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PREFACE 

I first got involved with research in parallel computing in the summer of 2007, 

helping Prof. Kevin Skadron with his research. Parallel computing certainly is not a new 

development in computer science, having been used for high-performance research for 

decades, but is just recently become a major issue in mainstream computing. Current 

CPU architectures are beginning to reach their maximum heat limits, so major 

manufacturers, such as Intel, have been scrambling to find other design solutions such as 

parallel, multi-core architectures for their mainstream products. As such, computer 

architecture design and parallel programming have become very exciting areas within 

computer science to study. 

Additionally, I have done cellular image processing research with Prof. Ammasi 

Periasamy, which has shown me the critical importance of computing in biomedical 

research. Some extremely essential medical research about cancer and other diseases 

require much effort by computer scientists to provide the fastest, most robust tools to 

analyze research data. I chose this project because it attempts to create better performing 

algorithms that can be used for medical imaging on a revolutionary, new multi-core 

platform. 

I would like to acknowledge and thank the following persons for their help and 

contribution to this project: 

• Kevin Skadron 

• Edmund Russell 

• Brian Pfaffenberger 
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ABSTRACT 

Deformable model image segmentation is the process of mathematically modeling 

three-dimensional flexible, or non-static, objects, such as human organs, onto a computer 

through the analysis of multiple images of the subject from a variety of different angles 

and directions. This type of image segmentation is used widely in the medicine, 

commerce, and defense fields. Some examples of applications include surgical head-up 

displays providing an enhanced view of a patient’s body, intelligent character recognition 

systems for digitizing documents, and military missile and aircraft tracking techniques. 

The deformable model image segmentation process can be incredibly intensive and time-

consuming on current, traditional, single-core computer micro-architectures and generally 

require expensive high-end mainframes or distributed systems. Aside from the obvious 

price deterrent, these types of computers are generally quite cumbersome and immobile 

making them impractical for many applications. Multi-core processors such as NVIDIA’s 

GeForce series, however, show a great deal of promise by providing high-end 

computational power while remaining as portable as personal computers. This project 

concentrated on implementing a deformable model segmentation algorithm for one of 

NVIDIA’s processors, attempting to achieve real-time processing capability. Although 

this goal was not reached, a 1.24x speedup was achieved showing a great deal of promise 

for parallel programming and multi-core processors. Finally, as more mainstream 

processors begin to use multi-core designs, making parallel programming take on a larger 

role in general computing, new tools will have to be created to help software designers 

create parallel software as efficiently as in the past.
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CHAPTER 1: INTRODUCTION 

Many important applications used for health care, defense, and many other 

industries require algorithms that are able to match, track, and model objects by 

analyzing photographs or images. This chapter introduces the type of algorithm that will 

be used in this project, discusses the need for improved implementations, and describes 

the scope and organization of the project and this report. 

1.1: Introduction to Deformable Model Image Segmentation 

Image segmentation is a process used to distinguish objects within images, such 

as photographs, radar outputs, or x-rays, from their background. For example, given a 

microscopic image of a blood sample, an image segmentation process could be used to 

locate and identify all blood cells in the image, recording each cell’s position in the 

sample and even categorizing its blood cell type (Asano, Chen, Katoh, & Tokuyama, 

1996). Image segmentation has advanced to a point where it can even match highly 

textured images as shown in Figure 1. The cells would be stored on a computer as a 

mathematical model, keeping track of their size and shape. Image segmentation methods 

can also be used to find and store three-dimensional objects by analyzing multiple images 

of the same objects from different angles. A challenge, however, arises when the objects 

being scanned for are not static—in other words, objects that are not always the same 

shape. For instance, finding and modeling a human liver can be difficult because it has a 

different shape depending on the specific subject and their age. Deformable model image 

segmentation is the technique that enables the matching of non-static three-dimensional 

objects from two-dimensional images (Baker, 2005) as shown in Figure 2.  
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Figure 1: Image Segmentation to match object (Kompatsiaris, 2004). 

 
Figure 2: 3D model created from two 2D cross-sections (Li & Acton, 2006). 

1.2: Needs for a Better Performing Implementation 

Current deformable model algorithms implemented for single processor 

architectures are quite processor-intensive and can take many billions of cycles to execute 

accurately (Lachaud & Taton, 2005). As a result, the run time of these algorithms can be 

too long to be used for real-time segmentation applications, where the algorithm must run 
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multiple times per second. Many different fields, including health care and defense, 

require these real-time image segmentation implementations to match and model objects 

(Grinstead, Koschan, Page, & Abidi, 2006). New advances in computer processing 

architectures create opportunities to implement much faster algorithms achieving or 

coming close to real-time applicability, such as an implementation of a complex 

Feldkamp algorithm by IBM researchers (Sakamoto et al., 2005). Due to their parallel 

processing architectures, both graphics processing units (GPU) and IBM’s Cell 

Broadband Engine Architecture (Cell) are of particular interest for image processing use. 

