SQL queries are constructed with the
primitives and benchmarked, but no parser exists to trans-
form SQL queries to sequences of primitives.

This paper’s implementation has similar results to the
previous research, but approaches the querying of datasets
from an opposing direction. Other research has built GPU
computing primitives from the ground up, then built pro-
grams with these primitives to compare to other database
operations. This paper’s research begins with the code-
base of a CPU-based database and adapts its computa-
tional elements to execute on a GPU. This approach allows
a much more direct comparison with traditional databases,
and most importantly, allows the computing power of the
GPU to be accessed directly through SQL. SQL presents
a uniform and standardized interface to the GPU, without
knowledge of the specific primitives of a certain implementa-
tion, and with the option choosing between CPU and GPU
execution. In other words, the marginal cost of designing
data processing queries to be run on a GPU is significantly
reduced with a SQL interface.

To our knowledge, no other published research provides
this SQL interface to GPU execution. In practical terms,
this approach means that a CUDA thread executes a set of
SQLite opcodes on a single row before exiting, rather than
a host function managing bundle of primitives as CUDA
kernels. It is possible that a SQL interface to the primi-
tives discussed in other research could be created through
a parser, but this has not been done, and may or may not
be more advantageous for GPU execution. Many primitives
such as sort and group have direct analogs in SQL, future
research may clarify how an optimal SQL query processor
differs when targeting the GPU versus the CPU.

2.2 MapReduce
A new and active area of data mining research is in the
MapReduce paradigm. Originally pioneered by Google, it
gives the programmer a new paradigm for data mining based
on the functional primitives map and reduce [8]. This para-
digm has a fundamentally parallel nature, and is used exten-
sively by Google and many other companies for large-scale
distributed data processing. Though essentially just a name
for using two of the primitives mentioned in the previous
section, we give MapReduce special treatment because it
has become a major topic in itself. Research in this area has
shown that MapReduce frameworks can be accelerated on
multicore machines [28] and on GPUs [20]. Notably, Thrust,
a library of algorithms implemented in CUDA intended as a
GPU-aware library similar to the C++ Standard Template
Library, includes a MapReduce implementation [37].

In some cases, a MapReduce framework has become a
replacement for a traditional SQL database, though its use
remains limited. The advantage of one over the other re-
mains a hotly debated topic, both are very general methods
through which data can be processed. MapReduce requires

the programmer to write a specific query procedurally, while
SQL’s power lies in its simple declarative syntax. Conse-
quently, MapReduce most useful for handling unstructured
data. A key difference is that the simplicity of the MapRe-
duce paradigm makes it simple to implement in CUDA,
while no such SQL implementation exists. Additionally the
limited use of MapReduce restricts any GPU implementa-
tion to a small audience, particularly given that the memory
ceilings of modern GPUs inhibit their use in the huge-scale
data processing applications for which MapReduce is known.

2.3 Programming Abstraction
Another notable vector of research is the effort to simplify
the process of writing GPGPU applications, CUDA appli-
cations in particular. Writing optimal CUDA programs re-
quires an understanding of the esoteric aspects of NVIDIA
hardware, specifically the memory heirarchy. Research on
this problem has focused on making the heirarchy trans-
parent to the programmer, performing critical optimization
during compilation. One such project has programmers
write CUDA programs that exclusively use global memory,
then chooses the best variables to move to register mem-
ory, shared memory, etc. during the compilation phase [29].
Other projects such as CUDA-lite and hiCUDA have the
programmer annotate their code for the compiler, which
chooses the best memory allocation based on these notes,
an approach similar to the OpenMP model [19, 39]. Yet
another project directly translates OpenMP code to CUDA,
effectively making it possible to migrate parallel processor
code to the GPU with no input from the programmer [27]. A
common thread in this area is the tradeoff between the diffi-
culty of program development and the optimality of the fin-
ished product. Ultimately, programming directly in CUDA
remains the only way to ensure a program is taking full ad-
vantage of the GPU hardware.

Regardless of the specifics, there is clear interest in pro-
viding a simpler interface to GPGPU programming than
those that currently exist. The ubiquity of SQL and its per-
vasive parallelism suggest that a SQL-based GPU interface
would be easy for programmers to use and could significantly
speed up many applications that have already been devel-
oped with databases. Such an interface would not be ideal
for all applications, and would lack the fine-grained opti-
mization of the previously discussed interfaces, but could be
significantly simpler to use.

2.4 General Data Mining
Individually implemented data processing systems can be
thought of as points in a multi-dimensional space, to which
we will explicitly define three dimensions. The first dimen-
sion is the tradeoff between proceduralness and declarative-
ness in the query language used, which we will call PD,
with higher values for more declarativeness. The second di-
mension is the tradeoff between storing unstructured versus
structured data, which we will call US, with higher values
for more structure. The final dimension is the tradeoff be-
tween serial and parallel query execution, which we will call
SP, with higher values for increased parallelism.

Most modern relational database management systems
(RDBMSs), such as SQLite or Oracle, can be described
as systems with very high PD and US values. The PD

3



value derives from the declarativeness of SQL. Even though
queries are necessarily translated into a language which can
be executed on a CPU, SQL largely removes programmer
understanding of the actual serial pattern described in a
SQL query. On the opposite end of this dimension lies a
query hand-written in serial code. For example, a simple
SELECT query can be thought of as a for loop that checks
rows in a table with an if statement. When written in SQL,
this action becomes declarative, and thus has a higher PD
value. The high US value is a consequence of the managed
and structured way that databases store data, using a cus-
tom format to manage data types, and access methods such
as hashing or trees to access it efficiently. Over the past few
decades many databases have achieved higher SP values by
executing queries on multiple CPU cores and on distributed
systems. The contribution of this paper is to create a system
with a very high SP value by executing on the GPU, while
retaining the PD value of SQL access.

Query language declarativeness is an extremely useful
way to handle both the structuredness of data in RDBMSs
and the parallelism provided by modern hardware. The
more general and declarative a query language is, the less
the programmer needs to know about how the data is stored
and how the query is executed. This paper shows that the
parallelism of the GPU can be accessed surprisingly well
through a declarative language: SQL.

The proliferation of large data-driven web applications
such as the Google search engine and Facebook has led to
demand for data systems with PD, US, and SP values not
found in RDBMSs, hence the popularity of the MapReduce
paradigm [7]. The Google search engine, for instance, must
locate a phrase within billions of unstructured documents
and rank the results, a difficult and inefficient operation on a
relational database. The most popular MapReduce system,
Hadoop, represents a point with much lower declarativeness
and data structure, but very high parallelism [18]. There
has been a significant amount of research, all within the
past six years (The first paper on MapReduce was released
in 2004[8]), on developing systems that lie between Hadoop
and RDBMSs in terms of declarativeness, parallelism, and
data structure.

One such research area currently under heavy devel-
opment implements layers on top of Hadoop to provide a
declarative interface for querying. Promoted by Facebook,
the Hive project implements HiveQL, a declarative language
that intersects with SQL, and provides ways to structure
data [38]. Pig is a similar system developed by Yahoo! [7,
14, 32]. These query languages have syntaxes similar to
SQL, but include keywords such as MAPREDUCE to bridge
the gap to the Hadoop platform. A related but indepen-
dent project, HadoopDB, extends Hive by creating local
databases at each MapReduce node and managing them at a
head node [1]. Under this model SQL queries are parsed to a
Hadoop MapReduce format, then transformed back to SQL
at each node. Yet another project called SQL/MapReduce
creates a hybrid system by implementing MapReduce with
SQL user defined functions [13]. This approach is expanded
in a paper that points out the deficiencies of UDFs, and
instead proposes Relation-Valued Functions, which would
allow closer coordination between user-written code and the

database through an API, and enable optimization such as
user-defined caching [6].

This area has seen an unusual amount of proprietary
corporate development, with many large organizations de-
manding solutions that exactly fit their needs. IBM has de-
veloped hybrid systems that rely on their System S stream
processing platform. This research examined a similar hy-
brid query language, but more interesting is their code-
generation query processor, which optimizes the compiled
query output for the actual hardware and network archi-
tecture of their machines [15, 26]. Microsoft’s entries in
this field rely on their Dryad platform, which like System
S, breaks jobs into an acyclic graph of pieces that can be
mapped to hardware sequentially and/or in parallel [23]. Mi-
crosoft’s SCOPE is a partially declarative language, like Pig,
while the DryadLINQ language is focused more on paralleliz-
ing procedural programs for distributed graph execution [4,
24].

The diversity in this area demonstrates the wide range of
data-processing systems and query languages that are pos-
sible. Platforms should not just be grouped into RDBMSs
and MapReduce systems. Given the very heavy research and
development this area has received in the past few years, we
expect further major advances soon.

3. SQLITE
3.1 Overview
SQLite is a completely open source database developed by
a small team supported by several major corporations [33].
Its development team claims that SQLite is the most widely
deployed database in the world owing to its use in popular
applications, such as Firefox, and on mobile devices, such
as the iPhone [35]. SQLite is respected for its extreme sim-
plicity and extensive testing. Unlike most databases which
operate as server, accessed by separate processes and usually
accessed remotely, SQLite is written to be compiled directly
into the source code of the client application. SQLite is dis-
tributed as a single C source file, making it trivial to add
a database with a full SQL implementation to a C/C++
application.

