Examination of A novel method of emulating system calls in microprocessor simulators

A Thesis

in TCC 402

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Bachelor of Science in Computer Science

by

Edwin C Bauer

April 12, 2002

On my honor as a University student, on this assignment I have neither given nor received unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses.

Approved ___ (Technical Advisor)

 Dr. Kevin Skadron

Approved ___ (Technical Advisor)

 Dr. Betsy T. Mendelsohn

Preface

This project was undertaken under the advisement of Dr. Kevin Skadron. The SimpleScalar Toolkit used in this project was developed by Todd Austin and SimpleScalar LLC. The Linux Operating System is an open-source developed Operating System founded by Linus Torvalds.

Table of Contents
iiAbstract

iiiGlossary of Terms

1Chapter 1 : Introduction

1Problem Definition

5Scope

6Report Overview

7Chapter 2 : Literature Review

7Microprocessor Architecture

10Operating System Structure

12Chapter 3 : Methods

12Creating a Simulator

14Memory Space

15System Calls

16Chapter 4 : Implementation

16Simulator Choice

17Operation

18Performance

19Chapter 5 : Emulating System Calls

19Operating System Choice

19Emulating System Calls

20Determining The System Call

21Emulation

22File System

24Chapter 6 : Conclusion

25Results

27Recommendations

29Bibliography

Abstract

Simulation is crucial for researching microprocessor architecture. A microprocessor is composed of many components, all of which can be designed and configured in a multitude of ways. Simulation allows designs to be evaluated without incurring the expense of creating a physical microprocessor chip.

Programs use operating systems to provide services that they need. Current approaches in modeling these services are inadequate. Because simulators either ignore the operating system when creating statistics, or load an operating system into the simulator, from which it can create statistic. The prior approach allows shorter simulations; the latter approach allows a higher degree of accuracy in the results. This thesis examines a method that emulates the operating system to create a microprocessor simulator that is both quick and accurate.

The motivation behind this project is to create better simulators, and therefore better microprocessors. Microprocessors are an integral part of everyday life, affecting in some manner all the services that modern society relies on. By building microprocessors with better capabilities, we will be better able to increase our well-being.

This thesis presents a preliminary simulator that has the capability of emulating a single, simple system call. Methods for implementing emulated operating system calls, and improving the simulator, are also discussed. Emulating operating system calls is a promising technique to improving the speed versus accuracy tradeoff of microprocessor simulators. However, there are many challenges to implementing this technique, which will require further analysis.

Glossary of Terms

Benchmark Application –
A program that is representative of the programs that will be used on the microprocessor.

Emulation –
Impersonating a real object.

Host –
The machine running the simulator.

Memory Space –
The memory that belongs to a program.

Operating System –
A program that runs on a computer. Other programs are run on top of this program.

Source Code –
The recipe of a program.

State –
The status of an object.

System Call –
A request for the operating system to provide a service that the program does not have permission to do by itself.

System Call By Proxy –
The simulator makes a system call to the host operating system on behalf of a program.

Chapter 1 : Introduction

The research and development of microprocessors depends heavily on the use of simulators. The designs of these simulators are a tradeoff between speed and accuracy. Increasing the detail at which a simulator models a microprocessor increases the time required to simulate the design. This thesis examines a novel technique that would improve the accuracy of the simulator, while minimally affecting its speed.

Problem Definition

Context

A microprocessor’s architecture is composed of many components, all of which can be designed and configured in a multitude of ways. Microprocessor designers make numerous decisions that require tradeoffs between the physical size, performance, and power dissipation of the microprocessor. The final architecture is a product of a subset of decisions that suits the specific requirement of the application.

Ideally, microprocessor designers would use a physical prototype of a microprocessor in order to get the most accurate feedback about how a microprocessor design will perform. However, the cost to implement a single physical microprocessor is significant. When considering the virtually infinite number of ways to design a microprocessor, prototyping becomes prohibitive. Furthermore, not all designs that need evaluation are intended for a product – in research, many ideas are tried and examined to increase the knowledge of microprocessor designs. Because of these reasons, software simulators are used.