Current GPUs feature over a hundred processing units, every one able to analyze data 

concurrently with each other; this makes them extremely well suited for image processing 

(Owens et al., 2005). The goal of this project is to implement a current deformable model 

image segmentation algorithm for a GPU that can calculate high-quality computer 

models of objects from detailed images fast enough to allow for real-time applications. 

Deformable model image segmentation has a long history of research and 

development and has been used in many different applications (Gibson & Mirtich, 1997). 

However, real-time applications generally remain extremely costly and immobile, 

requiring expensive high-end mainframes or a powerful distributed system. This is a 

major roadblock for many segmentation applications such as surgical display aids and 

onboard aircraft tracking on military vehicles, which cannot meet the space requirements 

for a mainframe. For these types of developments to be feasible, segmentation time must 

be reduced to real-time speeds on a portable micro-architecture such as a GPU. To 

accomplish this, the segmentation algorithms must either become more efficient, or 

processing throughput must increase (Lorts, 2000). Much work has gone into these 
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issues; current algorithms are highly optimized for traditional single-core processors. 

This project will attempt to create an optimized segmentation algorithm for a GPU that 

fully utilizes the architecture’s performance enhancing features such as high-speed vector 

processing and parallel data partitioning.  

1.3: Organization and Scope of the Thesis Project  

The segmentation algorithm used for this project was written by Bing Li and Scott 

T. Acton of the University of Virginia (UVA) (Li & Acton, 2006). Adam Banda carried 

out the rest of the project, converting the algorithm for use in a multi-core environment 

and optimizing the application to achieve greater performance. The implementation was 

created at UVA’s Computer Science department starting in the summer of 2006 and 

continuing until this project document’s publication date. 

This project report will disclose the multi-core implementation’s creation process, 

analyze its results, and give recommendations for future research. First, it will discuss the 

use and impact of the algorithm in society and the motivation for an improved solution. 

Next, it will talk about the technology behind the project and some current, related 

research. Then, the report will precisely describe the entire process of creating the new 

implementation, detailing the problems encountered and lessons learned. The report will 

then reveal, analyze, and discuss the test results including the implementation’s speed and 

accuracy relative to the original. Finally, it will disclose the conclusions of the project 

and make recommendations for future research. 
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CHAPTER 2: SOCIETAL CONTEXT AND 
ETHICAL IMPLICATIONS 

First, this chapter will discuss deformable model segmentation algorithms’ use in 

object matching, modeling, and tracking applications in today’s society. These types of 

computer-aided object managers are essential in modern society and are used in 

numerous applications. They benefit numerous areas including culture, economy, health 

care, and defense. This chapter will then go on discuss some of the ethical issues of this 

project including contracts with NVIDIA, the manufacturer of the hardware used in this 

project, and uses of related algorithms for military purposes. 

2.1: Object matching, modeling, and tracking applications in society 

The first use of object tracking is for general computing. Image and video 

retrieval are important as computers gain more storage and processing capacity allowing 

for vast collections of media files. New object tracking systems are being developed to be 

able to track, organize, and compare large collections of media objects (Aslandogan & 

Yu, 1999). Also of importance is character and handwriting matching. As computers 

become more powerful, the ability to transform writing to digital media is becoming 

easier (Belongie, Malik & Puzicha, 2002). More accurate methods of character 

recognition are now being used, such as object matching systems using deformable 

models (Cheung, Yeung & Chin, 2002). 

Another use of object tracking is in the defense industry. A strong and secure 

homeland requires the military and intelligence communities to have the ability to track 

and analyze objects across the globe such as aircraft and vehicles. Computers can be used 

to aid the defense industry by analyzing photography and radar imagery for objects. 
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Object matching algorithms can be used to find and map roads from radar images. 

Furthermore, the military can use this ability to automatically control and steer vehicles, 

even through darkness, fog or snow (Kaliyaperumal, Lakshmanan & Kluge, 2001). 

Defense communities can also use these algorithms for detecting the location and bearing 

of actual vehicles and aircraft. For example, infrared images of the sky can be taken, 

either from the ground or from mounted cameras on commercial or military planes. From 

these two-dimensional images, objects can be recognized and modeled. Additionally, 

these methods can determine the aircraft’s type, velocity, direction, and most importantly, 

whether or not it is a target (Kamgar-Parsi, Jain & Dayhoff, 2001). 