3.2 Architecture
SQLite’s architecture is relatively simple, and a brief de-
scription is necessary for understanding the CUDA imple-
mentation described in this paper. The core of the SQLite
infrastructure contains the user interface, the SQL command
processor, and the virtual machine [34]. SQLite also contains
extensive functionality for handling disk operations, mem-
ory allocation, testing, etc. but these areas are less relevant
to this project. The user interface consists of a library of
C functions and structures to handle operations such as ini-
tializing databases, executing queries, and looking at results.
The interface is simple and intuitive: it is possible to open
a database and execute a query in just two function calls.
Function calls that execute SQL queries use the SQL com-
mand processor. The command processor functions exactly
like a compiler: it contains a tokenizer, a parser, and a code
generator. The parser is created with an LALR(1) parser
generator called Lemon, very similar to YACC and Bison.
The command processor outputs a program in an intermedi-
ate language similar to assembly. Essentially, the command

4



processor takes the complex syntax of a SQL query and out-
puts a set of discrete steps.

Each operation in this intermediate program contains an
opcode and up to five arguments. Each opcode refers to a
specific operation performed within the database. Opcodes
perform operations such as opening a table, loading data
from a cell into a register, performing a math operation on
a register, and jumping to another opcode [36]. A simple
SELECT query works by initializing access to a database
table, looping over each row, then cleaning up and exiting.
The loop includes opcodes such as Column, which loads data
from a column of the current row and places it in a register,
ResultRow, which moves the data in a set of registers to the
result set of the query, and Next, which moves the program
on to the next row.

This opcode program is executed by the SQLite virtual
machine. The virtual machine manages the open database
and table, and stores information in a set of ”registers” 1.
When executing a program, the virtual machine directs con-
trol flow through a large switch statement, which jumps to
a block of code based on the current opcode.

3.3 Usefulness
SQLite was chosen as a component of this project for a num-
ber of reasons. First, using elements of a well-developed
database removes the burden of having to implement SQL
query processing for the purposes of this project. SQLite
was attractive primarily for its simplicity, having been de-
veloped from the ground up to be as simple and compact
as possible. The source code is very readable, written in a
clean style and commented heavily. The serverless design of
SQLite also makes it ideal for research use. It is very easy
to modify and add code and recompile quickly to test, and
its functionality is much more accessible to someone inter-
ested in comparing native SQL query execution to execu-
tion on the GPU. Additionally, the SQLite source code is in
the public domain, thus there are no licensing requirements
or restrictions on use. Finally, the widespread adoption of
SQLite makes this project relevant to the industry, demon-
strating that many already-developed SQLite applications
could improve their performance by investing in GPU hard-
ware and changing a trivial amount of code.

From an architectural standpoint, SQLite is useful for
its rigid compartmentalization. Its command processor is
entirely separate from the virtual machine, which is entirely
separate from the disk i/o code and the memory allocation
code, such that any of these pieces can be swapped out
for custom code. Critically, this makes it possible to re-
implement the virtual machine to run the opcode program
on GPU hardware.

A limitation of SQLite is that its serverless design means
it is not implemented to take advantage of multiple cores.
Because it exists solely as a part of another program’s pro-
cess, threading is controlled entirely outside SQLite, though
it has been written to be thread-safe. This limitation means

1SQLite registers are logical stores of data used in the in-
termediate opcode language. They should not be confused
with CUDA registers, which are the physical banks used to
store memory scoped to a single thread.

that there is no simple way to compare SQLite queries exe-
cuted on a single core to SQLite queries optimized for mul-
ticore machines. This is an area for future work.

4. IMPLEMENTATION
4.1 Scope
Given the range of both database queries and database ap-
plications and the limitations of CUDA development, it is
necessary to define the scope of of this project. We explicitly
target applications that run SELECT queries multiple times
on the same mid-size data set. The SELECT query qualifi-
cation means that the GPU is used for read-only data. This
enables the GPU to maximize its bandwidth for this case
and predicates storing database rows in row-column form.
The ’multiple times’ qualification means that the project has
been designed such that SQL queries are executed on data
already resident on the card. A major bottleneck to GPU
data processing is the cost of moving data between device
and host memory. By moving a block of data into the GPU
memory and executing multiple queries, the cost of loading
data is effectively amortized as we execute more and more
queries, thus the cost is mostly ignored. Finally, a ’mid-size
data set’ is enough data to ignore the overhead of setting
up and calling a CUDA kernel but less than the ceiling of
total GPU memory. In practice, this project was designed
and tested using one and five million row data sets.

This project only implements support for numeric data
types. Though string and blob types are certainly very use-
ful elements of SQL, in practice serious data mining on un-
structured data is often easier to implement with another
paradigm. Strings also break the fixed-column width data
arrangement used for this project, and transferring charac-
ter pointers from the host to device is a tedious operation.
The numeric data types supported include 32 bit integers,
32 bit IEEE 754 floating point values, 64 bit integers, and
64 bit IEEE 754 double precision values. Relaxing these
restrictions is an area for future work.

4.2 Data Set
As previously described, this project assumes data stays res-
ident on the card across multiple queries and thus neglects
the up-front cost of moving data to the GPU. Based on
the read-only nature of the SQL queries in this project and
the characteristics of the CUDA programming model, data
is stored on the GPU in row-column form. SQLite stores
its data in a B-Tree, thus an explicit translation step is re-
quired. For convenience, this process is performed with a
SELECT query in SQLite to retrieve a subset of data from
the currently open database.

The Tesla C1060 GPU used for development has 4 gi-
gabytes of global memory, thus setting the upper limit of
data set size without moving data on and off the card dur-
ing query execution. Note that in addition to the data set
loaded on the GPU, there must be another memory block
allocated to store the result set. Both of these blocks are al-
located during the initialization of the program. In addition
to allocation, meta data such as the size of the block, the
number of rows in the block, the stride of the block, and the
size of each column must be explicitly managed.

During the initialization phase of our implementation

5



it is necessary to allocate 4 memory blocks: the CPU and
GPU data blocks, and the CPU and GPU results blocks.
The CPU and GPU blocks of both types are the same size,
but the data and results blocks can be different sizes. This
may be advantageous in circumstances where the data block
is greater than 50% of the available GPU memory, but the
result set is expected to be fairly small. For example, if the
ratio of result records to data records is expected to be 1:4,
then 80% of GPU memory could be allocated for data, with
20% allocated for results.

Since data must be transferred to and from the GPU,
the memory transfer time significantly affects performance.
The CUDA API provides the option to use pinned memory
as a way to ensure memory transfers proceed as fast as pos-
sible [31]. This type of memory is also called page-locked,
and means that the operating system has relinquished the
ability to swap out pages of the allocated block. Thus, once
allocated, the memory is guaranteed to be in certain location
and can be directly accessed by the GPU without consulting
the page table. Our implementation uses pinned memory for
the data and result memory blocks. Pinned memory gener-
ally speeds memory transfers by 2x, and should thus be used
whenever possible with large data blocks. Unfortunately, us-
ing significant amounts of pinned memory sometimes affects
the performance of other processes on a machine. Many op-
erating systems have a fairly small limit on the amount of
memory that a single process can pin, since declaring that a
large portion of a system’s memory cannot be swapped can
starve other processes and even the operating system itself
of memory.

4.3 Memory Spaces
This project attempts to utilize the memory heirarchy of the
CUDA programming model to its full extent, employing reg-
ister, shared, constant, local, and global memory [31]. Reg-
ister memory holds thread-specific memory such as offsets in
the data and results blocks. Shared memory, memory shared
among all threads in the thread block, is used to coordinate
threads during the reduction phase of the kernel execution,
in which each thread with a result row must emit that to a
unique location in the result data set. Constant memory is
particularly useful for this project since it is used to store the
opcode program executed by every thread. It is also used
to store data set meta information, including column types
and widths. Since the program and this data set informa-
tion is accessed very frequently across all threads, constant
memory significantly reduces the overhead that would be
incurred if this information was stored in global memory.

Global memory is necessarily used to store the data set
on which the query is being performed. Global memory has
significantly higher latency than register or constant mem-
ory, thus no information other than the entire data set is
stored in global memory, with one esoteric exception. Local
memory is an abstraction in the CUDA programming model
that means memory within the scope of a single thread that
is stored in the global memory space. Each CUDA thread
block is limited to 16 kilobytes of register memory: when this
limit broken the compiler automatically places variables in
local memory. Local memory is also used for arrays that
are accessed by variables not known at compile time. This
is a significant limitation since the SQLite virtual machine

registers are stored in an array. This limitation is discussed
in further detail below.

Note that texture memory is not used for data set access.
Texture memory acts as a one to three dimensional cache
for accessing global memory and can significantly accelerate
certain applications[31]. Experimentation determined that
using texture memory had no effect on query performance.
There are several reasons for this. First, the global data set
is accessed relatively infrequently, data is loaded into SQLite
registers before it is manipulated. Next, texture memory
is optimized for two dimensional caching, while the data
set is accessed as one dimensional data in a single block of
memory. Finally, the row-column data format enables most
global memory accesses to be coalesced, reducing the need
for caching.

4.4 Parsed Queries
As discussed above, SQLite parses a SQL query into an op-
code program that resembles assembly code. This project
calls the SQLite command processor and extracts the re-
sults, removing data superfluous to the subset of SQL queries
implemented in this project. A processing phase is also used
to ready the opcode program for transfer to the GPU, in-
cluding dereferencing pointers and storing the target directly
in the opcode program. A sample program is printed below,
output by the command processor for query 1 in Appendix
A.

