
IMPLEMENTING A DEFORMABLE MODEL
IMAGE SEGMENTATION ALGORITHM FOR A MULTI-CORE

MICROPROCESSOR ARCHITECTURE

A Thesis
In STS 402

Presented to

The Faculty of the

School of Engineering and Applied Science
University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Science

by

Adam Banda
March 29, 2007

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for papers in Science,
Technology, and Society Courses.

 Signed____________________________________

Approved ___ Date _____________
 Prof. Kevin Skadron (Technical Advisor)

Approved ___ Date _____________
 Prof. Brian Pfaffenberger (STS Advisor)

PREFACE

I first got involved with research in parallel computing in the summer of 2007,

helping Prof. Kevin Skadron with his research. Parallel computing certainly is not a new

development in computer science, having been used for high-performance research for

decades, but is just recently become a major issue in mainstream computing. Current

CPU architectures are beginning to reach their maximum heat limits, so major

manufacturers, such as Intel, have been scrambling to find other design solutions such as

parallel, multi-core architectures for their mainstream products. As such, computer

architecture design and parallel programming have become very exciting areas within

computer science to study.

Additionally, I have done cellular image processing research with Prof. Ammasi

Periasamy, which has shown me the critical importance of computing in biomedical

research. Some extremely essential medical research about cancer and other diseases

require much effort by computer scientists to provide the fastest, most robust tools to

analyze research data. I chose this project because it attempts to create better performing

algorithms that can be used for medical imaging on a revolutionary, new multi-core

platform.

I would like to acknowledge and thank the following persons for their help and

contribution to this project:

• Kevin Skadron

• Edmund Russell

• Brian Pfaffenberger

 i

TABLE OF CONTENTS

Preface.. i

Table of Contents.. ii

List of Figures .. iii

List of Tables ... iv

Abstract ... v

Chapter 1: Introduction... 1

1.1: Introduction to Deformable Model Image Segmentation ... 1

1.2: Needs for a Better Performing Implementation.. 2

1.3: Organization and Scope of the Thesis Project .. 4

Chapter 2: Societal Context and Ethical Implications.. 5

2.1: Object matching, modeling, and tracking applications in society .. 5

2.2: Ethical implications of the project.. 7

Chapter 3: Review of Technical Literature .. 9

3.1: Importance of Parallel Microprocessor Architectures .. 9

3.2: Algorithm Used in the Project .. 11

Chapter 4: Materials and Methods.. 13

4.1: Preliminary Research.. 13

4.2: Materials and setup... 14

4.3: Project Implementation Process ... 15

Chapter 5: Results and Discussion ... 20

5.1: Test Results .. 20

5.2: Discussion of the Results.. 23

Chapter 6: Conclusions... 24

Bibliography ... 26

Additional References... 31

Appendix A: MatLab Profiler Results .. 32

 ii

LIST OF FIGURES

Figure 1: Image Segmentation to match object (Kompatsiaris, 2004). 2

Figure 2: 3D model created from two 2D cross-sections (Li & Acton, 2006). 2

Figure 3: NVIDIA GPU vs. Intel performance over time (NVIDIA, 2007)..................... 12

Figure 4: Uses of NVIDIA’s CUDA (NVIDIA, 2007)... 16

Figure 5: NVIDIA GeForce 8800GTX (NVIDIA, 2007)... 21

 iii

LIST OF TABLES

Table 1: Matlab full algorithm runtimes..20

Table 2: Matlab sortrows function runtimes. ...21

Table 3: GPU memory transfer runtimes...21

Table 4: GPU code runtimes..21

 iv

ABSTRACT

Deformable model image segmentation is the process of mathematically modeling

three-dimensional flexible, or non-static, objects, such as human organs, onto a computer

through the analysis of multiple images of the subject from a variety of different angles

and directions. This type of image segmentation is used widely in the medicine,

commerce, and defense fields. Some examples of applications include surgical head-up

displays providing an enhanced view of a patient’s body, intelligent character recognition

systems for digitizing documents, and military missile and aircraft tracking techniques.

The deformable model image segmentation process can be incredibly intensive and time-

consuming on current, traditional, single-core computer micro-architectures and generally

require expensive high-end mainframes or distributed systems. Aside from the obvious

price deterrent, these types of computers are generally quite cumbersome and immobile

making them impractical for many applications. Multi-core processors such as NVIDIA’s

GeForce series, however, show a great deal of promise by providing high-end

computational power while remaining as portable as personal computers. This project

concentrated on implementing a deformable model segmentation algorithm for one of

NVIDIA’s processors, attempting to achieve real-time processing capability. Although

this goal was not reached, a 1.24x speedup was achieved showing a great deal of promise

for parallel programming and multi-core processors. Finally, as more mainstream

processors begin to use multi-core designs, making parallel programming take on a larger

role in general computing, new tools will have to be created to help software designers

create parallel software as efficiently as in the past.

 v

CHAPTER 1: INTRODUCTION

Many important applications used for health care, defense, and many other

industries require algorithms that are able to match, track, and model objects by

analyzing photographs or images. This chapter introduces the type of algorithm that will

be used in this project, discusses the need for improved implementations, and describes

the scope and organization of the project and this report.

1.1: Introduction to Deformable Model Image Segmentation

Image segmentation is a process used to distinguish objects within images, such

as photographs, radar outputs, or x-rays, from their background. For example, given a

microscopic image of a blood sample, an image segmentation process could be used to

locate and identify all blood cells in the image, recording each cell’s position in the

sample and even categorizing its blood cell type (Asano, Chen, Katoh, & Tokuyama,

1996). Image segmentation has advanced to a point where it can even match highly

textured images as shown in Figure 1. The cells would be stored on a computer as a

mathematical model, keeping track of their size and shape. Image segmentation methods

can also be used to find and store three-dimensional objects by analyzing multiple images

of the same objects from different angles. A challenge, however, arises when the objects

being scanned for are not static—in other words, objects that are not always the same

shape. For instance, finding and modeling a human liver can be difficult because it has a

different shape depending on the specific subject and their age. Deformable model image

segmentation is the technique that enables the matching of non-static three-dimensional

objects from two-dimensional images (Baker, 2005) as shown in Figure 2.