Concepts

In simulation, the researcher creates a model of the proposed microprocessor. The researcher enters the model into a simulator to create a virtual microprocessor. The simulator executes a piece of benchmark code on the virtual microprocessor. The simulator monitors the execution and generates statistics on the events that occur. By evaluating these statistics, a researcher can estimate the performance of the architecture. There are a variety of simulators that can be used to model microprocessor behavior. However, current simulators do not simulate the presence of an operating system, or they do so in a manner that is both complex and slow.

An operating system provides a level of abstraction for a program. A program does not know that it is reading a disk drive versus a cdrom drive. The program simply requests data from a storage device, and the operating system performs the required commands to extract data from the appropriate device. The operating system provides this and other services to the user’s programs. These requests for services that a program sends the operating system are called system calls.

The handling of system calls by the microprocessor simulator determines which of two categories they fall under. The first category of simulators uses a method called system call by proxy – when a program makes a system call, the call is executed by the operating system on the host computer. Because the handling of the system call occurs outside of the simulator, the simulator cannot monitor the effect of the system call (figure 1). This approach reduces the accuracy of the results, but its simplicity allows quick simulation (Ofelt).

[image: image1.png]Simulator

System Call =

Benchmark
Program

Host Computer

[

Operating Systern

l

Hardware

Figure 1: System Call By Proxy

The second category of simulators loads a virtual operating system into the simulator – when a program makes a system call, the virtual operating system handles the system calls. Because the operating system is running inside the simulator, the simulator can monitor the impact of the operating system (figure 2). This approach requires the booting of an operating system into a virtual environment, a complex process which requires creating virtual components with virtual operating parameters (Ofelt). There are many complexities associated with this approach, and the speed of simulation is relatively slower.

[image: image2.png]Simulator

Operating System

|e~system Catl—

T

[Fimulated Hardhware

Benchmark
Program

Host Computer

Operating Systern

l

Hardware

Figure 2: Simulated Operating System

The novel approach that I will examine in this project combines the prior two approaches; the simulator will emulate system calls inside the simulator in addition to making a system call by proxy. When the benchmark program makes a system call, the simulator will emulate the operating system by executing characteristic portions of code from an operating system. This code does not provide any functional service, nor will it be functionally correct – it will only change the state of the simulator as if an operating system had executed the system call. To service the system call, the simulator will pass the system call to the host operating system, which will provide the functionally correct service to the benchmark program (figure 3).

[image: image3.png]Simulator

OS5 Fragment ¢ SystemCall 1 =
Benchmark
05 Fragment [systemcany —| Program

05 Fragment [Systemcats =

System Call

Host Comptter

Operating System

Hardware

Figure 3: Emulated Operating System
Rationale

Microprocessor simulators are used to research and develop microprocessor architectures. The speed of microprocessor simulators affect how much detail can be simulated in a given amount of time. However, with more detailed analysis, researchers can better evaluate microprocessor designs. The speed of the simulator also affects the size of the benchmark application that can be run. Researchers could better characterize some applications with larger benchmarks. However, longer benchmarks require more time to analyze.

Accounting for the impact of an operating system on a microprocessor’s performance reduces the speed of the microprocessor simulator. Researchers have a finite amount of time and a finite amount of computer resources, therefore, they must choose whether to account for the operating system’s impact. By increasing the speed at which the operating simulation is done, researchers will be more inclined to model the operating system. Thus, researchers will be able to better characterize their designs, allowing the creation of better microprocessors.

Scope

 Microprocessor simulation is crucial to the design and research of microprocessor architecture. This thesis examines methods of implementing a simulator with the capabilities for this novel operating system emulation, including the implementation of a simple version of the simulator. Additionally, methods for incorporating the Linux operating system into this simulator are examine.

Report Overview

This report first presents a brief overview of microprocessor architecture and the operating system. The literature review presents background on microprocessor architecture and how the operating system influences its performance. The manner in which the system call emulation can be integrated into a simulator is then discussed. Using these techniques, the report presents how the simulator was modified to allow for the implementation of a single system call. The report then presents the steps required to implement more complex emulated operating system code for use in the novel simulator. Lastly, the results and further recommendations of the project are presented.