0: Trace 0 0 0

1: Integer 60 1 0

2: Integer 0 2 0

3: Goto 0 17 0

4: OpenRead 0 2 0

5: Rewind 0 15 0

6: Column 0 1 3

7: Le 1 14 3

8: Column 0 2 3

9: Ge 2 14 3

10: Column 0 0 5

11: Column 0 1 6

12: Column 0 2 7

13: ResultRow 5 3 0

14: Next 0 6 0

15: Close 0 0 0

16: Halt 0 0 0

17: Transaction 0 0 0

18: VerifyCookie 0 1 0

19: TableLock 0 2 0

20: Goto 0 4 0

A virtual machine execution of this opcode procedure
iterates sequentially over the entire table and emits result
rows. Not all of the opcodes are relevant to this project’s
storage of a single table in GPU memory, and are thus not
implemented. The key to this kind of procedure is that
opcodes manipulate the program counter and jump to dif-
ferent locations, thus opcodes are not always executed in
order. The Next opcode, for example, advances from one
row to the next and jumps to the value of the second ar-
gument. An examination of the procedure thus reveals the
block of opcodes 6 through 14 are executed for each row of
the table. The procedure is thus inherently parallelizable

6



by assigning each row to a CUDA thread and executing the
looped procedure until the Next opcode.

Nearly all opcodes manipulate the array of SQLite reg-
isters in some way. The registers are generic memory cells
that can store any kind of data and are indexed in an array.
The Column opcode is responsible for loading data from a
column in the current row into a certain register. The In-

teger opcode sets the value of a register to a certain integer,
for instance line 1 of the example code sets register 1 to a
value of 60.

The code above utilizes common opcodes to execute a
simple SELECT query, but also demonstrates the thread di-
vergence discussed in detail in this paper. Line 6 uses the
Column opcode to load the first column of data from a cer-
tain row into register 3. Line 7 then examines this row with
the Le opcode, which checks to see whether or not the value
in register 1 is less than or equal to the value in register 3.
If so, we jump to line 14, which contains the Next opcode
that advances the query exection to the next row, thus skip-
ping the ResultRow opcode responsible for outputting values
from this row in a result block. Thus, opcodes 8 through 14
only get executed for certain rows, since some rows will have
a value in column 1 greater than 60, and some will have a
value less than or equal to 60. In our implementation we
examine each row concurrently in a separate thread, thus
thread divergence occurs because some threads do not al-
ways execute the same opcodes.

Note the differences between a program of this kind and
a procedure of primitives, as implemented in previous re-
search. Primitives are individual CUDA kernels executed
serially, while the entire opcode procedure is executed en-
tirely within a kernel. As divergence is created based on
the data content of each row, the kernels execute different
opcodes. This type of divergence does not occur with a
query-plan of primitives.

4.5 Virtual Machine Infrastructure
The crux of this project is the reimplementation of the SQLite
virtual machine with CUDA. The virtual machine is imple-
mented as a CUDA kernel that executes the opcode proce-
dure. The project has implemented around 40 opcodes thus
far which cover the comparison opcodes, such as Ge (greater
than or equal), the mathematical opcodes, such as Add, the
logical opcodes, such as Or, the bitwise opcodes, such as Bi-
tAnd, and several other critical opcodes such as ResultRow.
The opcodes are stored in two switch statements.

The first switch statement of the virtual machine allows
divergent opcode execution, while the second requires con-
current opcode execution. In other words, the first switch
statement allows threads to execute different opcodes con-
currently, and the second does not. When the Next opcode
is encountered, signifying the end of the data-dependent par-
allelism, the virtual machine jumps from the divergent block
to the concurrent block. The concurrent block is used for the
aggregation functions, where coordination across all threads
is essential.

A major piece of the CUDA kernel is the reduction when
the ResultRow opcode is called by multiple threads to emit

rows of results. Since not every thread emits a row, a reduc-
tion operation must be performed to ensure that the result
block is a contiguous set of data. This reduction involves
inter-thread and inter-thread block communication, as each
thread that needs to emit a row must be assigned a unique
area of the result set data block. Although the result set is
contiguous, no order of results is guaranteed. This saves the
major overhead of completely synchronizing when threads
and thread blocks complete execution.

The reduction is implemented using the CUDA atomic
operation atomicAdd(), called on two tiers. First, each
thread with a result row calls atomicAdd() on a variable
in shared memory, thus receiving an assignment within the
thread block. The last thread in the block then calls this
function on a separate global variable which determine’s the
thread block’s position in the memory space, which each
thread then uses to determine its exact target row based on
the previous assignment within the thread block. Experi-
mentation has found that this method of reduction is faster
than others for this particular type of assigment, particularly
with sparse result sets.

This project also supports SQL aggregation functions
(i.e. COUNT, SUM, MIN, MAX, and AVG), though only
for integer values. Significant effort has been made to ad-
here to the SQLite-parsed query plan without multiple ker-
nel launches. Since inter-thread block coordination, such
as that used for aggregation functions, is difficult without
using a kernel launch as a global barrier, atomic functions
are used for coordination, but these can only be used with
integer values in CUDA. This limitation is expected to be
removed in next-generation hardware, and the performance
data for integer aggregates is likely a good approximation of
future performance for other types.

As discussed, we assign a table row to each thread. Our
implementation uses 192 threads per thread block based on
experimentation. CUDA allows a maximum of 65,536 thread
blocks in a single dimension, so we encounter a problem with
more than 12,582,912 rows. We have implemented function-
ality in which a thread handles multiple rows if the data size
exceeds this number, although this incurs a performance cost
because of the increase in thread divergence.

4.6 Result Set
Once the virtual machine has been executed, the result set
of a query still resides on the GPU. Though the speed of
query execution can be measured simply by timing the vir-
tual machine, in practice the results must be moved back
to the CPU to be useful to the host process. This is im-
plemented as a two-step process. First, the host transfers
a block of information about the result set back from the
GPU. This information contains the stride of a result row
and the number of result rows. The CPU multiplies these
values to determine the absolute size of the result block. If
there are zero rows then no result memory copy is needed,
otherwise a memory copy is used to transfer the result set.
Because we know exactly how large the result set is, we do
not have to transfer the entire block of memory allocated for
the result set, saving significant time.

7



4.7 Streaming
Although we have targeted our implementation towards ap-
plications that amortize moving data to the GPU by exe-
cuting multiple queries, we have also implemented a feature
which allows some of this transfer time to be overlapped
with kernel execution, thus making a priori data staging
less important. CUDA includes a feature called streams
2 which allows the programmer to explicitly define which
memory copies and kernel launches are dependent upon one
another and accelerate applications by concurrently execut-
ing independent steps [31]. By breaking query execution
into multiple kernel launches, for instance by executing 4
kernels which each process 25% of the total dataset, we can
use streams to assign a memory copy operation to each of
these kernels and overlap them with other kernels. Thus, we
first perform a memory copy for kernel 1, then we are able
to start memory copies for kernels 2, 3, and 4 while kernel
1 executes, thus reducing the number of rows transferred
before kernel execution by 75%.

This process of streaming is complicated by the overhead
of initializing memory copies. Using the previous example,
reducing the number of rows transferred before kernel ex-
ecution by 75% will not reduce the total memory transfer
time before kernel execution by 75%, since setting up the
memory copy takes a significant amount of time. In our im-
plementation the memory copy to the GPU is a much less
expensive step than transforming the data from SQLite’s
format to the GPU-optimized row-column format. Thus,
we have implemented this feature more for research purposes
than performance improvement, as it provides insight into
the performance that could be achieved if the data format
was identical between the CPU and the GPU.

This type of streaming necessarily makes use of CUDA’s
asynchronous memory copy functionality. During most mem-
ory copy operations, the code executed on the host waits
for a memory copy to return, but this is not the case with
the asynchronous API. However, it is possible even with-
out streams that kernels will return before execution has
completed. Thus, a call to cudaThreadSynchronize() is a
necessary part of kernel launches with and without streams.

Streaming has not been implemented for transferring
results rows during kernel execution, only data rows. Al-
though all of its result rows have been output once a query
execution kernel finishes, there is no way to know exactly
how many rows have been output without checking the meta-
variables of the results block. Thus, after each of the stream-
ing kernels, the current size of the results block would have
to be checked before transferring rows. Because the re-
sults block and the meta-information are being frequently
updated by subsequent streaming kernels, there are a num-
ber of concurrency concerns in implementing such a sys-
tem. Even though such an implementation would almost
certainly increase performance for certain queries, the time
constraints of this project mean that it is a topic for fu-
ture research. The result records are almost always a strict
subset of the data records, thus the acceleration for imple-

2Streaming in this context refers to a specific feature of the
CUDA API, and should not be confused with the stream-
ing multiprocessors of NVIDIA GPUs, or the more general
concept of stream processing.

menting streaming with result row transfers is smaller than
the acceleration we gain by implementing streaming for the
data block.

A huge advantage to streaming is the possibility of ex-
ecuting queries on data blocks that are larger than GPU
memory, possibly of an arbitrarily large size. Though we
have not implemented such a system, overlapping data trans-
fers with kernel execution means that data could reside on
the GPU only as long as necessary. Such an implementation
would need to stream the results off of the GPU as well,
since these would accumulate as more and more data is pro-
cessed. A table of data and results blocks would also need
to be kept, since memory would have to be cleared to be
re-used during query execution. Under such a system, the
disk i/o rate and network speed becomes much more of a
bottleneck than the GPU memory transfer time.

4.8 Interface
The project has been implemented with the intention of
making the code as simple an accessible as possible. Given
the implementation as a layer above SQLite, effort has been
made to conform to the conventions of the SQLite C inter-
face. The full application programming interface (API) is
documented in Appendices B through G.

5. PERFORMANCE
5.1 Data Set
The data used for performance testing has five million rows
with an id column, three integer columns, and three floating
point columns. The data has been generated using the GNU
Scientific Library’s random number generation functionality.
One column of each data type has a uniform distribution in
the range [-99.0, 99.0], one column has a normal distribu-
tion with a sigma of 5, and the last column has a normal
distribution with a sigma of 20. Integer and floating point
data types were tested. The random distributions provide
unpredictable data processing results and mean that the size
of the result set varies based on the criteria of the SELECT
query.