In addition to its defensive uses, object matching can be used to translate hand 

and face gestures into digital form for analysis. The modeling and analysis of human 

motion can be used for many different applications. Examples include gesture-driven user 

interfaces, motion analysis in sports and medicine, psycholinguistics, surveillance, and 

entertainment (Bryll, Rose & Quek, 2005). In addition, accurate translation of the hand 

and lip signs of the deaf can be transferred to digital form through object modeling 

techniques. 

Deformable object modeling is also very important in a variety of other fields as 

well. It can be used, for example, in computer-aided apparel design where computer 

models can simulate fabric folding and draping. In the entertainment industry, these 

models can be used for the animation of complex objects like clothing or facial 

expressions (Gibson & Mirtich, 1997). Deformable object modeling can also be used to 

expand culture. For instance, researchers at the University of North Carolina have 

developed a system utilizing deformable modeling that lets artists paint directly to a 
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digital medium. The system uses the artists force and tactile information along with a 

physically-based deformable brush model to created digital images very similar to their 

paint-and-canvas analogs (Mahoney, 2006). 

Finally, deformable object modeling is of tremendous importance in the health 

care industry. Medical imaging is revolutionizing the medical industry. It enables doctors 

to look inside the human body noninvasively. It can also be used to plan surgery or help 

eliminate tumors with minimal collateral damage (McInerney & Terzopoulos, 1996). 

Some examples of deformable object modeling applications include medical diagnostics, 

preoperative planning, intraoperative navigation, surgical robotics, training, and 

telesurgery (Shadidi, Tombropoulos & Grzeszczuk, 1998). Additionally, using 

deformable models, an image-enhanced endoscopy system was created for surgeons. The 

system used a transparent display overlaying the patient to be operated upon. The monitor 

displays three-dimensional models of the organs and area of the body to be operated on 

and uses deformable models to calculate and calibrate the images. This system enables 

the surgeon to streamline the procedure by constantly giving him all the necessary 

information directly in his line of sight (Shahidi, et al., 2002). A similar system has also 

been used to target lesions for surgeons, helping them navigate around critical points. 

These systems help to achieve a more effective, safe, and streamlined surgery (Liao, et 

al., 2004). 

2.2: Ethical implications of the project 

My research involves developing a deformable model algorithm for one of the 

latest computer architectures. As such, no research with humans will be conducted. Nor 

will my application be used to directly create a system that is used on humans. My 
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project involves only the manipulation of data in a computer. Therefore no real safety 

concerns are relevant, especially if proper ergonomic techniques and equipment are used. 

The equipment to be operated is owned by the UVA’s Computer Science department. A 

variety of sources, including GPU documentation from NVIDIA, will be used for this 

project. Originally, NVIDIA’s development aid being used, CUDA, was unreleased and 

bound by a nondisclosure agreement (NDA). As such, no information concerning CUDA 

could be discussed with people not under the NDA, including its feature set, 

programming model, and even its very existence. However, at the time of this report’s 

publication, the NDA has been dissolved as NVIDIA has publicly released its newest 

product line featuring CUDA support. All sources used in this project were 

acknowledged and properly cited. This research was conducted primarily by Banda with 

some collaboration and discussion with Kevin Skadron. 

Since NVIDIA’s NDA was upheld, it is doubtful that many other ethical problems 

will come out of this project. Even though very similar algorithms have been used for 

military purposes, they are mainly for surveillance and intelligence gathering, aiding in 

the defense of the nation. Since designing improved body armor and other military 

hardware is not unethical, neither is creating better algorithms that could be used in a 

military setting. Deformable model research has been conducted for the past two decades 

with few problems for any groups of people. Instead, the research has created more 

accurate and efficient applications in everything from surgical procedures to assembly 

line optimization. Deformable model research can provide many benefits to a wide range 

of interests and applications while harming very few. 
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CHAPTER 3: REVIEW OF TECHNICAL 
LITERATURE 

This chapter first discusses the development of parallel processors and their 

important role in current and future mainstream microprocessor design. Then it will talk 

about the particular algorithm used in this project, including the reasons it was chosen. 