Chapter 2 : Literature Review

The performance of a microprocessor is affected by the operating system. Changes in microprocessor architecture are in part responsible for the operating system having a greater affect on microprocessors. Software engineers have increased the use of the operating system in programs to better handle the needs of modern applications. Microprocessor designers need to know how the operating system impacts their architecture in order to design better microprocessors.

Microprocessor Architecture

The functioning of a microprocessor can be characterized as a “fetch-execute-fetch-execute-fetch-execute performed repeatedly…” (Heuring). Software is a collection of instructions. The microprocessor fetches an instruction, executes it, and then fetches the next instruction in a continual process.

The trend in microprocessor architecture is to exploit parallelism in hardware (Heuring). Microprocessors commonly use an assembly-line type approach to process instructions, where many different instructions are in various stages of completion. This technique is called pipelining. The fetch-execute cycle of a processor is split into many discrete phases, with multiple instructions being lined up one after another. This creates a lot of state information that must be saved if the program needed to be halted, such as when servicing a system call. When a system call is made, the program causes a trap that halts the execution of the program and allows the operating system to service the system call. This change requires that the pipeline be halted and the current state stored, both of which affect the performance of the processor.

In some architectures, programmers give the operating system explicit knowledge of the microprocessor hardware. This approach charges the task of ensuring that the state is properly saved to the operating system (Anderson). This further increases that amount of work the operating system must perform.

Computer systems use a multi-layered approach to memory. Bulk storage devices such as hard drives are used to store information because they are cheap, but they are also slow (Heuring). On the other end of the scale there is cache memory, which is very fast, but very expensive (figure 3). To allow computer systems to use bulk storage, but still have good performance, programs are loaded into the various higher levels of a memory, as they are needed. When a program executes, the program is copied from the hard drive to the main memory. The section of the program that is actually being executed is copied into the smaller cache memory. When the program is first executed, the time penalties of accessing the slow bulk storage and moving the data to main memory must be paid, as well as the cost of moving a section of the program into cache. This time penalty will not be incurred for every instruction, as the relevant parts of the program will already be in the faster memories.

[image: image4.png]Fast

Srall
A
Speed Size
Hard Drive
Slows

Large

Figure 4: Memory Hierarchy

When a program calls the operating system, the operating system will be loaded into the cache, possibly displacing the program that was running. After the operating system is finished, the program reloads into the cache before execution can be continued. Therefore, there may be a performance penalty associated with loading the operating system into cache and with reloading the program into cache (Agarwal). The architecture will determine the size of this penalty.

The architecture of a microprocessor affects how the operating system impacts the performance of the microprocessor. The cache and pipeline are two examples of the many microprocessor design issues that cause the operating system to affect the performance of a microprocessor. The operating system will also affect other microprocessor design issues, such as the effectiveness of branch prediction and out-of-order execution. It is therefore important to take into account the effect of the operating system in microprocessor simulations.

Operating System Structure

The structure of the operating system also plays a large role in the performance of a microprocessor. There has been an explicit effort to increase the parallelism in software by using threads and inter-process communication (IPC). This allows programmers to abstract their programs better and it provides better performance in multi-processor and network computers. (Silberschatz)

Many programs can be broken down into multiple tasks, each of which can be executed by a separate sub-program called a thread. For example, an Internet browser can be split into a section that controls the graphical user interface (GUI) and a section that display web pages. Separate threads can implement each of these “sections”. Each of these threads can operate independently, but they need some mechanism to interact with each other. IPC is a service provided by the operating system that allows threads to communicate with each other (Silberschatz).

The core of an operating system is called the kernel. When the kernel is called, it has exclusive access to the microprocessor, for however long it needs. In a system with multiple threads, the kernel would be constantly called, and this would decrease the amount of time the threads have available to execute (Anderson). This is remedied in many modern operating systems through micro-kernels. Micro-kernels provide most services outside the kernel. This remedies the problem of constantly invoking the kernel, but it decreases the performance of system calls. To complete a system call, multiple simple calls may need to be made to the kernel where a traditional kernel would require only a single system call (Anderson). In relative terms, while user-level programs have increased in speed, operating system calls have increased in execution time (Anderson).