To test the performance of the implementation, 13 queries
were written, displayed in Appendix A. Five of the thirteen
query integer values, five query floating point values, and
the final 3 test the aggregation functions. The queries were
executed through the CPU SQLite virtual machine, then
through the GPU virtual machine, and the running times
were compared. Also considered was the time required to
transfer the GPU result set from the device to the host.
The size of the result set in rows for each query is shown,
as this significantly affects query performance. The queries
were chosen to demonstrate the flexibility of currently im-
plemented query capabilities and to provide a wide range of
computational intensity and result set size.

We have no reason to believe results would change sig-
nificantly with realistic data sets, since all rows are checked
in a select operation, and the performance is strongly corre-
lated with the number of rows returned. The implemented
reductions all function such that strange selection patterns,
such as selecting every even row, or selecting rows such that
only the first threads in a thread block output a result row,

8



Table 1: Performance Data by Query Type
Queries Speedup Speedup w/ Transfer CPU time (s) GPU time (s) Transfer Time (s) Rows Returned

Int 42.11 28.89 2.3843 0.0566 0.0259148 1950104.4
Float 59.16 43.68 3.5273 0.0596 0.0211238 1951015.8

Aggregation 36.22 36.19 1.0569 0.0292 0.0000237 1
All 50.85 36.20 2.2737 0.0447 0.0180920 1500431.08

Figure 1: The speedup of query execution on the GPU for each of the 13 queries considered, both including
and excluding the results transfer time.

make no difference in performance. Unfortunately, we have
not yet been able to set up real data sets to validate this
hypothesis, and this is something left for future work, but
there is little reason to expect different performance results.

5.2 Hardware and Software
The performance results were gathered from an Intel Xeon
X5550 machine running Linux 2.6.24. The processor is a 2.66
GHz 64 bit quad-core, supporting eight hardware threads
with maximum throughput of 32 GB/sec. The machine
has 5 gigabytes of memory. The graphics card used is an
NVIDIA Tesla C1060. The Tesla has 240 CUDA cores, 4
GB of global memory, and supports a maximum through-
put of 102 GB/sec.

The machine used the CUDA 2.2 drivers during testing.
SQLite 3.6.22 was used for the performance comparison, and
compiled using the Intel C Compiler 11.1, with heavy opti-
mization enabled. The NVIDIA CUDA compiler, nvcc, uses
the GNU C Compiler to handle the C code in CUDA files.
Thus, some of the code which directly calls the CUDA kernel
was compiled with GCC 4.2.4.

5.3 Fairness of Comparison
Every effort has been made to produce comparison results
that are as conservative as possible.

• Data on the CPU side has been explicitly loaded into
memory, thus eliminating mid-query disk accesses.
SQLite has functionality to declare a temporary data-
base that exists only in memory. Once initalized, the
data set is attached and named. Without this step

the GPU implementation is closer to 200x faster, but
it makes for a fairer comparison: it means the data is
loaded completely into memory for both the CPU and
the GPU.

• SQLite has been compiled with the Intel C Compiler
version 11.1. It is optimized with the flags -O2, the fa-
miliar basic optimization flag, -xHost, which enables
processor-specific optimization, and -ipo, which en-
ables optimization across source files. This forces SQL-
ite to be as fast as possible: without optimization
SQLite performs significantly worse.

• Directives are issued to SQLite at compile time to omit
all thread protection and store all temporary files in
memory rather than on disk. These directives reduce
overhead on SQLite queries.

• Results from the host query are not saved. In SQLite
results are returned by passing a callback function with
the SQL query. This is set to null, which means that
host query results are thrown away while device query
results are explicitly saved to memory. This makes the
the SQLite execution faster.

5.4 General Results
Table 1 shows the mean results for the five integer queries,
the five floating point queries, the three aggregation queries,
and all of the queries. The rows column gives the average
number of rows output to the result set during a query, which
is 1 for the aggregate functions data, because the functions
implemented reduce down to a single value across all rows
of the data set. The mean speedup across all queries was
50x, which was reduced to 36x when the results transfer

9



time was included. This means that on average, running the
queries on the dataset already loaded on to the GPU and
transferring the result set back was 36x faster than executing
the query on the CPU through SQLite. The numbers for
the all row are calculated with the summation of the time
columns, and are thus time-weighted.

Figure 1 graphically shows the speedup and speedup
with transfer time of the tested queries. Odd numbered
queries are integer queries, even numbered queries are float-
ing point queries, and the final 3 queries are aggregation
calls. The graph shows the significant deviations in speedup
values depending on the specific query. The pairing of the
two speedup measurements also demonstrates the significant
amount of time that some queries, such as query 6, spend
transferring the result set. In other queries, such as query
2, there is very little difference. The aggregation queries all
had fairly average results but trivial results transfer time,
since the aggregation functions used all reduced to a single
result. These functions were run over the entire dataset,
thus the speedup represents the time it takes to reduce five
million rows to a single value.

The time to transfer the data set from the host mem-
ory of SQLite to the device memory is around 2.8 seconds.
This operation is so expensive because the data is retrieved
from SQLite through a query and placed into row-column
form, thus it is copied several times. This is necessary be-
cause SQLite stores data in B-Tree form, while this project’s
GPU virtual machine expects data in row-column form. If
these two forms were identical, data could be transferred di-
rectly from the host to the device with a time comparable
to the result transfer time. Note that if this were the case,
many GPU queries would be faster than CPU queries even
including the data transfer time, query execution time, and
the results transfer time. As discussed above, we assume
that multiple queries are being performed on the same data
set and ignore this overhead, much as we ignore the overhead
of loading the database file from disk into SQLite memory.

Interestingly, the floating point queries had a slightly
higher speedup than the integer queries. This is likely a re-
sult of the GPU’s treatment of integers. While the GPU sup-
ports IEEE 754 compliant floating point operations, integer
math is done with a 24-bit unit, thus 32-bit integer opera-
tions are essentially emulated[31]. The resulting difference
in performance is nontrivial but not big enough to change
the magnitude of the speedup. Next generation NVIDIA
hardware is expected to support true 32-bit integer opera-
tions.

5.5 Data Size Results
An examination of query speedup as a function of the data
set size yields interesting results. Figure 2 displays the
speedups for a set of queries in which the query is held con-
stant but the table size changed. A SELECT query was run
that selected every member of the uniform integer column
with a value less than 0, roughly half of the set. Testing
data set set sizes at 5000 row increments in the range of 0
to 500,000 yields the displayed results. Below 50,000 rows
the speedup increases rapidly as the GPU becomes more
saturated with work and is able to schedule threads more
efficiently. Interestingly, speedup then increases slowly until

Figure 2: The effect of the data set size on speedup
of GPU query execution, including and excluding
the results transfer time.

around 200,000 rows, where it becomes constant. Further
testing has shown this constant trend to continue to data
sets up to the thread block barrier around 12.5 million rows,
where it decreases slightly. Although only two columns are
selected in our query, it was performed on the data set de-
scribed previously, which contains 4 integer columns and 3
floating point columns, for a total width of 28 bytes. Thus,
for this table specific query, we do not reach optimal per-
formance for data sizes less than 5 MB. Note, however, that
the break even point at which queries execute on the GPU
is very low, above the resolution of this graph.

It is surprising just how low the break-even point of GPU
query execution was in terms of data size. Testing the same
query to select every member of the uniform integer column
less than 0 with increasing data sets of 10 row increments,
GPU execution matched the speed of CPU execution with
a data set of around 350 rows. These results are shown in
Figure 3, which graphs the speed of GPU execution relative
to CPU execution at a much higher resolution than Figure
2. This means the break-even point occurs where speedup is
equal to 1. Obviously this point is slightly different when the
results transfer time is included. The break-even of 350 is
only slightly larger than the 240 multiprocessors of the Tesla
used for testing, and indicates that GPU query execution is
faster than CPU execution even for very small data sets, and
even when considering the time needed to transfer results
back. Although every query has a slightly different GPU
speedup, this low value demonstrates the expected break-
even point for even the hardest query is still fairly low. There
are very few data sets for which query speed is an issue
that are less than 350 rows, suggesting that GPU is a good
approach for almost all SELECT queries other than equality
searches.

10



Figure 3: The break-even point in rows for query ex-
ecution, including and excluding the results transfer
time.

5.6 Result Size as a Factor
There are several major factors that affect the speedup re-
sults of individual queries, including the difficulty of each
operation and output size. Though modern CPUs run at
clock speeds in excess of 2 GHz and utilize extremely opti-
mized and deeply pipelined ALUs, the fact that these oper-
ations are parallelized over 240 CUDA cores means that the
GPU should outperform in this area, despite the fact that
the SMs are much less optimized on an individual level. Un-
fortunately, it is difficult to measure the computational in-
tensity of a query, but it should be noted that queries 7 and
8, which involve multiplication operations, performed on par
with the other queries, despite the fact that multiplication
is a fairly expensive operation.

A more significant determinant of query speedup was
the size of the result set, in other words, the number of rows
that a query returned. This matters because a bigger result
set increases the overhead of the reduction step since each
thread must call atomicAdd(). It also directly affects how
long it takes to copy the result set from device memory to
host memory. These factors are illuminated with Figure 4.
A set of 21 queries were executed in which rows of data were
returned when the uniformi column was less than x, where
x was a value in the range [-100, 100] incremented by 10 for
each subsequent query. Since the uniformi column contains
a uniform distribution of integers between -99 and 99, the
expected size of the result set increased by 25,000 for each
query, ranging from 0 to 5,000,000.