3.1: Importance of Parallel Microprocessor Architectures 

Since I will be developing the segmentation algorithm on a GPU, a multi-core 

processor, parallel programming will be vital. Parallel processing has long been at the 

forefront of high-performance computing. The world’s fastest computers all use multiple 

processors along with various parallel programming techniques to be able to compute the 

most complex and intense algorithms. Traditionally, these machines were restricted to 

only the largest, most prestigious institutions such as the Lawrence Livermore National 

Laboratory, which uses IBM’s Blue Gene, one of the fastest supercomputers in the world 

(Zheng, Singla, Unger & Kale, 2002). Advances, however, in both the design and 

manufacture of chipsets could bring high-performance computing to the commercial 

world (Smith, Hsu & Hsuing, 1990). 

In 2003, Virginia Tech contributed to the evolution of supercomputing when they 

purchased 1,100 Power Mac G5 desktop computers from Apple Computer. Networked 

together, these personal computers formed the third best performing computer in the 

world. Even more impressive was the fact that the system was relatively inexpensive, 

$5.2-million instead of the tens of millions of dollars usually spent on more traditional 

supercomputing designs (Olsen, 2003). 

 9



In addition to being great for high-performance computing, parallel processing 

will be essential in the future personal computing market. Processors have doubled in 

performance about every two years (Lundstrom, 2003, p. 210). Traditionally this was 

done by increasing the processor’s clock speed, the number of operations it can perform 

per second, and reducing transistor size thereby increasing its performance. Currently, 

however, some major limitations are being reached (Lundstrom, 2003). Author Patrick 

Gelsinger has said that “as [microprocessor] designs become more complex, technology 

scaling more difficult, and power issues more pressing, ‘business as usual’ [in the 

microprocessor industry] no longer suffices” (2001). Increases in processor clock-speeds 

have stalled recently, mostly due to heat issues (Puri, Karnik & Joshi, 2006). To continue 

the performance increase trend the industry is used to, microprocessor manufacturers 

must make improvements in other areas. 

One way hardware manufacturers, such as Intel and AMD, have continued to 

increase computing performance without increasing the clock-speed is by increasing the 

number of cores on a single processor. For example, one of Intel’s newest high-end 

microprocessors, the Core Duo, has two processing cores on a single chip. This allows 

two processes to run concurrently on a single microprocessor, for instance, the playback 

of a DVD and the encoding of an email simultaneously (Intel, 2006). With only two 

cores, full processor utilization is simple because most systems do have two or more 

processes running at the same time. However, this multi-core trend suggests that future 

microprocessors will have to house many cores to increase performance, creating an 

enormous challenge for software engineers in utilizing all of the processing units 

efficiently. 
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Many scientific and medical algorithms require high-performance computers to 

process them in a manageable amount of time. With the introduction of multi-core 

processors to the consumer market, it could become feasible for researchers, scientists, 

and doctors to afford portable computers powerful enough to compute their intensive 

algorithms instead of relying on cumbersome and expensive high-performance 

mainframes. New multi-core architectures, such as IBM’s Cell and NVIDIA’s GPUs, 

could prove very useful for these processor-intensive algorithms. In fact, implementations 

for various medical imaging algorithms have already been created for both the Cell 

processor and GPUs. For instance, the Fast Fourier Transform, an essential algorithm in 

medical imaging, has been implemented successfully for the GPU (Moreland & Angel, 

2003). Additionally, J. Greene and R. Cooper have ported the same algorithm to a Cell 

processor with significant performance increases (2005). 

3.2: Algorithm Used in the Project 

In this project, Banda has implemented a recent image segmentation algorithm on 

NVIDIA’s GeForce 8 Series (G80) GPU architecture. He used the “Poisson inverse 

gradient for automatic initialization of deformable model segmentation” method by Bing 

Li and Scott T. Acton (2006). This algorithm aimed to make automatic modeling of 

objects more efficient. Much effort has gone into this area, and various different methods 

for initializing the object model have been attempted and tested (Duan, Yang, Qin & 

Samaras, 1997). Eduardo Tejada and Thomas Ertl were able to create an implementation 

of a similar deformable model algorithm for a GPU that was able to run as fast as or 

faster than traditional, single-core implementations (2005). Based on these results, it was 
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deemed that Li and Acton’s algorithm should be able exhibit similar performance 

increases when translated to a multi-core processor. 

Implementing Li and Acton’s algorithm for use on a GPU was ideal for this 

project for two reasons. First, the algorithm itself is revolutionary; the Poisson inverse 

gradient method is completely novel and makes improvements on previous approaches 

including Neuenschwander, Fua, Szekely, and Kubler’s “Velcro surfaces” deformable 

modeling method (1997). Second, GPUs have exhibited performance increases at a rate 

much higher than tradition processing units made by Intel and AMD (Owens et al., 2005) 

as shown in Figure 3. In addition, the two largest graphics manufacturers, NVIDIA and 

ATI, have begun to support general purpose programming in their GPUs (GPGPU) 

enabling researchers and software engineers to more easily implement algorithms on the 

units. 