The architecture of the operating system has a large impact on the performance of a microprocessor. The trend toward micro-kernels increases the relative speed of user programs at the expense of decreasing the relative speed of system calls. Additionally, for certain applications such as databases, 30% of the execution time may be spent in the operating system (Chen). It is therefore important to model the effect of the operating system.

Chapter 3 : Methods

Creating a Simulator

There are two options for creating a simulator to emulate operating system calls: creating a simulator from the ground up, or modifying an existing simulator. When deciding which path to take, software engineers must examine the various tradeoffs involved with each decision.

Functionality

Software engineers building a microprocessor simulator from scratch can create a complete specification of the simulator. This allows them to create an implementation that is elegant, simple, and fast. The resulting simulator is the solution that best captures the behavior that the researcher desires, in the context the researcher provided. In contrast, when modifying a simulator the software engineer adds to the specification of the device. The software engineer modifies the simulator in a way the previous software engineer had neither imagined nor intended. Thus, the modifications to the program might not exactly capture the desired behavior of the researcher. Thus, the desired functionality of a modified simulator might be less than that of a novel simulator.

Development Time

Another important consideration for researchers is the effort required to design a microprocessor simulator. Simulators are complex entities, which require research to develop complete specifications. These specifications contain explicit tradeoffs on performance, accuracy, and complexity, as well as explicit limitations. Simulators are based on models, which by nature have limitations. Over the lifetime of the simulator, changes in microprocessor architecture might invalidate these models. Therefore, the specification is an integral and large part of simulator design.

Once researchers have developed a specification, software engineers must implement the design. This lengthy process is dependent on the complexity of the simulator. Additionally, as the simulator is implemented, the software engineers must constantly tune the performance of the simulator, as well as verify that the implementation meets the specifications.

After the software engineers have implemented the simulator, researchers must validate that the simulator produces accurate results. To do this, researchers must compare the simulation results of a microprocessor with actual results from a physical microprocessor. Using this data, researches can tune the performance of the simulator.

The process of modifying an existing simulator has the potential of being much shorter. Previous researchers and software engineers have already designed and validated the simulator. The software engineer has to implement only the modifications, not a complete simulator. Thus, a great deal of effort in implementing and verifying the simulator is not repeated. Depending on the extent of the modifications, researchers can validate the simulator by testing the modifications, rather than testing the entire simulator.

User Base

For a simulator to be successful, people must use it. There are three primary problems that prevent researchers from using a simulator. Due to differences in underlying models and philosophies, microprocessor simulators have different interfaces. Thus, inputs for one simulator are not easily transferable to another. A modified simulator should be compatible with the simulator on which it was based, requiring the researcher to make only minor changes to the inputs.

Another factor is the alignment of results. Because microprocessor simulators are based on models, which are simplifications of reality, the results from one simulator are not necessarily comparable with the results from another simulator. Thus, researchers might be less likely to adopt a new simulator if they have a large collection of past results based on another simulator. Both a modified simulator and a simulator built from scratch would have the same problem.

Finally, researchers must trust the tool that they are using. Trust is gained through validation, ensuring to the user that the tool really models reality, instead of generating random numbers. Trust is also gained by having the source code of the simulator available to the user. The user can than examine the internal workings of the program.

Memory Space

When a program executes, the operating system assigns it a memory space. A memory space is a collection of segments of main memory (figure 4). The operating system loads the program from the hard drive into the memory space. The memory space also provides a stack and data segments to store information as the program executes.

The memory space is not arranged as a block of physical memory, but rather a collection of different segments of memory. To trick the program into seeing its memory space as a block of memory, the operating system uses virtual addresses to map to actual physical address. In this manner, the program sees a block of virtual memory, while in reality it has many different segments of physical memory. To map the virtual address that the program sees to the physical address the operating system and hardware see, the operating system uses a memory page table. To access a memory location, a program specifies a virtual memory address. The address is then checked in the memory page table, and the correct location in hardware is referenced.