 1

Figure 1: Image Segmentation to match object (Kompatsiaris, 2004).

Figure 2: 3D model created from two 2D cross-sections (Li & Acton, 2006).

1.2: Needs for a Better Performing Implementation

Current deformable model algorithms implemented for single processor

architectures are quite processor-intensive and can take many billions of cycles to execute

accurately (Lachaud & Taton, 2005). As a result, the run time of these algorithms can be

too long to be used for real-time segmentation applications, where the algorithm must run

 2

multiple times per second. Many different fields, including health care and defense,

require these real-time image segmentation implementations to match and model objects

(Grinstead, Koschan, Page, & Abidi, 2006). New advances in computer processing

architectures create opportunities to implement much faster algorithms achieving or

coming close to real-time applicability, such as an implementation of a complex

Feldkamp algorithm by IBM researchers (Sakamoto et al., 2005). Due to their parallel

processing architectures, both graphics processing units (GPU) and IBM’s Cell

Broadband Engine Architecture (Cell) are of particular interest for image processing use.

Current GPUs feature over a hundred processing units, every one able to analyze data

concurrently with each other; this makes them extremely well suited for image processing

(Owens et al., 2005). The goal of this project is to implement a current deformable model

image segmentation algorithm for a GPU that can calculate high-quality computer

models of objects from detailed images fast enough to allow for real-time applications.

Deformable model image segmentation has a long history of research and

development and has been used in many different applications (Gibson & Mirtich, 1997).

However, real-time applications generally remain extremely costly and immobile,

requiring expensive high-end mainframes or a powerful distributed system. This is a

major roadblock for many segmentation applications such as surgical display aids and

onboard aircraft tracking on military vehicles, which cannot meet the space requirements

for a mainframe. For these types of developments to be feasible, segmentation time must

be reduced to real-time speeds on a portable micro-architecture such as a GPU. To

accomplish this, the segmentation algorithms must either become more efficient, or

processing throughput must increase (Lorts, 2000). Much work has gone into these

 3

issues; current algorithms are highly optimized for traditional single-core processors.

This project will attempt to create an optimized segmentation algorithm for a GPU that

fully utilizes the architecture’s performance enhancing features such as high-speed vector

processing and parallel data partitioning.

1.3: Organization and Scope of the Thesis Project

The segmentation algorithm used for this project was written by Bing Li and Scott

T. Acton of the University of Virginia (UVA) (Li & Acton, 2006). Adam Banda carried

out the rest of the project, converting the algorithm for use in a multi-core environment

and optimizing the application to achieve greater performance. The implementation was

created at UVA’s Computer Science department starting in the summer of 2006 and

continuing until this project document’s publication date.

This project report will disclose the multi-core implementation’s creation process,

analyze its results, and give recommendations for future research. First, it will discuss the

use and impact of the algorithm in society and the motivation for an improved solution.

Next, it will talk about the technology behind the project and some current, related

research. Then, the report will precisely describe the entire process of creating the new

implementation, detailing the problems encountered and lessons learned. The report will

then reveal, analyze, and discuss the test results including the implementation’s speed and

accuracy relative to the original. Finally, it will disclose the conclusions of the project

and make recommendations for future research.

 4

CHAPTER 2: SOCIETAL CONTEXT AND
ETHICAL IMPLICATIONS

First, this chapter will discuss deformable model segmentation algorithms’ use in

object matching, modeling, and tracking applications in today’s society. These types of

computer-aided object managers are essential in modern society and are used in

numerous applications. They benefit numerous areas including culture, economy, health

care, and defense. This chapter will then go on discuss some of the ethical issues of this

project including contracts with NVIDIA, the manufacturer of the hardware used in this

project, and uses of related algorithms for military purposes.

2.1: Object matching, modeling, and tracking applications in society

The first use of object tracking is for general computing. Image and video

retrieval are important as computers gain more storage and processing capacity allowing

for vast collections of media files. New object tracking systems are being developed to be

able to track, organize, and compare large collections of media objects (Aslandogan &

Yu, 1999). Also of importance is character and handwriting matching. As computers

become more powerful, the ability to transform writing to digital media is becoming

easier (Belongie, Malik & Puzicha, 2002). More accurate methods of character

recognition are now being used, such as object matching systems using deformable

models (Cheung, Yeung & Chin, 2002).

Another use of object tracking is in the defense industry. A strong and secure

homeland requires the military and intelligence communities to have the ability to track

and analyze objects across the globe such as aircraft and vehicles. Computers can be used

to aid the defense industry by analyzing photography and radar imagery for objects.

 5

Object matching algorithms can be used to find and map roads from radar images.

Furthermore, the military can use this ability to automatically control and steer vehicles,

even through darkness, fog or snow (Kaliyaperumal, Lakshmanan & Kluge, 2001).

Defense communities can also use these algorithms for detecting the location and bearing

of actual vehicles and aircraft. For example, infrared images of the sky can be taken,

either from the ground or from mounted cameras on commercial or military planes. From

these two-dimensional images, objects can be recognized and modeled. Additionally,

these methods can determine the aircraft’s type, velocity, direction, and most importantly,

whether or not it is a target (Kamgar-Parsi, Jain & Dayhoff, 2001).