The most striking trend of this graph is that the speedup
of GPU query execution increased along with the size of the
result set, despite the reduction overhead. This indicates
that the GPU implementation is more efficient at handling a
result row than the CPU implementation, probably because
of the sheer throughput of the device. The overhead of trans-
ferring the result set back is demonstrated in the second line,

Figure 4: The effect of the result set size on the
speedup of GPU query execution, including and ex-
cluding the results transfer time.

which gradually diverges from the first but still trends up,
showing that the GPU implementation is still more efficient
when the time to transfer a row back is considered. For
these tests, the unweighted average time to transfer a single
16 byte row (including meta information and memory copy
setup overhead) was 7.67 ns. Note that the data point for
0 returned rows is an outlier. This is because transferring
results back is a two step process, as described in the imple-
mentation section, and the second step is not needed when
there are no result rows. This point thus shows how high
the overhead is for using atomic operations in the reduction
phase and initiating a memory copy operation in the results
transfer phase.

5.7 Streaming Results
The streaming feature described in the implementation sec-
tion significantly increased query speedup when the data
transfer time is included in the timing. A significant vari-
able used for this feature is the stream width, or the number
of independent streams of asynchronous data transfers and
kernel executions. For example, with a stream width of only
two blocks, then there are just two memory copies and ker-
nel executions. This may not be entirely optimal, since the
first kernel must wait for 50% of the data to transfer before
beginning execution.

Figure 5 shows experimentation with several different
stream widths and demonstrates clearly how streaming af-
fects speedup. A single query selecting all values in the uni-
form integer column less than 50, or about 75% of the data,
was run for data tables of sizes ranging from 0 to 15,000,000
at 100,000 row increments. The results show timing that in-
cludes the data transfer time and the kernel execution time,
but not the results transfer time. Note that this is differ-
ent than the other figures, which show result transfer time
but not data transfer time. The graph demonstrates that

11



Figure 5: A query executed over a varying num-
ber of rows with the streaming feature disabled and
enabled with 2, 4, and 8 blocks.

streaming can significantly increase query speedup. The
differing blocks provides a good intuitive understanding of
the decreasing marginal speedup returns of increasing the
stream width. With 1 block 100% of the data must be trans-
ferred prior to the single kernel execution, but this decreases
to 50%, 25%, and 12.5% with 2, 4, and 8 blocks. With 8
blocks it appears that the transfer initialization overhead
becomes more of a facter relative to the total transfer time,
and tests show that there is little to no additional speedup
with 16 blocks.

Figure 5 also demonstrates query speedup for table sizes
above 12.5 million. As discussed in the Virtual Machine
Infrastructure section, at this point the kernel begins pro-
cessing multiple threads with the same thread. Clearly this
has a deleterious affect on performance, and further research
may provide insight into better approaches to handling huge
data sets. An advantage of streaming is that this point is
multiplied by the number of streaming blocks, and thus is
much larger for streaming execution.

5.8 Multicore Extrapolation
We have not yet implemented a parallel version of the same
SQLite functionality for multicore CPUs. This is an impor-
tant aspect of future work. In the meantime, the maximum
potential speedup with multiple cores must be kept in mind
when interpreting the GPU speedups we report. Speedup
with multicore would have an upper bound of the number
of hardware threads supported, 8 on the Xeon X5550 used
for testing, and would be reduced by the overhead of coordi-
nation, resulting in a speedup less than 8x. The speedups we
observed with the GPU substantially exceed these numbers,
showing that the GPU has a clear architectural advantage.

6. FURTHER IMPROVEMENT
6.1 Unimplemented Features
By only implementing a subset of SELECT queries on the
GPU, the programmer is limited to read-only operations. As
discussed, this approach applies speed to the most useful and
frequently used area of data processing. Further research
could examine the power of the GPU in adding and removing
data from the memory-resident data set. Though it is likely
that the GPU would outperform the CPU in this area as
well, it would be subject to a number of constraints, most
importantly the host to device memory transfer bottleneck,
that would reduce the usefulness of such an implementation.

The subset of possible SELECT queries implemented
thus far precludes several important and frequently used
features. First and foremost, this project does not imple-
ment the JOIN command, used to join multiple database
tables together as part of a SELECT query. The project
was designed to give performance improvement for multi-
ple queries run on data that has been moved to the GPU,
thus encouraging running an expensive JOIN operation be-
fore the data is primed. Indeed, since data is transferred
to the GPU with a SELECT query in this implementation,
such an operation is trivial. GROUP BY operations are also
ignored. Though not as complex as join operations, they are
a commonly implemented feature that may be included in
future implementations. The SQL standard includes many
other operators, both commonly used and largely unimple-
mented, and this discussion of missing features is far from
comprehensive.

Further testing should include a multicore implementa-
tion of SQLite for better comparison against the GPU re-
sults presented. Such an implementation would be able to
achieve a maximum of only n times faster execution on an
n-core machine, but a comparison with the overhead of the
shared memory model versus the CUDA model would be in-
teresting and valuable. Additionally, further testing should
compare these results against other open source and com-
mercial databases that do utilize multiple cores. Anecdotal
evidence suggests that SQLite performance is roughly equiv-
alent to other databases on a single core, but further testing
would prove this equivalence.

6.2 Hardware Limitations
There exist major limitations of current GPU hardware that
significantly limit this project’s performance, but may be
reduced in the near future. First, indirect jumps are not
allowed. This is significant because each of the roughly 40
SQLite opcodes implemented in the virtual machine exist in
a switch block. Since this block is used for every thread for
every opcode, comparing the switch argument to the opcode
values creates nontrivial overhead. The opcode values are
arbitrary, and must only be unique, thus they could be set to
the location of the appropriate code, allowing the program to
jump immediately for each opcode and effectively removing
this overhead. Without indirect jumps, this optimization is
impossible.

The next limitation is that dynamically accessed arrays
are stored in local memory rather than register memory in
CUDA. Local memory is an abstraction that refers to mem-
ory in the scope of a single thread that is stored in the global

12



memory of the GPU. Since it has the same latency as global
memory, local memory is 100 to 150 times slower than reg-
ister memory [31]. In CUDA, arrays that are accessed with
an an index that is unknown at compile time are automat-
ically placed in local memory. In fact it is impossible to
store them in register memory. The database virtual ma-
chine is abstract enough that array accesses of this nature
are required and very frequent, in this case with the SQLite
register array. Even the simplest SQL queries such as query
1 (shown in Appendix A) require around 25 SQLite register
accesses, thus not being able to use register memory here is
a huge restriction.

Finally, atomic functions in CUDA, such as atomicAdd()
are implemented only for integer values. Implementation for
other data types would be extremely useful for inter-thread
block communication, particularly given the architecture of
this project, and would make implementation of the aggre-
gate functions much simpler.

All three of these limitations are expected to disappear
with Fermi, the next generation of NVIDIA’s architecture
[30]. Significant efforts are being made to bring the CUDA
development environment in line with what the average pro-
grammer is accustomed to, such as a unified address space
for the memory heirarchy that makes it possible to run true
C++ on Fermi GPUs. It is likely that this unified address
space will enable dynamic arrays in register memory, dras-
tically reducing the number of global memory accesses re-
quired in our implementation. Combined with the general
performance improvements of Fermi, it is possible that a
slightly modified implementation will be significantly faster
on this new architecture.

The most important hardware limitation from the stand-
point of a database is the relatively small amount of global
memory on current generation NVIDIA GPUs. The cur-
rent top of the line GPGPU, the NVIDIA Tesla C1060, has
four gigabytes of memory. Though this is large enough for
literally hundreds of millions of rows of data, in practice
many databases are in the terabyte or even petabyte range.
This restriction hampers database research on the GPU, and
makes any enterprise application limited. Fermi will employ
a 40-bit address space, making it possible to address up to a
terabyte of memory, though it remains to be seen how much
of this space Fermi-based products will actually use.

The warp size of GPU hardware is a major consider-
ation for query performance. NVIDIA GPU hardware di-
vides thread blocks into so-called warps, which are groups
of threads that are concurrently scheduled for execution.
Warps are SIMD synchronous, so every thread within a warp
either executes the same command or waits until it has a
chance to do so, giving NVIDIA hardware its SIMT char-
acteristic. Thus, overall execution is slower if threads dis-
agree, or diverge, on what command to execute, as they do
in our implementation when different opcodes are executed
by threads within the same warp. Current hardware has a
warp size of 32 threads, which means that a performance
penalty is incurred if any of 32 threads in a warp diverge.
We believe that this type of divergence is much more preva-
lent with the general data processing we describe in this
paper than most other CUDA applications. Future hard-

ware is expected to include more advanced warp scheduling
that allows 2 warps execute concurrently, significantly al-
tering how divergence is handled [30]. We do not consider
this a ”limitation,”because reducing the warp size essentially
optimizes the hardware towards applications with more di-
vergence, however, there may be significant acceleration of
our implementation with this new scheduler.

6.3 Heterogeneous Configuration
A topic left unexamined in this paper is the possibility of
breaking up a data set and running a query concurrently
on multiple GPUs. Though there would certainly be coor-
dination overhead, it is very likely that SQL queries could
be further accelerated with such a configuration. Consider
the NVIDIA Tesla S1070, a server product which contains 4
Tesla GPUs. This machine has a combined GPU through-
put of 408 GB/sec, 960 CUDA cores, and a total of 16 GB
of GPU memory. Further research could implement a query
mechanism that takes advantage of multiple GPUs resident
on a single host and across multiple hosts.

A similar topic is the possibility of executing queries con-
currently on the CPU and the GPU. With our current imple-
mentation the programmer explicitly chooses between CPU
and GPU execution, and during GPU execution the CPU
remains idle until the kernel finishes. Other research, such
as the GDB implementation, has examined having the query
compiler choose between the CPU and the GPU based on
expected query time [21]. Since these systems break queries
into a directed graph of steps, some of these steps can be ex-
ecuted on one processing unit, before moving the data and
executing on the other. There may be significant perfor-
mance gains from advancing this system to the next level
by executing a step partially on both the GPU and CPU.
For instance, idle CPU cycles could be utilized by allocating
10% of the table data for CPU execution. This approach is
especially feasible with the platform-independent system of
opcodes currently used by SQLite, but requires more com-
plex synchronization between the CPU and GPU. Further
research could examine these topics in detail and develop a
method for finding the optimal division of query execution
based on the characteristics of individual queries.