System Calls

A simulator with emulated system calls models system call behavior. Therefore, the user must consider which system calls to emulate. Different operating systems provide different system calls. Additionally, the implementation of a system call is often different between one revision of an operating system and another. For operating systems that release frequent incremental changes, the implementation of the system call has the potential of changing often. Therefore, the simulator should implement the system call in a manner in which the users can easily change the implementations.

Another aspect of the simulator affected by the operating system is the calling convention of the simulator. Because there is usually only one microprocessor in a system, both the operating system and the programs share the same hardware. When a program performs a system call in the middle of its execution, the current state, its “status”, must be saved so execution can resume when the system call is finished. The process of interrupting one program to execute a system call is referred to as a context switch. The protocol on how this is done is called a “calling convention.” The calling convention depends on the operating system, as well as the microprocessor architecture that on which operating system is being used.

Chapter 4 : Implementation

Simulator Choice

This project focused on creating a microprocessor simulator to allow for the emulation of the operating system. The design of a new simulator from the ground up is a lengthy process. Software engineers and researchers must design, implement, verify, and validate the new simulator. Furthermore, simulators have different specifications that make it harder for researchers to use different simulators. Because of these constraints, this project modifies an existing simulator to provide for operating system emulation.

The novel method of emulating the operating system is a conceptual evolution of the call-by-proxy simulator. As in the call-by-proxy simulator, the host operating system implements the system call. The only difference is that the simulator emulates the work the operating system did, thus providing a more accurate depiction of how the microprocessor performed. Thus, this project modifies a call-by-proxy simulator.

The SimpleScalar 3.0 Toolset is a family of call-by-proxy simulators used in this project. Todd Austin developed the SimpleScalar Toolset at the University of Wisconsin. SimpleScalar LLC now develops and licenses the simulator. SimpleScalar LLC publicly distributes the source code for the SimpleScalar Toolset, which allows users to modify the simulator to extend its functionality and adapt it to their needs. The licensing agreements of the simulator are also favorable, permitting free academic use. Furthermore, SimpleScalar has a large user base, and researchers have verified the simulator against existing microprocessors. This project used the 3.0b version of the SimpleScalar Toolset.

The SimpleScalar 3.0b Toolset models many different Instruction Set Architectures (ISA), the Alpha and the MIPS. An ISA is the protocol for the commands a microprocessor implements. This project modifies the simulator’s implementation of the Alpha ISA while ignoring the side effects that occurred to the implementation of the other ISAs. The Alpha ISA implementation was chosen because the University owns an Alpha-based server, which was used to compile Alpha binaries for the simulator.

The SimpleScalar 3.0b Toolset implements six simulators, which can model the microprocessors in different levels of details. The simplest of the simulators is sim-safe, the most complex is sim-outorder. This project focused on sim-safe to simplify the modifications.

Operation

Before SimpleScalar executes a benchmark program, it first creates a memory space for the program. The simulator loads the program from the hard drive into this memory space. Along with the actual program, the simulator provides space for data storage mechanisms, including the stack and a data segment. To reference this memory space, the simulator creates a memory page table for each process. This is similar to the manner in which Unix systems load programs.

Treating the emulated operating system as a benchmark program is the logical extension of this scheme. The emulated operating system is given its own memory space, with its own page table. This method allows the emulated operating system to store information between system calls by using static variables. Thus, the emulated operating system keeps track of the results of prior system calls.

Performance

The current modified simulator has the capability of emulating one simple system call. Get_pid is the simplest system call. Programs use this system call to retrieve the process ID, a number that uniquely identifies the program. This system call was emulated as a simple memory lookup.

The performance of the modified and unmodified sim-safe simulator produced identical throughput results. To test the performance of the simulator, the benchmark program “test-printf” was used with a call to get_pid. The benchmark program executed in one second on both the unmodified (system call by proxy) and the modified (system call emulation) simulator. The throughput of both simulators was also identical at 1.2 million instructions per second.