In addition to its defensive uses, object matching can be used to translate hand

and face gestures into digital form for analysis. The modeling and analysis of human

motion can be used for many different applications. Examples include gesture-driven user

interfaces, motion analysis in sports and medicine, psycholinguistics, surveillance, and

entertainment (Bryll, Rose & Quek, 2005). In addition, accurate translation of the hand

and lip signs of the deaf can be transferred to digital form through object modeling

techniques.

Deformable object modeling is also very important in a variety of other fields as

well. It can be used, for example, in computer-aided apparel design where computer

models can simulate fabric folding and draping. In the entertainment industry, these

models can be used for the animation of complex objects like clothing or facial

expressions (Gibson & Mirtich, 1997). Deformable object modeling can also be used to

expand culture. For instance, researchers at the University of North Carolina have

developed a system utilizing deformable modeling that lets artists paint directly to a

 6

digital medium. The system uses the artists force and tactile information along with a

physically-based deformable brush model to created digital images very similar to their

paint-and-canvas analogs (Mahoney, 2006).

Finally, deformable object modeling is of tremendous importance in the health

care industry. Medical imaging is revolutionizing the medical industry. It enables doctors

to look inside the human body noninvasively. It can also be used to plan surgery or help

eliminate tumors with minimal collateral damage (McInerney & Terzopoulos, 1996).

Some examples of deformable object modeling applications include medical diagnostics,

preoperative planning, intraoperative navigation, surgical robotics, training, and

telesurgery (Shadidi, Tombropoulos & Grzeszczuk, 1998). Additionally, using

deformable models, an image-enhanced endoscopy system was created for surgeons. The

system used a transparent display overlaying the patient to be operated upon. The monitor

displays three-dimensional models of the organs and area of the body to be operated on

and uses deformable models to calculate and calibrate the images. This system enables

the surgeon to streamline the procedure by constantly giving him all the necessary

information directly in his line of sight (Shahidi, et al., 2002). A similar system has also

been used to target lesions for surgeons, helping them navigate around critical points.

These systems help to achieve a more effective, safe, and streamlined surgery (Liao, et

al., 2004).

2.2: Ethical implications of the project

My research involves developing a deformable model algorithm for one of the

latest computer architectures. As such, no research with humans will be conducted. Nor

will my application be used to directly create a system that is used on humans. My

 7

project involves only the manipulation of data in a computer. Therefore no real safety

concerns are relevant, especially if proper ergonomic techniques and equipment are used.

The equipment to be operated is owned by the UVA’s Computer Science department. A

variety of sources, including GPU documentation from NVIDIA, will be used for this

project. Originally, NVIDIA’s development aid being used, CUDA, was unreleased and

bound by a nondisclosure agreement (NDA). As such, no information concerning CUDA

could be discussed with people not under the NDA, including its feature set,

programming model, and even its very existence. However, at the time of this report’s

publication, the NDA has been dissolved as NVIDIA has publicly released its newest

product line featuring CUDA support. All sources used in this project were

acknowledged and properly cited. This research was conducted primarily by Banda with

some collaboration and discussion with Kevin Skadron.

Since NVIDIA’s NDA was upheld, it is doubtful that many other ethical problems

will come out of this project. Even though very similar algorithms have been used for

military purposes, they are mainly for surveillance and intelligence gathering, aiding in

the defense of the nation. Since designing improved body armor and other military

hardware is not unethical, neither is creating better algorithms that could be used in a

military setting. Deformable model research has been conducted for the past two decades

with few problems for any groups of people. Instead, the research has created more

accurate and efficient applications in everything from surgical procedures to assembly

line optimization. Deformable model research can provide many benefits to a wide range

of interests and applications while harming very few.

 8

CHAPTER 3: REVIEW OF TECHNICAL
LITERATURE

This chapter first discusses the development of parallel processors and their

important role in current and future mainstream microprocessor design. Then it will talk

about the particular algorithm used in this project, including the reasons it was chosen.

3.1: Importance of Parallel Microprocessor Architectures

Since I will be developing the segmentation algorithm on a GPU, a multi-core

processor, parallel programming will be vital. Parallel processing has long been at the

forefront of high-performance computing. The world’s fastest computers all use multiple

processors along with various parallel programming techniques to be able to compute the

most complex and intense algorithms. Traditionally, these machines were restricted to

only the largest, most prestigious institutions such as the Lawrence Livermore National

Laboratory, which uses IBM’s Blue Gene, one of the fastest supercomputers in the world

(Zheng, Singla, Unger & Kale, 2002). Advances, however, in both the design and

manufacture of chipsets could bring high-performance computing to the commercial

world (Smith, Hsu & Hsuing, 1990).

In 2003, Virginia Tech contributed to the evolution of supercomputing when they

purchased 1,100 Power Mac G5 desktop computers from Apple Computer. Networked

together, these personal computers formed the third best performing computer in the

world. Even more impressive was the fact that the system was relatively inexpensive,

$5.2-million instead of the tens of millions of dollars usually spent on more traditional

supercomputing designs (Olsen, 2003).

 9

In addition to being great for high-performance computing, parallel processing

will be essential in the future personal computing market. Processors have doubled in

performance about every two years (Lundstrom, 2003, p. 210). Traditionally this was

done by increasing the processor’s clock speed, the number of operations it can perform

per second, and reducing transistor size thereby increasing its performance. Currently,

however, some major limitations are being reached (Lundstrom, 2003). Author Patrick

Gelsinger has said that “as [microprocessor] designs become more complex, technology

scaling more difficult, and power issues more pressing, ‘business as usual’ [in the

microprocessor industry] no longer suffices” (2001). Increases in processor clock-speeds

have stalled recently, mostly due to heat issues (Puri, Karnik & Joshi, 2006). To continue

the performance increase trend the industry is used to, microprocessor manufacturers

must make improvements in other areas.