 
Figure 3: NVIDIA GPU vs. Intel performance over time (NVIDIA, 2007). 
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CHAPTER 4: MATERIALS AND METHODS 

This chapter will focus on the steps carried out to complete the multi-core 

implementation of Li and Acton’s algorithm. It will first describe the research carried out 

to gain the knowledge necessary to create a well-made implementation. Next, it will 

discuss the materials obtained and steps taken to set up equipment necessary to complete 

the project. Finally, it will describe the actual implementation process, including code 

translation and optimization. 

4.1: Preliminary Research 

The first step in the project was to research current deformable model image 

segmentation techniques. To do so, Banda has used reference searching services and 

library systems to research the latest developments and gain knowledge in overall 

segmentation methods. Using this information, he was able to study a variety of related 

algorithms, searching for one that was both extremely intensive and highly parallelizable. 

At this stage Banda had collaborated directly with Skadron to find the best choice of 

algorithm for the project. After consultation with the “Poisson inverse gradient” method’s 

creators, Li and Acton, they determined that this algorithm was best suited for the project. 

Along with researching segmentation methods, Banda began gaining more 

expertise in parallel programming techniques. All parallel architectures have some 

similar attributes, even across completely different systems. These include data 

partitioning, parallelization, and load balancing. Each was extremely important when 

finally implementing the algorithm. To gain detailed understanding of these techniques, 

Banda studied them through a variety of textbooks and articles on the subject. In addition, 
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he consulted with Skadron, who had advanced knowledge and expertise in parallel 

programming and advanced microprocessor architectures. 

4.2: Materials and setup 

The next step was to gain access to a workstation and install NVIDIA’s software 

development kit (SDK). The SDK was used to aid with writing, testing, and emulating 

programs, even before the necessary NVIDIA hardware was obtained. To find a suitable 

workstation, Banda and Skadron applied for office space from UVA’s Computer Science 

department. The SDK software itself was available for free from NVIDIA and was 

installed on the workstation. The process was aided in part by UVA’s Computer Science 

System Staff. 

After setting up the SDK, Banda became comfortable with the GPU’s 

programming models. First, he studied the documentation installed with the SDK 

(NVIDIA, 2007). These files included a wealth of information involving the system 

customization, program simulation, GPU programming models, and software testing. 

Then, he further improved his knowledge by writing some sample programs and 

becoming familiar with the SDK’s components and interfaces. Next, he practiced 

debugging methods on NVIDIA’s CUDA emulator. Full comprehension of the 

debugging procedure would be necessary to fully implement and optimize the deformable 

model segmentation algorithm.  

The next step required the profiling of the selected deformable model 

segmentation algorithm. First, Banda created a flowchart of the algorithm. This tracked 

the execution trajectory of the program and helped in the overall understanding of the 

program. By mapping out the algorithm visually, trends in its execution can be found 
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allowing him to pinpoint sections of the algorithm that could be most effectively 

parallelized for use by the many individual processing cores of NVIDIA’s G80. It will 

also help to reveal data dependencies between different sections of the program that 

could cause problems when parallelizing. Next, Banda used profiling tools to measure the 

runtime of different sections of the algorithm in order to determine where speed 

enhancements would most drastically improve its overall performance. Li and Acton’s 

original algorithm was written for MatLab, a numerical computing environment allowing 

for easy manipulation of matrices such as image arrays (Goering, 2004), so Banda used 

MatLab’s built in profiling tools to find which parts of the program had the longest 

runtime. These critical parts of the program would need to be optimized to create the 

fastest final implementation. 

4.3: Project Implementation Process 

Now that Banda had obtained and setup all the programs and equipment, he began 

to translate the algorithm from the MatLab language to the C programming language. 

This involved the line-by-line conversion of instructions from their original command to 

the fastest available instruction compatible with C. This step proved quite time 

consuming, so the decision was made to only translate a subsection of the original 

MatLab code to C in order to complete the project on time. To determine which parts to 

translate, Banda again used the MatLab profiler to obtain the results shown in Appendix 

A. One subsection of the code was found to use over 54.9% of the programs runtime. 

This part of the algorithm was used to sort a given matrix by its rows. This section made 

extensive use of sorting functions, and since sorting functions can generally be 
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effectively parallelized for performance gains (Rajasekaran, 2000), these sections of the 

program were translated to C. 