 The identical responses of both the modified and unmodified simulator are a result of the small size of this particular system call. Sim-safe is one of the fastest simulators in the SimpleScalar 3.0b Toolkit. Therefore, the extra instructions that are executed because of the system call are relatively unnoticed.

Little accuracy is gained by modeling sim-safe, as it does not model architectural issues that an operating system would affect. The added detail of the most complex simulator in the SimpleScalar Toolkit is 0.04 times the speed of sim-safe. Therefore, implementing system call emulation may have a significant affect on performance when using more detailed simulators.

Chapter 5 : Emulating System Calls

A core element of this novel method is developing the emulated system calls. The source code of a simulator must be extracted in such a way that the behavior of the emulated system call is similar to the actual system call. This is a challenging task given that the emulated system calls do not have the same view as the system calls in the operating system. The operating system has knowledge about the whole system, while the emulated operating system only has knowledge about its process.

Operating System Choice

There are a couple constraints in choosing an operating system to emulate. The SimpleScalar 3.0b Toolkit is designed to handle POSIX type system calls. POSIX is a standard interface that is used on many Unix and Unix-like operating systems. To extract the code for the system calls, the source code for the operating system must be public. Finally, because the project implements the Alpha ISA, the operating system must exist for this architecture. Linux is an Unix-like operating system that fulfills the above requirements.

Emulating System Calls

The Linux operating system contains over 150 system calls (Linux Source Code). The researcher only needs to emulate a subset of the system calls that will be of interest to him/her. The simulator will therefore need some mechanism to allow researchers to specify the system calls they wish to emulate. Therefore, there must be some extensible manner in which the researcher can specify an operating system and set of system calls.

Determining The System Call

When the simulator makes a system call it first acts as a call-by-proxy simulator, servicing the system call by calling the host operating system. This provides for the functionality requirement of the system call. To model the behavior, the simulator must then call the corresponding emulated system call. The simulator can determine the system call and the parameters of the system call by examining the registers and memory space of the simulators. The difficulty lies in getting this information into the emulated operating system.

One solution to this problem uses a “jump table” at the beginning of the operating system code. When the simulator emulates a system call, it loads the beginning of the operating system. At this point, the emulated operating system does not know which system call it is supposed to emulated and therefore determines which it should emulate. It can do this by making a fake system call to the simulator. The simulator, upon receiving this fake system call, returns relevant information about the system call. This information can include the arguments that were used with the system call, as well as the result of the “system call by proxy.” Using this information, the emulated operating system could then determine where it needs to “jump” to in order to emulate the correct the system call.

An alternative solution to emulating the correct system call is to have the simulator jump to the correct position in the emulated operating system. In this approach, the simulator must know where the implementation of each system call is in the emulated operating system program. Therefore, this approach is not as straightforward as the previous approach because the user will need to change the simulator every time the emulated operating system is changed.

Emulation

Once the emulated operating system has found the start of the system call to emulate, it must determine which path to take within that system call. The behavior of the emulated system call should mirror the behavior of the actual system call. Therefore, if the actual system call produced a specific error, the emulated system call should follow the same path to get to that error.

One solution to this problem attempts to make the state of the emulated operating system the same as the state of the actual operating system. If the two states were identical, then the path that the emulated and actual system calls take should be the same. To align the emulated operating system state with the actual operating system’s state, the emulated operating system needs to know additional information, such as the structure and permissions of a file system. This approach may be possible for most system calls, as long as the actual operating system behaves as expected. However, certain state information is known may only be known to the real operating system. This state could cause the operating system to behave unexpectedly to a system call. The emulated operating system would therefore emulate the incorrect response to the system call.

Another solution to mimicking the correct execution path is to backtrack. The results from the real operating system are known before the actual operating system executes. Therefore, the emulated operating system can choose a path that will lead to the same result as the real operating system. This can be done by adding condition statements in the emulated operating system code to force the emulated operating system onto the path that will lead to the same result. This approach may affect the behavior of the system call by adding extraneous condition calls. Additionally, multiple paths may lead to the same result, leaving no method to determine which path the actual operating system took.