One way hardware manufacturers, such as Intel and AMD, have continued to

increase computing performance without increasing the clock-speed is by increasing the

number of cores on a single processor. For example, one of Intel’s newest high-end

microprocessors, the Core Duo, has two processing cores on a single chip. This allows

two processes to run concurrently on a single microprocessor, for instance, the playback

of a DVD and the encoding of an email simultaneously (Intel, 2006). With only two

cores, full processor utilization is simple because most systems do have two or more

processes running at the same time. However, this multi-core trend suggests that future

microprocessors will have to house many cores to increase performance, creating an

enormous challenge for software engineers in utilizing all of the processing units

efficiently.

 10

Many scientific and medical algorithms require high-performance computers to

process them in a manageable amount of time. With the introduction of multi-core

processors to the consumer market, it could become feasible for researchers, scientists,

and doctors to afford portable computers powerful enough to compute their intensive

algorithms instead of relying on cumbersome and expensive high-performance

mainframes. New multi-core architectures, such as IBM’s Cell and NVIDIA’s GPUs,

could prove very useful for these processor-intensive algorithms. In fact, implementations

for various medical imaging algorithms have already been created for both the Cell

processor and GPUs. For instance, the Fast Fourier Transform, an essential algorithm in

medical imaging, has been implemented successfully for the GPU (Moreland & Angel,

2003). Additionally, J. Greene and R. Cooper have ported the same algorithm to a Cell

processor with significant performance increases (2005).

3.2: Algorithm Used in the Project

In this project, Banda has implemented a recent image segmentation algorithm on

NVIDIA’s GeForce 8 Series (G80) GPU architecture. He used the “Poisson inverse

gradient for automatic initialization of deformable model segmentation” method by Bing

Li and Scott T. Acton (2006). This algorithm aimed to make automatic modeling of

objects more efficient. Much effort has gone into this area, and various different methods

for initializing the object model have been attempted and tested (Duan, Yang, Qin &

Samaras, 1997). Eduardo Tejada and Thomas Ertl were able to create an implementation

of a similar deformable model algorithm for a GPU that was able to run as fast as or

faster than traditional, single-core implementations (2005). Based on these results, it was

 11

deemed that Li and Acton’s algorithm should be able exhibit similar performance

increases when translated to a multi-core processor.

Implementing Li and Acton’s algorithm for use on a GPU was ideal for this

project for two reasons. First, the algorithm itself is revolutionary; the Poisson inverse

gradient method is completely novel and makes improvements on previous approaches

including Neuenschwander, Fua, Szekely, and Kubler’s “Velcro surfaces” deformable

modeling method (1997). Second, GPUs have exhibited performance increases at a rate

much higher than tradition processing units made by Intel and AMD (Owens et al., 2005)

as shown in Figure 3. In addition, the two largest graphics manufacturers, NVIDIA and

ATI, have begun to support general purpose programming in their GPUs (GPGPU)

enabling researchers and software engineers to more easily implement algorithms on the

units.

Figure 3: NVIDIA GPU vs. Intel performance over time (NVIDIA, 2007).

 12

CHAPTER 4: MATERIALS AND METHODS

This chapter will focus on the steps carried out to complete the multi-core

implementation of Li and Acton’s algorithm. It will first describe the research carried out

to gain the knowledge necessary to create a well-made implementation. Next, it will

discuss the materials obtained and steps taken to set up equipment necessary to complete

the project. Finally, it will describe the actual implementation process, including code

translation and optimization.

4.1: Preliminary Research

The first step in the project was to research current deformable model image

segmentation techniques. To do so, Banda has used reference searching services and

library systems to research the latest developments and gain knowledge in overall

segmentation methods. Using this information, he was able to study a variety of related

algorithms, searching for one that was both extremely intensive and highly parallelizable.

At this stage Banda had collaborated directly with Skadron to find the best choice of

algorithm for the project. After consultation with the “Poisson inverse gradient” method’s

creators, Li and Acton, they determined that this algorithm was best suited for the project.

Along with researching segmentation methods, Banda began gaining more

expertise in parallel programming techniques. All parallel architectures have some

similar attributes, even across completely different systems. These include data

partitioning, parallelization, and load balancing. Each was extremely important when

finally implementing the algorithm. To gain detailed understanding of these techniques,

Banda studied them through a variety of textbooks and articles on the subject. In addition,

 13

he consulted with Skadron, who had advanced knowledge and expertise in parallel

programming and advanced microprocessor architectures.

4.2: Materials and setup

The next step was to gain access to a workstation and install NVIDIA’s software

development kit (SDK). The SDK was used to aid with writing, testing, and emulating

programs, even before the necessary NVIDIA hardware was obtained. To find a suitable

workstation, Banda and Skadron applied for office space from UVA’s Computer Science

department. The SDK software itself was available for free from NVIDIA and was

installed on the workstation. The process was aided in part by UVA’s Computer Science

System Staff.

After setting up the SDK, Banda became comfortable with the GPU’s

programming models. First, he studied the documentation installed with the SDK

(NVIDIA, 2007). These files included a wealth of information involving the system

customization, program simulation, GPU programming models, and software testing.

Then, he further improved his knowledge by writing some sample programs and

becoming familiar with the SDK’s components and interfaces. Next, he practiced

debugging methods on NVIDIA’s CUDA emulator. Full comprehension of the

debugging procedure would be necessary to fully implement and optimize the deformable

model segmentation algorithm.

The next step required the profiling of the selected deformable model

segmentation algorithm. First, Banda created a flowchart of the algorithm. This tracked

the execution trajectory of the program and helped in the overall understanding of the

program. By mapping out the algorithm visually, trends in its execution can be found

 14

allowing him to pinpoint sections of the algorithm that could be most effectively

parallelized for use by the many individual processing cores of NVIDIA’s G80. It will

also help to reveal data dependencies between different sections of the program that

could cause problems when parallelizing. Next, Banda used profiling tools to measure the

runtime of different sections of the algorithm in order to determine where speed

enhancements would most drastically improve its overall performance. Li and Acton’s

original algorithm was written for MatLab, a numerical computing environment allowing

for easy manipulation of matrices such as image arrays (Goering, 2004), so Banda used

MatLab’s built in profiling tools to find which parts of the program had the longest

runtime. These critical parts of the program would need to be optimized to create the

fastest final implementation.