6.4 SQL Compilation
As described, our current implementation utilizes the SQLite
command processor (or compiler), which includes the query
parser and code generator that outputs the query in the
SQLite opcode form. Consequently, the opcodes and op-
code patterns are identical for the SQLite virtual machine
and our GPU virtual machine. It is certainly possible to im-
plement additional features such as JOIN using this form,
but a closer examination reveals that these opcode patterns
were intented for serial execution. Parallel execution can
only be achieved by altering the order of certain opcodes
and delaying execution of certain opcode effects until later
in the query, hence our implementation of one set of op-
codes for divergent execution and one set for synchronized
execution. It is clear that an intermediate code-generator
specifically targeted at parallel execution would be better
suited for GPU execution, but this may not be an entirely
optimal solution.

An optimal query code generator should be aware of the

13



structure of GPU hardware. A major concern with GPU
execution, and GPU programming in general, is the use of
complete thread synchronization to reach optimal solutions
for certain problems. A reduction to find the average of a
million values in GPU memory, for instance, performs opti-
mally when all threads and thread blocks execute this task
concurrently. In CUDA, thread block synchronization can
be performed with kernel launches, because all thread blocks
synchronize at the beginning an end of a kernel launch, or
with atomic functions, which is a less efficient and less el-
egant approach. The drawback of using kernel launch syn-
chronization is that register memory is thrown away between
kernel launches. The SQLite opcode structure relies on using
SQLite registers to store intermediate values, between when
these values are accessed from a table and when they are out-
put as a result. This step is essential, because these values
are often manipulated and compared before being output as
results, and having them lost at the end of a kernel launch is
disruptive to this process. We could save these intermediate
values to global memory between kernel launches, but this is
inefficient and impractical, since every thread may have 10
or 20 intermediate variables that must be written. Thus, the
gains from kernel launch thread block synchronization must
be balanced against the gains from using register memory
to manage intermediate values during query execution. An
optimal query compiler for GPU hardware would have to be
aware of this tradeoff. A major area for future research is
the design of these optimal compilers.

Another approach to SQL query compilation is to use
code generation specifically targeted at GPU hardware, sim-
ilar to the code generation described for specific machine
hardware and network architecture described in other re-
search [15]. Such an approach would output code written
directly in CUDA or even PTX, the assembly language to
which CUDA is compiled, thus completely eliminating the
opcode layer. Once generated, this code would be compiled
with NVIDIA’s software before execution. Implementation
of this step would require significant effort, and is outside
the scope of this research, but we can speculate as to its
effectiveness. In the current implementation, a significant
amount of time is spent switching to the next opcode, and
switching to data type specific code within each opcode.
This overhead could be avoided with all code generated for
a specific query, which we alone estimate could result in a 2x
speedup. Additionally, this approach would avoid the issue
we have on current hardware that arrays are stored in local
rather than register memory, since the generated code would
be aware of exactly where data is stored. The drawback of
this approach is that query compilation would probably take
longer, since code would have to both be generated with our
software and separately compiled with NVIDIA software.
Thus, the break-even point at which this approach is faster
than the current opcode scheme may be fairly high, possibly
only being useful for queries executed over many millions of
rows.

A useful feature in future implementations would be the
ability to batch queries. This would enable multiple queries
to be compiled together before concurrent execution, with
each query outputting its results to a separate block of re-
sults. This approach could yield significant performance
gains for several reasons. The first relates to the locking

of the GPU. If the GPU platform was implemented more as
a database component and less as a query executor, as in
our current implementation, there would need to be signif-
icant CPU-side locking. Locking would ensure that queries
are not run while data is updated on the GPU and that
multiple threads do not access the GPU simultaneously, as
these situations could lead to inconsistent results and GPU-
memory data corruption. Batched queries would mean that
once a lock is obtained by a thread, more work could be per-
formed with a single access before the lock is relinquished.
The next advantage is that global memory accesses over
all queries would be significantly reduced. If two differ-
ent queries needed to access the same column of data, this
costly global memory access could be performed just once,
after which each query would perform its own task with the
data. We believe this batching approach is more useful on
the GPU than most other hardware because of the lack of
caching for global memory accesses.

Finally, further research could examine using more gen-
eral query languages, such as Pig or Hive, for GPU query ex-
ecution [14, 32, 38]. The advantage of this approach is that
specific GPU primitives, such as map or scan, could be ex-
plicitly codified in the query language. Thus, a programmer
could both perform a SQL SELECT and a scan operation
from the same query interface. This would also allow opera-
tions on more unstructured data to be easily performed, for
instance with matrix multiplication, an extremely efficient
operation on GPUs. A huge advantage of this approach is
the possibility of moving between heterogenous computing
platforms with no change in query languages. For instance,
if a MATRIX-MULTIPLY keyword were implemented with back-
end support for both GPUs and multi-core CPUs, a pro-
grammer could access proven optimal algorithms written
in CUDA and a library such as pthreads with no develop-
ment time, thus allowing him to move between optimal CPU
and GPU execution effortlessly. In summary, this approach
could duplicate the declarativeness of SQL but allow access
to very complex data operations that cannot be performed
with SQL with heavily optimized algorithms, thus making
GPUs an even more powerful query execution platform.

7. CONCLUSIONS
This project simultaneously demonstrates the power of us-
ing a generic interface to drive GPU data processing and
provides further evidence of the effectiveness of accelerat-
ing database operations by offloading queries to a GPU.
Though only a subset of all possible SQL queries can be
used, the results are promising and there is reason to believe
that a full implementation of all possible SELECT queries
would achieve similar results. SQL is an excellent interface
through which the GPU can be accessed: it is much simpler
and more widely used than many alternatives. Using SQL
represents a break from the paradigm of previous research
which drove GPU queries through the use of operational
primitives, such as map, reduce, or sort. Additionally, it
dramatically reduces the effort required to employ GPUs
for database acceleration. The results of this paper suggest
that implementing databases on GPU hardware is a fertile
area for future research and commercial development.

The SQLite database was used as a platform for the pro-
ject, enabling the use of an existing SQL parsing mechanism

14



and switching between CPU and GPU execution. Execution
on the GPU was supported by reimplementing the SQLite
virtual machine as a CUDA kernel. The queries executed on
the GPU were an average of 35x faster than those executed
through the serial SQLite virtual machine. The character-
istics of each query, the type of data being queried, and the
size of the result set were all significant factors in how CPU
and GPU execution compared. Despite this variation, the
minimum speedup for the 13 queries considered was 20x.
Additionally, the results of this paper are expected to im-
prove with the release of the next generation of NVIDIA
GPU hardware. Though further research is needed, clearly
native SQL query processing can be significantly accelerated
with GPU hardware.

8. ACKNOWLEDGEMENTS
This work was supported in part by NSF grant no. IIS-
0612049 and SRC grant no. 1607.001.

9. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. Hadoopdb: an
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB
Endow., 2(1):922–933, 2009.

[2] P. Bakkum and K. Skadron. Accelerating sql database
operations on a gpu with cuda. In GPGPU ’10:
Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, pages
94–103, New York, NY, USA, 2010. ACM.

[3] N. Bandi, C. Sun, D. Agrawal, and A. El Abbadi.
Hardware acceleration in commercial databases: a case
study of spatial operations. In VLDB ’04: Proceedings
of the Thirtieth international conference on Very large
data bases, pages 1021–1032. VLDB Endowment, 2004.

[4] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1(2):1265–1276, 2008.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron. A performance study of
general-purpose applications on graphics processors
using cuda. J. Parallel Distrib. Comput.,
68(10):1370–1380, 2008.

[6] Q. Chen, A. Therber, M. Hsu, H. Zeller, B. Zhang,
and R. Wu. Efficiently support mapreduce-like
computation models inside parallel dbms. In IDEAS
’09: Proceedings of the 2009 International Database
Engineering &#38; Applications Symposium, pages
43–53, New York, NY, USA, 2009. ACM.

[7] Y. Chen, D. Pavlov, P. Berkhin, A. Seetharaman, and
A. Meltzer. Practical lessons of data mining at yahoo!
In CIKM ’09: Proceeding of the 18th ACM conference
on Information and knowledge management, pages
1047–1056, New York, NY, USA, 2009. ACM.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Proceedings of OSDI
’04: 6th Symposium on Operating System Design and
Implemention, Dec 2004.

[9] A. di Blas and T. Kaldeway. Data monster: Why
graphics processors will transform database
processing. IEEE Spectrum, September 2009.

[10] S. Ding, J. He, H. Yan, and T. Suel. Using graphics
processors for high performance IR query processing.
In WWW ’09: Proceedings of the 18th international
conference on World wide web, pages 421–430, New
York, NY, USA, 2009. ACM.

[11] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. GPUQP: query
co-processing using graphics processors. In ACM
SIGMOD International Conference on Management of
Data, pages 1061–1063, New York, NY, USA, 2007.
ACM.

[12] W. Fang, K. K. Lau, M. Lu, X. Xiao, C. K. Lam,
P. Y. Yang, B. Hel, Q. Luo, P. V. Sander, and
K. Yang. Parallel data mining on graphics processors.
Technical report, Hong Kong University of Science
and Technology, 2008.

[13] E. Friedman, P. Pawlowski, and J. Cieslewicz.
Sql/mapreduce: a practical approach to
self-describing, polymorphic, and parallelizable
user-defined functions. Proc. VLDB Endow.,
2(2):1402–1413, 2009.