The best solution may be to combine the two above approaches. The emulated operating system is given a similar state to its real counterpart. When determining which path to take, the simulator would rely on its state. However, if it were to take a path that would not lead to the same result as the actual operating system, due to some state that the emulated operating system cannot see, the backtracking would force the simulator to take the correct path.

File System

The operating system has access all the hardware in the system directly. The emulated operating system does not have access to all the hardware. Programs use system calls to indirectly access components that it does have access to, such as I/O devices. Because the emulated operating system is a program, it does have access to the state of these I/O devices.

The Linux Operating System uses a virtual filesystem (Card). A filesystem is the arrangement of different files on a storage medium. The filesystem contains various structures that keep track of the state of the filesystem, such as superblocks and blocks. The most relevant of these structures are the inodes. An inode contains the information for a file or directory in the filesystem. This information is available only to the host operating system, and not to the emulated operating system. The searching of inodes is a primary part of a file operation. Thus, this behavior needs to be captured if the researcher wishes to emulate these system calls.

Emulating the filesystem can capture the behavior of the inodes. A virtual inode structure can be created which mimics the inode structure of the real filesystem. This would essentially create a filesystem similar to a RAM disk, a virtual hard drive implemented in system memory.

A simpler approach to capturing the inode behavior is to create a few inodes that were representative of the inodes in the filesystem. To access a file, the emulated operating system would make a fake system call to the simulator to find out how much of the filename was valid. The emulated operating system would use this result to traverse the inodes, thus emulating the search for an inode.

Chapter 6 : Conclusion

This project examines a novel method to measure the effect of an operating system on the performance of a microprocessor. In various applications, the microprocessor may spend a significant amount of time executing system calls. Ignoring the effects of these system calls may lead to inaccurate characterizations of the performance of a given microprocessor design.

The current method of measuring the impact of the operating system creates a fully-functioning, virtual operating system to handle the system calls (SimOS). This method potentially provides the most accurate characterizations of microprocessor designs. However, this approach increases the execution time for a simulation.

Emulation allows for a user to evaluate only the system calls that are relevant to the behavior the user is trying to capture. The user is not necessarily interested in the affect of all system calls on a microprocessors performance, as some system calls may have little effect on performance when using a particular benchmark. Additionally, this approach may allow for researchers to implement system calls easily for different operating systems, giving the researcher more flexibility with how the simulation tool is used.

Lastly, this approach allows researchers to use the same simulator toolkit that they are currently using. This reduces the learning curve associated with using a different toolkit. Additionally, researchers can easily test older designs generated with the same toolkit. This allows for previous designs to be reevaluated and compared to current designs tested with the emulated system call simulator.

Results

Simulator

This project modified a current “call-by proxy” simulator to allow for an emulated system calls. The University of Virginia’s Computer Science department uses the SimpleScalar 3.0b Toolkit; therefore it was chosen as a foundation for the modifications. Additionally, the Toolkit’s licensing agreements makes available the source code, allowing the modification of the simulator.

The SimpleScalar 3.0 Toolkit is comprised of six simulators. In this project, the simplest simulator, “Sim-Safe,” was modified. “Sim-Safe” was chosen to simplify the implementation of the simulator. This modification represents a first effort approach, and was done to gain knowledge of the simulator; knowledge gained from modifying the simple simulator could be applied to modifying the more complex simulators.

To emulate system calls, the simulator was modified to have two independent memory spaces. In this scheme, the benchmark is implemented in one memory space, and the multiple emulated system calls are implemented in another memory space. This ensures that the emulated system calls do not inadvertently affect the execution of the benchmark code.

The simulator has the possibility of saving state from one system call to another system call. When emulated system code is executed, the simulator maintains the memory state. This allows for emulated system code to save state from one system call to the next by statically assigning data structures.

The simulator minimizes the effect of modeling the performance impact of an operating system, while minimizing the time required to perform a simulation. Emulating system calls require that more instructions are executed inside the simulator. Thus, the execution time of the simulator will increase. In some applications, the system spends 30% of the time servicing system calls (Chen). This could potentially increases the simulation time by 30%. Additionally, some instructions take longer to simulate than others. Therefore, if an application was characterized by fast instructions, and the system calls were characterized by slower instructions, the simulation time would increase beyond 30%. Because of the detail of sim-outorder, an extra 30% in execution time may translate into a couple of days.