4.3: Project Implementation Process

Now that Banda had obtained and setup all the programs and equipment, he began

to translate the algorithm from the MatLab language to the C programming language.

This involved the line-by-line conversion of instructions from their original command to

the fastest available instruction compatible with C. This step proved quite time

consuming, so the decision was made to only translate a subsection of the original

MatLab code to C in order to complete the project on time. To determine which parts to

translate, Banda again used the MatLab profiler to obtain the results shown in Appendix

A. One subsection of the code was found to use over 54.9% of the programs runtime.

This part of the algorithm was used to sort a given matrix by its rows. This section made

extensive use of sorting functions, and since sorting functions can generally be

 15

effectively parallelized for performance gains (Rajasekaran, 2000), these sections of the

program were translated to C.

After transforming parts of the algorithm from MatLab to C, Banda began to

parallelize the code for the GPU. One of the reasons that GPUs from NVIDIA and ATI

have been receiving increased use by researchers is that they have been adding more

support for general purpose (GP) programming with each new release. NVIDIA’s

GPGPU solution, CUDA, whose uses are shown in Figure 4, makes programming GP

software much easier by handling much of the internal management such as direct

memory transfers itself, letting the programmer concentrate on his implementation. To

parallelize, the programmer tells the system how many partitions he needs to process the

data; in other words, how many threads he needs. Then each thread runs the same code

on different data. The trade-off is that the programmer has less control over the code

possibly resulting in less than perfect performance. Since direct memory transfers were

handled behind the scenes by CUDA, Banda concentrated on parallelizing the code so

that it made use of all 128 individual processors that NVIDIA’s G80 Series features.

Figure 4: Uses of NVIDIA’s CUDA (NVIDIA, 2007).

 16

Since the sections of the algorithm that he converted to C frequently used a sort

function to arrange hundreds—or sometimes thousands—of numbers in order, a robust

sort function that took full advantage of all of the GPU’s processing elements was

needed. In the end, the bitonic sort method was selected. This particular algorithm was

chosen for two major reasons. First, it is very easily parallelized. At each stage in the sort

process, n pairs of data elements are compared, where 2n represents the total number of

data elements. Each pair is only compared once and the data read or written to is only

from those two elements, meaning there is no data dependencies between different pairs

within a stage. This simplifies the algorithm allowing separate threads to handle each

pair, and no thread needs to communicate with each other. Second, the bitonic search

performs very well on multi-core processors with many processing elements. Since this

project uses the NVIDIA GeForce 8800 GTX, which has 128 such processing elements,

bitonic search was the most ideal algorithm.

Normally bitonic search takes an array of numbers and return a sorted version of

the array. However, for this project, a slight modification was needed. Instead of the

actual sorted values being returned by the sort method, this application needed the final

indices of the sorted array to be returned. This modification was fairly simple to

implement. First, an additional array was created, its size being equal to the input array.

Then, each element in this new array was initialized to value of its index, i.e. the first was

given the value ‘0’, the second the value ‘1’, and so on. Next, whenever a pair of data

elements was swapped, the corresponding pair of index elements was swapped too.

Finally, instead of returning the data array, the modified bitonic sort would just return the

index array. While this modification was simple to implement, it had to use twice as

 17

much memory. Fortunately, since the initial index array could be computed on-the-fly

and since only the final index array was returned, the modified bitonic sort algorithm

only needed the same amount of data to be transferred to and from the algorithm as the

original.

One of the main reasons bitonic sort was chosen for this project is that it is very

straightforward to translate it from a single-core to a multi-core version. Bitonic sort

consists of log(n) · (log(n) + 1) / 2 stages each stage making n / 2 comparisons, where n is

the number of elements. The advantage of bitonic sort is that each of these stages has no

data-dependencies. Thus, independent threads can be used to process each index, never

having to communicate with each other if they are synchronized after each stage. In the

original, single-core version of the bitonic sort algorithm, at each stage it would loop

through every index of the array serially, comparing and swapping certain values. For the

multi-core implementation, each thread would carry out the same method as the single

core version with the exception of the looping through each index. Instead, each thread

only compared and swapped the two elements of its pair. After every thread completed a

stage, or synchronized, they would begin the next stage. The CUDA system provides this

functionality with its __syncthreads() operation, so between each stage in a thread’s

code, the __syncthreads() function was placed (NVIDIA, 2007).

The final step in the implementation process was to get the multi-core bitonic sort

to fully run on the NVIDIA CUDA platform. The NVIDIA GPU hardware places

restrictions on the number of threads that can run in the same block, or the number of

threads that can communicate by sharing data. However, as previous mentioned, for

bitonic sort, each stage requires no communication between threads. Instead a thread

 18

must simply wait until all other threads have finished the stage before moving on to the

next. Therefore, any thread could be placed into any block of threads and still function

the same. The only change needed to be made in a thread’s code was to add the product

of the block size and its current block identification number to the thread’s index value

allowing it to access the same array index independent of its block. Finally, the

implementation was modified to actually send and receive the array data to and from the

CPU and GPU and to initialize each thread on the GPU. This was implemented through

NVIDIA’s special CUDA functions (NVIDIA, 2007). After some preliminary testing to

make sure the new sort algorithm worked properly, Banda could now test his code’s

accuracy and speed on the NVIDIA G80 Series hardware.

 19

CHAPTER 5: RESULTS AND DISCUSSION

This chapter will first present the test results of the original and new

implementations, namely comparing their runtimes. Then it will discuss the implications

of the results and whether or not the project succeeded.