After transforming parts of the algorithm from MatLab to C, Banda began to 

parallelize the code for the GPU. One of the reasons that GPUs from NVIDIA and ATI 

have been receiving increased use by researchers is that they have been adding more 

support for general purpose (GP) programming with each new release. NVIDIA’s 

GPGPU solution, CUDA, whose uses are shown in Figure 4, makes programming GP 

software much easier by handling much of the internal management such as direct 

memory transfers itself, letting the programmer concentrate on his implementation. To 

parallelize, the programmer tells the system how many partitions he needs to process the 

data; in other words, how many threads he needs. Then each thread runs the same code 

on different data. The trade-off is that the programmer has less control over the code 

possibly resulting in less than perfect performance. Since direct memory transfers were 

handled behind the scenes by CUDA, Banda concentrated on parallelizing the code so 

that it made use of all 128 individual processors that NVIDIA’s G80 Series features.  

 
Figure 4: Uses of NVIDIA’s CUDA (NVIDIA, 2007). 
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Since the sections of the algorithm that he converted to C frequently used a sort 

function to arrange hundreds—or sometimes thousands—of numbers in order, a robust 

sort function that took full advantage of all of the GPU’s processing elements was 

needed. In the end, the bitonic sort method was selected. This particular algorithm was 

chosen for two major reasons. First, it is very easily parallelized. At each stage in the sort 

process, n pairs of data elements are compared, where 2n represents the total number of 

data elements. Each pair is only compared once and the data read or written to is only 

from those two elements, meaning there is no data dependencies between different pairs 

within a stage. This simplifies the algorithm allowing separate threads to handle each 

pair, and no thread needs to communicate with each other. Second, the bitonic search 

performs very well on multi-core processors with many processing elements. Since this 

project uses the NVIDIA GeForce 8800 GTX, which has 128 such processing elements, 

bitonic search was the most ideal algorithm. 

Normally bitonic search takes an array of numbers and return a sorted version of 

the array. However, for this project, a slight modification was needed. Instead of the 

actual sorted values being returned by the sort method, this application needed the final 

indices of the sorted array to be returned. This modification was fairly simple to 

implement. First, an additional array was created, its size being equal to the input array. 

Then, each element in this new array was initialized to value of its index, i.e. the first was 

given the value ‘0’, the second the value ‘1’, and so on. Next, whenever a pair of data 

elements was swapped, the corresponding pair of index elements was swapped too. 

Finally, instead of returning the data array, the modified bitonic sort would just return the 

index array. While this modification was simple to implement, it had to use twice as 
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much memory. Fortunately, since the initial index array could be computed on-the-fly 

and since only the final index array was returned, the modified bitonic sort algorithm 

only needed the same amount of data to be transferred to and from the algorithm as the 

original. 

One of the main reasons bitonic sort was chosen for this project is that it is very 

straightforward to translate it from a single-core to a multi-core version. Bitonic sort 

consists of log(n) · (log(n) + 1) / 2 stages each stage making n / 2 comparisons, where n is 

the number of elements. The advantage of bitonic sort is that each of these stages has no 

data-dependencies. Thus, independent threads can be used to process each index, never 

having to communicate with each other if they are synchronized after each stage. In the 

original, single-core version of the bitonic sort algorithm, at each stage it would loop 

through every index of the array serially, comparing and swapping certain values. For the 

multi-core implementation, each thread would carry out the same method as the single 

core version with the exception of the looping through each index. Instead, each thread 

only compared and swapped the two elements of its pair. After every thread completed a 

stage, or synchronized, they would begin the next stage. The CUDA system provides this 

functionality with its __syncthreads() operation, so between each stage in a thread’s 

code, the __syncthreads() function was placed (NVIDIA, 2007). 

The final step in the implementation process was to get the multi-core bitonic sort 

to fully run on the NVIDIA CUDA platform. The NVIDIA GPU hardware places 

restrictions on the number of threads that can run in the same block, or the number of 

threads that can communicate by sharing data. However, as previous mentioned, for 

bitonic sort, each stage requires no communication between threads. Instead a thread 
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must simply wait until all other threads have finished the stage before moving on to the 

next. Therefore, any thread could be placed into any block of threads and still function 

the same. The only change needed to be made in a thread’s code was to add the product 

of the block size and its current block identification number to the thread’s index value 

allowing it to access the same array index independent of its block. Finally, the 

implementation was modified to actually send and receive the array data to and from the 

CPU and GPU and to initialize each thread on the GPU. This was implemented through 

NVIDIA’s special CUDA functions (NVIDIA, 2007). After some preliminary testing to 

make sure the new sort algorithm worked properly, Banda could now test his code’s 

accuracy and speed on the NVIDIA G80 Series hardware. 
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CHAPTER 5: RESULTS AND DISCUSSION 

This chapter will first present the test results of the original and new 

implementations, namely comparing their runtimes. Then it will discuss the implications 

of the results and whether or not the project succeeded. 