[14] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, and U. Srivastava. Building a high-level
dataflow system on top of map-reduce: the pig
experience. Proc. VLDB Endow., 2(2):1414–1425,
2009.

[15] B. Gedik, H. Andrade, and K.-L. Wu. A code
generation approach to optimizing high-performance
distributed data stream processing. In CIKM ’09:
Proceeding of the 18th ACM conference on
Information and knowledge management, pages
847–856, New York, NY, USA, 2009. ACM.

[16] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
GPUTeraSort: high performance graphics co-processor
sorting for large database management. In ACM
SIGMOD International Conference on Management of
Data, pages 325–336, New York, NY, USA, 2006.
ACM.

[17] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations
using graphics processors. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Courses, page 206, New York, NY,
USA, 2005. ACM.

[18] Hadoop. Welcome to apache hadoop!
http://hadoop.com.

[19] T. D. Han and T. S. Abdelrahman. hicuda: a
high-level directive-based language for gpu
programming. In GPGPU-2: Proceedings of 2nd
Workshop on General Purpose Processing on Graphics
Processing Units, pages 52–61, New York, NY, USA,
2009. ACM.

[20] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a mapreduce framework on graphics
processors. In PACT ’08: Proceedings of the 17th
international conference on Parallel architectures and
compilation techniques, pages 260–269, New York, NY,
USA, 2008. ACM.

[21] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):1–39, 2009.

15



[22] T. Hoff. Scaling postgresql using cuda, May 2009.
http://highscalability.com/scaling-postgresql-

using-cuda.

[23] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In EuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007,
pages 59–72, New York, NY, USA, 2007. ACM.

[24] M. Isard and Y. Yu. Distributed data-parallel
computing using a high-level programming language.
In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data,
pages 987–994, New York, NY, USA, 2009. ACM.

[25] T. Kaldeway, J. Hagen, A. Di Blas, and E. Sedlar.
Parallel search on video cards. Technical report,
Oracle, 2008.

[26] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu.
Deduce: at the intersection of mapreduce and stream
processing. In EDBT ’10: Proceedings of the 13th
International Conference on Extending Database
Technology, pages 657–662, New York, NY, USA,
2010. ACM.

[27] S. Lee, S.-J. Min, and R. Eigenmann. Openmp to
gpgpu: a compiler framework for automatic
translation and optimization. In PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
pages 101–110, New York, NY, USA, 2009. ACM.

[28] M. D. Linderman, J. D. Collins, H. Wang, and T. H.
Meng. Merge: a programming model for
heterogeneous multi-core systems. In ASPLOS XIII:
Proceedings of the 13th international conference on
Architectural support for programming languages and
operating systems, pages 287–296, New York, NY,
USA, 2008. ACM.

[29] W. Ma and G. Agrawal. A translation system for
enabling data mining applications on gpus. In ICS ’09:
Proceedings of the 23rd international conference on
Supercomputing, pages 400–409, New York, NY, USA,
2009. ACM.

[30] NVIDIA. Nvidia’s next generation cuda compute
architecture: Fermi. http://www.nvidia.com/
content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf.

[31] NVIDIA. NVIDIA CUDA Programming Guide, 2.3.1
edition, August 2009.
http://developer.download.nvidia.com/compute/

cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_

Guide_2.3.pdf.

[32] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD ’08: Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, pages 1099–1110, New York,
NY, USA, 2008. ACM.

[33] SQLite. About sqlite.
http://sqlite.org/about.html.

[34] SQLite. The architecture of sqlite.
http://sqlite.org/arch.html.

[35] SQLite. Most widely deployed sql database.
http://sqlite.org/mostdeployed.html.

[36] SQLite. Sqlite virtual machine opcodes.
http://sqlite.org/opcode.html.

[37] Thrust. Thrust homepage.
http://code.google.com/p/thrust/.

[38] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, 2009.

[39] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei
W. Hwu. Cuda-lite: Reducing gpu programming
complexity. In LCPC, pages 1–15, 2008.

16



APPENDIX
A. QUERIES USED FOR TESTING
Below are the ten queries used in the performance measure-
ments. Note that uniformi, normali5, and normali20 are
integer values, while uniformf, normalf5, and normalf20

are floating point values.

1. SELECT id, uniformi, normali5

FROM test

WHERE uniformi > 60 AND normali5 < 0

2. SELECT id, uniformf, normalf5

FROM test

WHERE uniformf > 60 AND normalf5 < 0

3. SELECT id, uniformi, normali5

FROM test

WHERE uniformi > -60 AND normali5 < 5

4. SELECT id, uniformf, normalf5

FROM test

WHERE uniformf > -60 AND normalf5 < 5

5. SELECT id, normali5, normali20

FROM test

WHERE (normali20 + 40) > (uniformi - 10)

6. SELECT id, normalf5, normalf20

FROM test

WHERE (normalf20 + 40) > (uniformf - 10)

7. SELECT id, normali5, normali20

FROM test

WHERE n̄ormali5 * normali20

BETWEEN -5 AND 5

8. SELECT id, normalf5, normalf20

FROM test

WHERE n̄ormalf5 * normalf20

BETWEEN -5 AND 5

9. SELECT id, uniformi, normali5, normali20

FROM test

WHERE NOT uniformi

OR NOT normali5

OR NOT normali20

10. SELECT id, uniformf, normalf5, normalf20

FROM test

WHERE NOT uniformf

OR NOT normalf5

OR NOT normalf20

11. SELECT SUM(normalf20)

FROM test

12. SELECT AVG(uniformi)

FROM test

WHERE uniformi > 0

13. SELECT MAX(normali5), MIN(normali5)

FROM test

B. DEVELOPMENT API OVERVIEW
The implementation of the research described in this pa-
per is named Sphyraena, a name which is used frequently
in the API because it is intended to be compiled into the
same namespace as client applications, like SQLite. The
Sphyraena API is built on top of SQLite, and we have at-
tempted to conform to the style of C development used in

SQLite. The state of the library is held in the sphyraena
data struct, and passed to each API function, as in SQLite.
SQLite should be initialized and cleaned up independently of
Sphyraena. An example program using the API is provided
below, with detailed documentation about all the functions
and data structures you will need, and the error codes you
may encounter. The most important compile-time variables
are documented, and can be tweaked to improve perfor-
mance for specific queries. There are a number of undoc-
umented aspects of this program that represent decisions
made during implementation and may affect performance
for a certain application in some way, so further manipu-
lation of Sphyraena can be done at a level below the API,
though this will certainly be more difficult.

The API is intended for research purposes rather than
production database use. As discussed, it only performs
read-only queries once data has been explicitly loaded on
to the GPU. However, if your application involves multiple
queries over large data sets in SQLite, it should be very
easy to add the API to your code and achieve significant
acceleration.

C. API EXAMPLE
This example demonstrates the C code necessary to open a
SQLite database and execute a simple query on the GPU.
It is documented with comments but more information on
each step can be found in the API documentation. This
example assumes that the sphyraena.h header file has been
included. Understanding it also assumes some knowledge of
the SQLite API, which is documented on the SQLite web-
site.

sqlite3 *db;

sphyraena sphy;

// initialize SQLite using dbfile.db as the

// database file

sqlite3_open("dbfile.db", &db);

// initialize Sphyraena with data and results

// blocks of 10 MB and using pinned memory

sphyraena_init(&sphy, db, 10485760, 10485760, 1);

// transform the data in test_table to row-column

// format so that it can be quickly moved to

// the GPU

sphyraena_prepare_data(&sphy,

"SELECT * FROM test_table");

// move the data from main memory to GPU memory

sphyraena_transfer_data(&sphy);

// execute a query on the GPU, without using

// streaming

sphyraena_select(&sphy,

"SELECT column1, column2 FROM test_table

WHERE column1 < column2", 0);

// transfer the results of the query from the

17



// GPU to main memory

sphyraena_transfer_results(&sphy);

// get data from the tenth row and second column

// of the results.

sphyraena_results *res = sphy->results_cpu;

int value = ((int*)(res->r + 10 * res->stride +

res->offsets[1]))[0];

D. API FUNCTIONS
This is a list of all the functions needed to execute queries on
the GPU, in no particular order. The function declaration is
given, followed by a description of the functions action and
a list describing each argument and the return value of each
function.

int sphyraena_init(

sphyraena *s,

sqlite3 *db,

size_t data_size,

size_t results_size,

int pinned_memory );

}

This function is used to initialize the Sphyraena library,
and needs to be called before any other functions. This
should be called with a valid sqlite3* variable, meaning
after sqlite3_open() has been called.

s A pointer to a sphyraena struct, used to store the state
of the library.

db A pointer to the sqlite3 object associated with the SQLite
instance initialized.

data_size The size in bytes of the data block used to store
data selected from SQLite for GPU execution. This
block is allocated in both main and GPU memory, and
should be larger than the size of the data you want to
select.

results_size The size of the results storage block, allo-
cated in both main and GPU memory.

pinned_memory An integer value indicating whether or not
to use pinned memory when allocating the data and
results blocks. Pinned memory enables 2x faster mem-
ory transfers to and from the GPU, but comes with
some restrictions. For example: if you allocate 80% of
your memory as pinned, you will probably lock your
machine, assuming your OS even allows the allocation.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_cleanup(

sphyraena *s );

This function frees the memory allocations made by the
sphyraena_init() function. It has no effect on the state of
SQLite.

s A pointer to a sphyraena struct, used to store the state
of the library.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_prepare_data(

sphyraena *s,

const char* sql_stmt );

This function selects data from SQLite and loads it into
the Sphyraena main memory data block. Since SQLite stores
this data in B+Tree format, this step is the most expen-
sive part of staging data to the GPU, where it is stored
in row-column format. The data is selected with a SQL
statement, so to prepare an entire table for GPU execution
use ”SELECT * FROM tablename”. You must call this before
sphyraena_transfer_data().

s A pointer to a sphyraena struct, used to store the state
of the library.

sql_stmt The SELECT statement used to select records
from a SQLite table which is prepared by moving it
into Sphyraena memory.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_transfer_data(

sphyraena *s );

Transfers data from from the main memory data block
to the GPU data block. This is relatively quick, especially
with pinned memory. Note that if sphyraena_select(), is
called with streaming set to 1, then this step does not need
to be performed.

s A pointer to a sphyraena struct, used to store the state
of the library.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_transfer_results(

sphyraena *s );

Transfers data from the results block of GPU memory to
the results block of main memory. As with sphyraena_trans

fer_data(), this step is fairly quick, especially with pinned
memory. This function still needs to be called with a stream-
ing select of data, however. Note that this is a two-step pro-
cedure, we first contact the GPU to discover the size of the
results block, since this varies with the query and data-set.
Next we perform the actual transfer. This means that trans-
fers for smaller results blocks will be faster, particularly for
results of size 0, in which case only 1 transfer is needed.