5.1: Test Results

Since only a portion of the original MatLab code was translated and optimized for

the GPU, to make testing easier, the plan was to link the GPU sections from the MatLab

program so that the entire algorithm could be tested at once. MatLab has a feature that

allows it to use outside compilers to convert code written in C to a package that MatLab

can run just like any other of its internal functions. Unfortunately, MatLab only supports

a few specific compilers while the NVIDIA GPU uses its own special compiler, so Banda

could not link all of the code into one package. Instead he had to test the two components

separately—first the MatLab section and then the GPU section using data outputted from

the MatLab program as the input in the GPU code. Some problems were presented; the

sortrows function in MatLab that was converted to the GPU was to be called 26 times by

the MatLab program as shown in Appendix A. This would mean that the output from

MatLab to be used as input in the sortrows function would have to be calculated and

executed 26 times. A better solution was found; since each call of the function used

similar input data, and since the MatLab profiler was able to calculate exactly the amount

of time spent within the sortrows function, this time could be replaced with the total

runtime of 26 calls of the GPU code. This total time would have to include the time it

takes to transfer memory from the CPU to the GPU at runtime, since this would have

been included in the total runtime of a linked total package.

 20

Figure 5: NVIDIA GeForce 8800GTX (NVIDIA, 2007).

The tests were all carried out on a Dell XPS workstation with an Intel Core 2 Duo

6300 CPU, 1 GB of RAM, and the NVIDIA GeForce 8800GTX GPU, shown in Figure 5.

First, the entire MatLab algorithm was tested; the results are shown in Table 1. Next, the

total time spent in the sortrows function was tested as shown in Table 2.

Trial # Runtime (s)
1 1.064
2 1.048
3 1.082
4 1.061
5 1.053
6 1.058

Mean 1.061
Table 1: Matlab full algorithm runtimes.

 21

Trial # Runtime (s)
1 0.635
2 0.623
3 0.606
4 0.612
5 0.610
6 0.617

Mean 0.617
Table 2: Matlab sortrows function runtimes.

Next, the GPU code was tested. First the actual setup and memory transfer time of the

GPU program was tested without doing the actual data processing. To get the most

accurate results, the transfer time test was carried out 6 times, as shown in Table 3. Next

the full GPU code was tested, as shown in Table 4.

Trial # Runtime (s)
1 0.015672
2 0.015744
3 0.015744
4 0.015640
5 0.015642
6 0.015628

Mean 0.015672
Table 3: GPU memory transfer runtimes.

Trial # Runtime (s)
1 0.015869
2 0.015819
3 0.015816
4 0.015942
5 0.015844
6 0.015840

Mean 0.015855
Table 4: GPU code runtimes.

As one can see, the memory transfer time takes up the vast majority of the runtime; in

fact, the actual data processing only adds an addition 0.000183-s to the total runtime.

Since sortrows in the original MatLab code was called 26 times, the total GPU code

runtime must be multiplied by 26. This means the total runtime of the GPU code is

 22

0.412230-s, while the total runtime of its analogue, sortrows, in the MatLab code is

0.617-s. In other words the GPU code performed the same data operations 0.20477

seconds faster for a speedup of 1.50x. Substituting the GPU runtime into the sortrows

runtime of the original algorithm, the new overall runtime of the algorithm is 0.85623

seconds compared to the original runtime of 1.061 seconds. Therefore, the GPU

implementation takes 80.07% of the time of the original, or a 1.24x speedup.

5.2: Discussion of the Results

The goal of the project was to create an implementation of the deformable model

segmentation algorithm that could run at real-time speeds. Although the new

implementation did reduce the execution time from 1.06 to 0.86 seconds, it is still not fast

enough to run multiple times per second, as would be necessary for real-time

applications. However, as was shown in Tables 3 and 4, the majority, 98.8% in fact, of

the GPU runtime was spent simply transferring the data from the CPU to the GPU, not

actually operating on the data. The reason for this is that each time the GPU code was to

be run, an entirely new set of data on had to be sent from the CPU to the GPU and back

again. Almost all of this memory transfer overhead could have been avoided if the entire

algorithm had been translated to C and run completely on the GPU. Data would only

need to be transferred to the GPU and back once, at the beginning and end of the

algorithm. Currently, the memory transfer overhead is 0.015672-s × 26 = 0.407472

seconds, almost half of the total runtime; translating the entire algorithm to the GPU

would have achieved a much faster runtime, possibly even one fast enough for real-time

use.

 23

CHAPTER 6: CONCLUSIONS

New multi-core microprocessor architectures such as those found in the Cell

processor and GPUs offer the possibility of large processing speedup, but they come at

the cost of more difficult, longer software development time—at least until better tools

are created to streamline the parallelization and optimization process. This cost was

certainly felt in the undertaking of this project; the parallel programming involved was

far harder and required more time than normal application development would have.

NVIDIA’s CUDA platform, even though it is currently in an early stage of

development, proved to be quite efficient and robust. Additionally, in terms of ease of

programming, CUDA was far less daunting than the Cell processor architecture, mainly

since much of the memory management was handled by the system, not the programmer.

On the other hand, CUDA suffered performance-wise since large data arrays had to be

transferred from the CPU to the video hardware each time the GPU was called. Unlike

the Cell processor, the GPU has no GP processor meaning it must solely be controlled by

the computer’s CPU. The addition of a single, traditional processor onto the actual GPU

hardware would have allowed the entire algorithm to run on the device and would have

eliminated the data transfer performance reduction that prevented the algorithm from

achieving real-time capability.