5.1: Test Results 

Since only a portion of the original MatLab code was translated and optimized for 

the GPU, to make testing easier, the plan was to link the GPU sections from the MatLab 

program so that the entire algorithm could be tested at once. MatLab has a feature that 

allows it to use outside compilers to convert code written in C to a package that MatLab 

can run just like any other of its internal functions. Unfortunately, MatLab only supports 

a few specific compilers while the NVIDIA GPU uses its own special compiler, so Banda 

could not link all of the code into one package. Instead he had to test the two components 

separately—first the MatLab section and then the GPU section using data outputted from 

the MatLab program as the input in the GPU code. Some problems were presented; the 

sortrows function in MatLab that was converted to the GPU was to be called 26 times by 

the MatLab program as shown in Appendix A. This would mean that the output from 

MatLab to be used as input in the sortrows function would have to be calculated and 

executed 26 times. A better solution was found; since each call of the function used 

similar input data, and since the MatLab profiler was able to calculate exactly the amount 

of time spent within the sortrows function, this time could be replaced with the total 

runtime of 26 calls of the GPU code. This total time would have to include the time it 

takes to transfer memory from the CPU to the GPU at runtime, since this would have 

been included in the total runtime of a linked total package. 
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Figure 5: NVIDIA GeForce 8800GTX (NVIDIA, 2007). 

The tests were all carried out on a Dell XPS workstation with an Intel Core 2 Duo 

6300 CPU, 1 GB of RAM, and the NVIDIA GeForce 8800GTX GPU, shown in Figure 5. 

First, the entire MatLab algorithm was tested; the results are shown in Table 1. Next, the 

total time spent in the sortrows function was tested as shown in Table 2.  

Trial # Runtime (s)
1 1.064 
2 1.048 
3 1.082 
4 1.061 
5 1.053 
6 1.058 

Mean 1.061 
Table 1: Matlab full algorithm runtimes. 
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Trial # Runtime (s)
1 0.635 
2 0.623 
3 0.606 
4 0.612 
5 0.610 
6 0.617 

Mean 0.617 
Table 2: Matlab sortrows function runtimes. 

Next, the GPU code was tested. First the actual setup and memory transfer time of the 

GPU program was tested without doing the actual data processing. To get the most 

accurate results, the transfer time test was carried out 6 times, as shown in Table 3. Next 

the full GPU code was tested, as shown in Table 4. 

Trial # Runtime (s)
1 0.015672 
2 0.015744 
3 0.015744 
4 0.015640 
5 0.015642 
6 0.015628 

Mean 0.015672 
Table 3: GPU memory transfer runtimes. 

Trial # Runtime (s)
1 0.015869 
2 0.015819 
3 0.015816 
4 0.015942 
5 0.015844 
6 0.015840 

Mean 0.015855 
Table 4: GPU code runtimes. 

As one can see, the memory transfer time takes up the vast majority of the runtime; in 

fact, the actual data processing only adds an addition 0.000183-s to the total runtime. 

Since sortrows in the original MatLab code was called 26 times, the total GPU code 

runtime must be multiplied by 26. This means the total runtime of the GPU code is 
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0.412230-s, while the total runtime of its analogue, sortrows, in the MatLab code is 

0.617-s. In other words the GPU code performed the same data operations 0.20477 

seconds faster for a speedup of 1.50x. Substituting the GPU runtime into the sortrows 

runtime of the original algorithm, the new overall runtime of the algorithm is 0.85623 

seconds compared to the original runtime of 1.061 seconds. Therefore, the GPU 

implementation takes 80.07% of the time of the original, or a 1.24x speedup. 