18



s A pointer to a sphyraena struct, used to store the state
of the library.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_select(

sphyraena *s,

const char* sql_stmt,

int streaming );

This function performs GPU query execution. Only a
subset of SELECT queries can be used. This subset includes
specifying the columns selected, math operations such as
equality and inequality and operations, logical operations,
and several aggregate operations (i.e. COUNT, MIN, MAX, SUM,
AVG). Joins and groups are not supported, and you may en-
counter problems with more complex combinations of these,
such as using multiple aggregate operations in the same
query, because of how thread block synchronization is per-
formed. There are a number of arbitrary limits to queries
and data blocks, such as the number of columns that can
be used, and the complexity of the query, because there are
limited allocations for these on the GPU. Many of these
limitations can be changed by tweaking the compile-time
variables in sphyraena.h, but these may affect performance.

s A pointer to a sphyraena struct, used to store the state
of the library.

sql_stmt The SQL statement being executed.

streaming An int value with 1 or 0 to turn streaming on or
off, respectively. Streaming overlaps data transfer with
query execution, and means that sphyraena transfer
data() does not need to be called before this function.
Streaming is probably only faster for very large data
sets.

return value In int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

void sphyraena_print_results(

sphyraena *s,

int n );

This function prints the first n rows of the results set.
This should only be called after a query has been executed
and the result set has been transferred back from the GPU.

s A pointer to a sphyraena struct, used to store the state
of the library.

n The maxixmum number of rows to print. This function
will stop if the result set contains less than this number.

int sphyraena_vm(

sphyraena *s );

This function is called by sphyraena_select() and di-
rectly calls the kernel. It is located in vm.cu, and conse-
quently compiled by gcc through nvcc. This function should
not be directly called under normal API use.

s A pointer to a sphyraena struct, used to store the state
of the library.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

int sphyraena_vm_streaming(

sphyraena *s );

This function is exactly like sphyraena_vm(), except it
implements streaming. It is also called by sphyraena_sel

ect(), based on whether or not its streaming argument is
set to 1.

s A pointer to a sphyraena struct, used to store the state
of the library.

return value An int with a value of SPHYRAENA_SUCCESS

indicating a successful execution or any of SPHYRAENA_
ERR_* for an unsuccessful execution.

E. API DATA STRUCTURES
This is a short list of the data structures that you may want
or need to manipulate to run queries. There are a number
of other data structure used in the library, but they are not
necessary to directly use if an application only runs queries
through the API.

struct sphyraena {

sqlite3 *db;

sphyraena_data *data_cpu;

char *data_gpu;

sphyraena_results *results_cpu;

sphyraena_results *results_gpu;

sphyraena_stmt *stmt_cpu;

size_t data_size;

size_t results_size;

int pinned_memory;

int threads_per_block;

int stream_width;

};

This is the primary data structure used to store the state
of Sphyraena. All of the variables in this struct are set by
the sphyraena_init() function, and other than the last two,
should probably not be altered at run time. This reference is
provided because of these last two variables, and because you
may want to build the individual components yourself for
more advanced query manipulation outside the scope of the
API. Note that this can be declared directly as sphyraena

varname, without the struct keyword.

db A pointer to the state struct used by SQLite. This is
initialized with the sqlite3_open() function.

19



data_cpu A pointer to the structure used to manage the
data block in main memory. The sphyraena_data str-
uct is very similar to the sphyraena_results struct,
and is initialized with data when the sphyraena_prepa

re_data() function is called.

data_gpu A pointer to the data block on the GPU. The
sphyraena_transfer_data() function moves data from
the block in the data_cpu struct to this data block,
moving the meta data to the GPU’s constant memory
rather than storing it next to the data block. Note that
this pointer has no meaning on the CPU, it points to
device memory.

results_cpu A pointer to the struct that holds query re-
sults in main memory. This struct is not initialized
until a call to sphyraena_transfer_results().

results_gpu A pointer to the struct that holds query re-
sults in GPU memory. As with the data_gpu pointer,
this pointer has no meaning on the CPU.

data_size This variable stores the total amount of memory
allocated for the data block. This memory has been
allocated on both the CPU and the GPU.

results_size Like data size but for the results block. Note
that these blocks can have arbitrarily different sizes.

pinned_memory A variable with a value of 1 if the data and
results blocks have been allocated using pinned memory
and 0 otherwise.

threads_per_block The number of threads run per block
when the query execution kernel is called. This can be
tweaked at run-time.

stream_width The number of blocks that the memory trans-
fer and kernel launch should be broken into when using
the streaming feature.

struct sphyraena_results {

int rows;

int columns;

int stride;

int types[];

int offsets[];

char r[];

};

This struct is how the results block is stored, and using it
is necessary to access the returned results. This is accessed
through the sphyraena object, and will not be initialized
until after sphyraena_transfer_results() has been called.
The data is stored in a single block, which the r[] array
begins. Note that because data types of different sizes are
used, you need to use the stride and offsets variables to find
the location of a particular piece of data. For example, to
access the third column in the fifth row of results, you would
look at r[5 * stride + offsets[2]].

rows An integer representing the number of rows in the re-
sult set.

columns An integer denoting the number of columns in the
result set.

stride The width in bytes of a single row of results.

types[] An array of integers which represent the type of
data in each column. These values are described in the
Data Types section.

offset[] The difference in bytes between the beginning of
the row and each column.

r[] The beginning of the actual results data block.

F. API ERROR CODES
These are compile-time integer values that are returned from
certain functions in the event of normal execution or an er-
ror. Note that certain error codes can be returned only by
certain functions.

SPHYRAENA_SUCCESS

This is the standard return values, and indicates suc-
cessful execution.

SPHYRAENA_ERR_MEM

This indicates a failed memory allocation on the host-
side.

SPHYRAENA_ERR_STMT

This indicates that there was a problem with the SQL
statement used to select data in sphyraena_prepare_data().
This will get returned if the query failed or if it returned zero
rows.

SPHYRAENA_ERR_CUDAMEMCPY

Indicates a failed memory copy in either sphyraena_tra
nsfer_data() or sphyraena_transfer_results(). Check
that cleanup has not been called and that the memory has
not been freed for some other reason.

SPHYRAENA_ERR_CUDAMALLOC

This indicates a failed memory allocation on the GPU.
To troubleshoot this, check both the sizes of allocations you
have chosen and if other programs are using the GPU.

SPHYRAENA_ERR_DEVICE

This is returned when a CUDA capable device can not
be found and selected by sphyraena_init(). Check that
the device is installed properly and that Sphyraena knows
where the drivers are.

SPHYRAENA_ERR_CUDAFREE

This is returned when GPU-side memory can not be
freed in sphyraena_cleanup().

SPHYRAENA_ERR_CUDAFREEHOST

This is returned when pinned memory on the host side
can not be freed in sphyraena_cleanup().

20



G. DEVELOPMENT COMPILE-TIME
VARIABLES

Sphyraena has a number of variables that are used at com-
pile time to define certain operational parameters. Most
have been loosely optimized through experimentation, but
you may be able to increase performance on specific queries
by tweaking these variables. They are all found in the
sphyraena.h header file.

SPHYRAENA_MAX_OPS

Defines the maximum number of SQLite opcodes that
can be included in a program. This variable controls the size
of the program information block that is sent to the GPU
and stored in constant memory. Simple and medium com-
plexity queries should have no trouble fitting in this block.

SPHYRAENA_MAX_COLUMNS

Defines the maximum number of table columns that can
be included in the table loaded onto the GPU. This is im-
portant because each column data type and byte width must
be tracked. This information is also stored in the constant
memory block of the GPU.

SPHYRAENA_REGISTERS

Defines the maximum number of SQLite registers that
can be used in a query. This is similar to the max ops
variable in that simple queries should have no trouble fitting
into this many registers.

SPHYRAENA_GLOBAL_REGISTERS

A set of separate SQLite registers used for global syn-
chronization among thread blocks. These are used primarily
for the aggregation functions, which require extensive coor-
dination among thread blocks.

SPHYRAENA_THREADSPERBLOCK

The standard CUDA number of threads per thread block.
The default is 192 threads, but there are probably other op-
tima depending upon the characteristics of the query, in-
cluding the processing time per row and the number of re-
sult rows. Remember that this number should be a multi-
ple of a larger power of 2. This variable is loaded into the
sphyraena state struct during sphyraena_init()) and can
thus be changed at run time.

SPHYRAENA_STREAMWIDTH

The number of sections that the program should be split
into when using streaming. Like the threads per block vari-
able, this variable can be tweaked at run time, and probably
has separate optima for specific queries.

21