The goal of creating a real-time applicable deformable model segmentation

algorithm was not realized in the project; in these terms the project failed. Nevertheless,

the 1.24x speedup achieved does show serious potential for multi-core architectures such

as NVIDIA’s GPU, especially since much of the execution time was spent transferring

data which could have mostly been avoided by translating more of the algorithm to the

 24

GPU. Regrettably time constraints prevented this and the genuine possibility of creating a

real-time deformable model segmentation algorithm.

Certainly, researchers should continue to experiment with parallel programming

on multi-core architectures to achieve better performance. Especially considering the

multi-core trends in the mainstream microprocessor industry, parallel programming will

become more and more indispensable to take full advantage of ones computing hardware.

However, it is critical that improved micro-architectures and compilers be created to ease

the software engineer’s burden. Currently, parallel programming is truly harder than

writing for tradition single-core processors, and better tools and methods will be

necessary to create parallel applications as efficiently as before. Otherwise, fewer

programs will be able to be developed, impairing all industries that rely on computing—

which, today, is nearly all of them.

 25

BIBLIOGRAPHY

Asano, T., Chen, D. Z., Katoh, N., & Tokuyama, T. (1996). Polynomial-time solutions to

image segmentation. New Orleans, LA: Society of Industrial and Applied

Mathematics.

Aslandogan, Y. A., & Yu, C. T. (1999). Techniques and systems for image and video

retrieval. Knowledge and Data Engineering, 11(1), 56-63.

Baker, Monya. (2005). Searching for squishy shapes: vision algorithm models

deformable objects. Technology Review, 108, 83.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition

using shape contexts. Pattern Analysis and Machine Intelligence, 24, 509-522.

Bryll, R., Rose, R. T., & Quek, F. (2005). Agent-based gesture tracking. Systems, Man.

and Cybernetics, 35, 795-810.

Cheung, K. W., Yeung, D. Y., & Chin, R. T. (2002). Bidirectional deformable matching

with application to handwritten character extraction. Pattern Analysis and

Machine Intelligence, 24, 1133-1139.

Duan, Y., Yang, L., Qin, H., & Samaras, D. (2004). Shape reconstruction from 3d and 2d

data using pde-based deformable surfaces. European Conference European

Conference on Computer Vision, 3, 238–251.

Gelsinger, P. P. (2001). Microprocessors for the new millennium: Challenges,

opportunities, and new frontiers. In IEEE International Solid-State Circuits

Conference, Digest of Technical Papers (pp. 22-25). Piscataway, NJ: IEEE.

 26

Gibson, S. F., & Mirtich, B. (1997). A survey of deformable models in computer graphics

(Technical Report TR-97-19). Cambridge, MA: Mitsubishi Electric Research

Laboratories.

Goering, R. (2004, October, 4). Matlab edges closer to electronic design automation

world. EE Times. Retrieved March 25, 2007, from

http://www.eetimes.com/showArticle.jhtml?articleID=49400117.

Greene, J., & Cooper, R. (2005). A parallel 64K complex FFT algorithm for the

IBM/Sony/Toshiba Cell Broadband Engine processor. Paper presented at the

Global Signal Processing Exposition, Santa Clara, CA.

Grinstead, B., Koschan, A., Page, D., & Abidi, M. (2006, April). Model building for

simulation and testing under uncertain conditions. Proc. SPIE Modeling and

Simulation for Military Applications, 6228, 98-109.

Intel. (2006). Intel Core Duo Processor and Intel Core Solo Processor on 65 nm process.

Santa Clara, CA: Intel.

Kaliyaperumal, K., Lakshmanan, S., & Kluge, K. (2001). An algorithm for detecting

roads and obstacles in radar images. Vehicular Technology, 50(1), 170-182.

Kamgar-Parsi, B., Jain, A. K., & Dayhoff, J. E. (2001). Aircraft detection: a case study in

using human similarity measure. Pattern Analysis and Machine Intelligence, 23,

1404-1414.

Lachaud, J. O., & Taton, B. (2005). Deformable model with a complexity independent

from image resolution. Computer Vision and Image Understanding, 99, 453-475.

 27

Li, B., & Acton, S. T. (2006). On the Poisson inverse gradient for automatic initialization

of deformable model image segmentation. Unpublished manuscript, University of

Virginia, Charlottesville, VA.

Liao, H., Hata, N., Nakajima, S., Iwahara, M., Sakuma, I., & Dohi, T. (2004). Surgical

navigation by autostereoscopic image overlay of integral videography.

Information Technology in Biomedicine, 8(2), 114-121.

Lorts, D. (2000). Combining parallelization techniques to increase adaptability and

efficiency of multiprocessing DSP systems. In Proceedings of Ninth DSP

Workshop: First Signal Processing Education Workshop, Hunt, TX.

Lundstrom, M. (2003). Moore’s Law forever? Science, 299(5604), 210-211.

Mahoney, D. P. (2001). Painting with feeling. Computer Graphics World, 24, 15.

McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis.

Medical Image Analysis, 1(2), 91-108.

Moreland, K., & Angel, E. (2003). The FFT on a GPU. In M. Doggett, W. Heidrich, W.

Mark, A. Schilling (Eds.), Graphics Hardware 2003: San Diego, California, July

26-27, 2003. New York: Association for Computing Machinery.

Neuenschwaner, W., Fua, P., Szekely, G., & Kubler, O. (1997). Velcro surfaces: fast

initialization of deformable models. Computer Vision and Image Understanding,

65, 237-245.

NVIDIA. (2007). NVIDIA CUDA Compute Unified Device Architecture Programming

Guide. Santa Clara, CA: NVIDIA.

Olsen, F. (2003). Virginia Tech takes 1,100 Macs and turns them into a supercomputer.

Chronicle of Higher Education, 50(11), 38.

 28

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E., and

Purcell, T. 2005. A survey of general-purpose computation on graphics hardware.

Proceedings of Eurographics 2005, State of the Art Reports, 21-51.