5.2: Discussion of the Results 

The goal of the project was to create an implementation of the deformable model 

segmentation algorithm that could run at real-time speeds. Although the new 

implementation did reduce the execution time from 1.06 to 0.86 seconds, it is still not fast 

enough to run multiple times per second, as would be necessary for real-time 

applications. However, as was shown in Tables 3 and 4, the majority, 98.8% in fact, of 

the GPU runtime was spent simply transferring the data from the CPU to the GPU, not 

actually operating on the data. The reason for this is that each time the GPU code was to 

be run, an entirely new set of data on had to be sent from the CPU to the GPU and back 

again. Almost all of this memory transfer overhead could have been avoided if the entire 

algorithm had been translated to C and run completely on the GPU. Data would only 

need to be transferred to the GPU and back once, at the beginning and end of the 

algorithm. Currently, the memory transfer overhead is 0.015672-s × 26 = 0.407472 

seconds, almost half of the total runtime; translating the entire algorithm to the GPU 

would have achieved a much faster runtime, possibly even one fast enough for real-time 

use. 
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CHAPTER 6: CONCLUSIONS 

New multi-core microprocessor architectures such as those found in the Cell 

processor and GPUs offer the possibility of large processing speedup, but they come at 

the cost of more difficult, longer software development time—at least until better tools 

are created to streamline the parallelization and optimization process. This cost was 

certainly felt in the undertaking of this project; the parallel programming involved was 

far harder and required more time than normal application development would have. 

NVIDIA’s CUDA platform, even though it is currently in an early stage of 

development, proved to be quite efficient and robust. Additionally, in terms of ease of 

programming, CUDA was far less daunting than the Cell processor architecture, mainly 

since much of the memory management was handled by the system, not the programmer. 

On the other hand, CUDA suffered performance-wise since large data arrays had to be 

transferred from the CPU to the video hardware each time the GPU was called. Unlike 

the Cell processor, the GPU has no GP processor meaning it must solely be controlled by 

the computer’s CPU. The addition of a single, traditional processor onto the actual GPU 

hardware would have allowed the entire algorithm to run on the device and would have 

eliminated the data transfer performance reduction that prevented the algorithm from 

achieving real-time capability.  

The goal of creating a real-time applicable deformable model segmentation 

algorithm was not realized in the project; in these terms the project failed. Nevertheless, 

the 1.24x speedup achieved does show serious potential for multi-core architectures such 

as NVIDIA’s GPU, especially since much of the execution time was spent transferring 

data which could have mostly been avoided by translating more of the algorithm to the 
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GPU. Regrettably time constraints prevented this and the genuine possibility of creating a 

real-time deformable model segmentation algorithm. 

Certainly, researchers should continue to experiment with parallel programming 

on multi-core architectures to achieve better performance. Especially considering the 

multi-core trends in the mainstream microprocessor industry, parallel programming will 

become more and more indispensable to take full advantage of ones computing hardware. 

However, it is critical that improved micro-architectures and compilers be created to ease 

the software engineer’s burden. Currently, parallel programming is truly harder than 

writing for tradition single-core processors, and better tools and methods will be 

necessary to create parallel applications as efficiently as before. Otherwise, fewer 

programs will be able to be developed, impairing all industries that rely on computing—

which, today, is nearly all of them. 
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APPENDIX A: MATLAB PROFILER RESULTS 

Tables reveal runtime and percent of runtime of each function with the algorithm. 

Functions with less than 1% of the total runtime were omitted. 

 
PoissonSolver (1 call, 1.185 sec) – Main algorithm 
Function Name Calls Total Time % Time
ismember 8 0.929 s 78.5%
ind2sub 2 0.024 s 2.0%
bwperim 1 0.019 s 1.6%
Self time (built-ins, overhead, etc.)  0.202 s 17.0%
Totals  1.185 s 100%
 
ismember (22 calls, 1.009 sec) – Single function taking the vast majority of runtime 
Function Name Calls Total Time % Time
unique 18 0.458 s 45.4%
sortrows 9 0.317 s 31.4%
ismembc2 8 0.029 s 2.9%
Self time (built-ins, overhead, etc.)  0.202 s 20.1%
Totals  1.185 s 100%
 
unique (20 calls, 0.467 sec) – One of two of the major functions of ismember 
Function Name Calls Total Time % Time
sortrows 17 0.334 s 71.5%
Self time (built-ins, overhead, etc.)  0.133 s 28.5%
Totals  0.167 s 100%
 
sortrows (26 calls, 0.651 sec) – Notice, this function is called 9 times by ismember and 
17 times by unique 
Function Name Calls Total Time % Time
sort_back_to_front 26 0.576 s 88.5%
Self time (built-ins, overhead, etc.)  0.075 11.5.%
Totals  0.651 s 100%
 
As a result, the function sortrows takes up 0.651 seconds of the algorithm’s 1.185 second 
runtime, or 54.9% of the runtime, and was targeted for improvement and optimization. 
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