Puri, R., Karnik, T., & Joshi, R. (2006). Technology impacts on sub-90nm CMOS circuit

design and design methodologies. Paper presented at the IEEE International

Conference on VLSI Design, Piscataway, NJ.

Rajasekaran, S. (2000, January). A framework for simple sorting algorithms on parallel

disk systems. Theory of Computing Systems, 34(2), 101-114.

Sakamoto, M., Nishiyama, H., Satoh, H., Shimizu, S., Sanuki, T., Kamijoh, K.,

Watanabe, A., & Asahara, A. (2005). An implementation of the Feldkamp

algorithm for medical imaging on cell. New York: IBM Corporation.

Shahidi, R., Bax, M. R., Maurer, C. R., Jr., Johnson, J. A., Wilkinson, E. P., Wang, B.,

West, J. B., Citardi, M. J., Manwaring, K. H., & Khadem, R. (2002).

Implementation, calibration and accuracy testing of an image-enhanced

endoscopy system. Medical Imaging, 21, 1524-1535.

Smith, J. E., Hsu, W.C., Hsiung, C. (1990). Future general purpose supercomputer

architectures. Intl. Journal of Supercomputer Applications, 90, 796-804.

Tejada, E., & Ertl, T. (2005). Large steps in GPU-based deformable bodies simulation.

Simulation Modelling Practice and Theory, 13, 703-715.

Zheng, G., Singla, A. K., Unger, J. M., & Kale, L. V. (2002). A parallel-object

programming model for petaflops machines and blue gene/cyclops. Paper

presented at the NSF Next Generation Systems Program Workshop, 16th

 29

International Parallel and Distributed Processing Symposium, Fort Lauderdale,

FL.

Kompatsiaris, Y. (2004). Segmentation. Retrieved March 25, 2007, from

http://www.iti.gr/~ikom/research_segmentation.htm.

 30

ADDITIONAL REFERENCES

Bailey, D. H. (1988). A high-performance FFT algorithm for vector supercomputers. Intl.

Journal of Supercomputer Applications, 2(1), 82-87.

Bechini, A., Prete, C. A. (2002). Performance-steered design of software architectures for

embedded multicore systems. Software - Practice and Experience, 32, 1155-1173.

Chow, A. C., Fossum, G. C., & Brokenshire, D. A. (2005). A programming example:

large FFT on the Cell Broadband Engine. New York: IBM.

Duncan, J. S., & Ayache, N. (2000) Medical image analysis: progress over two decades

and the challenges ahead. Pattern Analysis and Machine Intelligence, 22(1), 85-

106.

Owens, J. D., Shubhabrata, S., Horn, D., (2005). Assessment of graphic processing units

for Department of Defense digital signal processing applications (Technical

Report ECE-CE-2005-3). Davis, CA: University of California.

Shahidi, R., Tombropoulos, R., & Grzeszczuk, R. P. (1998). Clinical applications of

three-dimensional rendering of medical data sets. Proceedings of the IEEE, 86(3),

555-568.

Terzopoulos, D., Witkin, A. (1988). Physically based models with rigid and deformable

components. IEEE Computer Graphics and Applications, 8(6), 41-51.

 31

APPENDIX A: MATLAB PROFILER RESULTS

Tables reveal runtime and percent of runtime of each function with the algorithm.

Functions with less than 1% of the total runtime were omitted.

PoissonSolver (1 call, 1.185 sec) – Main algorithm
Function Name Calls Total Time % Time
ismember 8 0.929 s 78.5%
ind2sub 2 0.024 s 2.0%
bwperim 1 0.019 s 1.6%
Self time (built-ins, overhead, etc.) 0.202 s 17.0%
Totals 1.185 s 100%

ismember (22 calls, 1.009 sec) – Single function taking the vast majority of runtime
Function Name Calls Total Time % Time
unique 18 0.458 s 45.4%
sortrows 9 0.317 s 31.4%
ismembc2 8 0.029 s 2.9%
Self time (built-ins, overhead, etc.) 0.202 s 20.1%
Totals 1.185 s 100%

unique (20 calls, 0.467 sec) – One of two of the major functions of ismember
Function Name Calls Total Time % Time
sortrows 17 0.334 s 71.5%
Self time (built-ins, overhead, etc.) 0.133 s 28.5%
Totals 0.167 s 100%

sortrows (26 calls, 0.651 sec) – Notice, this function is called 9 times by ismember and
17 times by unique
Function Name Calls Total Time % Time
sort_back_to_front 26 0.576 s 88.5%
Self time (built-ins, overhead, etc.) 0.075 11.5.%
Totals 0.651 s 100%

As a result, the function sortrows takes up 0.651 seconds of the algorithm’s 1.185 second
runtime, or 54.9% of the runtime, and was targeted for improvement and optimization.

 32

	PREFACE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Chapter 1: INTRODUCTION
	1.1: Introduction to Deformable Model Image Segmentation
	1.2: Needs for a Better Performing Implementation
	1.3: Organization and Scope of the Thesis Project

	Chapter 2: SOCIETAL CONTEXT AND ETHICAL IMPLICATIONS
	2.1: Object matching, modeling, and tracking applications in society
	2.2: Ethical implications of the project

	Chapter 3: REVIEW OF TECHNICAL LITERATURE
	3.1: Importance of Parallel Microprocessor Architectures
	3.2: Algorithm Used in the Project

	Chapter 4: MATERIALS AND METHODS
	4.1: Preliminary Research
	4.2: Materials and setup
	4.3: Project Implementation Process

	Chapter 5: RESULTS AND DISCUSSION
	5.1: Test Results
	5.2: Discussion of the Results

	Chapter 6: CONCLUSIONS
	BIBLIOGRAPHY
	ADDITIONAL REFERENCES
	APPENDIX A: MATLAB PROFILER RESULTS