Emulated Operating System

The operating system implements system calls to service the users’ programs. To implement emulated system calls, the relevant code must be extracted from the operating system and compiled into a program.

There are a couple of issues that must be solved for the emulated simulator. When the simulator makes the system call-by proxy, the operating system returns a value that tells the benchmark program whether the system call was successful. If the system call was unsuccessful, the user can than ask for another value to find the appropriate error. An emulated operating system would take the result of the system call, and use that to backtrack which path it should emulate.

The simulated operating system also needs some mechanism to access auxiliary information. For the simulated operating system to implement system calls dealing with files, the emulated operating system must have a “fake” method to access these files. Unlike a real operating system, the simulator, and thus the emulated operating system, does not have access to the file system of the hard drive. Therefore, the simulator needs some information to use in place of the real information. This problem can be addressed by creating a virtual hard drive inside the simulator. This would allow the emulated operating system to have knowledge about the file system.

Recommendations

Microprocessors are an integral tool in modern society. Microprocessor architecture is a field of rapid, continual development. Tools that increase our understanding of different design tradeoffs are important to create the best microprocessors for an application. Therefore, there is a need to develop and improve the tools that are used to design these microprocessors.

The emulation of system calls is one way that software engineers can improve microprocessor simulators. Emulation allows researchers the ability to model the system calls that are relevant to their project, while not having to simulate unimportant system calls. By using the host operating system to service the system call, and the emulated operating system to mimic what the host operating system does, the simulator can provide both functional correctness and complete statistics.

To achieve the emulation of system calls, further work must be done on the simulator and on the emulated system calls. The simulator must be improved to increase the communication between the application and the simulated operating system. System calls from an operating system must also be captured so that it can be used to emulate system calls. Also, this tool should be improved to make it easier for researchers to change the emulated system calls. Finally, after the changes to the simulator have been made, more rigorous tests of the simulator will need to be made to ensure that the simulator produces accurate results. The resultant verified simulator would allow researchers to characterize the performance of their design decisions more accurately, with potentially a comparatively small increase in the simulation time.

Bibliography

Agarwal et al. (November 1988). Cache Performance of Operating System and Multiprogramming Woarkloads. ACM Transactions on Computer Systems, 6(4), 393-431.

Anderson et al. (April 1991). The Interaction of Architecture and Operating System Design. ACM SIGARCH Computer Architecture News, Proceedings of the 4th International Conference on Architectural Support for Programming Languages and Operating Systems, 19(2), 108-120.

Argade et al. (November 1994). A Technique for Monitoring Run-Time Dynamics of an Operating System and a Microprocessor Executing User Applications. ACM SIGPLAN Notices, Proceedings 6th International Conference on Architectural Support for Programming Languages and Operating Systems, 29(11), 122-131.

Black, B., & Shen, J.P. (May 1998). Calibration of Microprocessor Performance Models. Computer, 31(5), 59-65.

Burger, Doug. (2000). SimpleScaler: Simulation Tools for Microprocessor and System Evaluation. Retrieved October 24, 2001 from http://www.simplescaler.org
Chen et al. (Feburary 1996). The Measured Performance of Personal Computer Operating Systems. ACM Transactions on Computer Systems, 14(1), 3-39.

Chen, J.B., & Bershad B.N. (December 1993). The Impact of Operating System Structure on Memory System Performance. ACM SIGOPS Operating System Review, Proceedings of the 14th ACM Symposium on Operating System Principles, 27(5), 120-133.

Desikan et al. (May 2001). Measuring Experimental Error in Microprocessor Simulation. ACM SIGSOFT Software Engineering Notes, 26(3), 266-277.

GNU General Public License. (1991) Free Software Foundation, Inc. Retrieved April 11, 2002 from http://www.gnu.org/licenses/gpl.txt

Heuring, V.P., & Jordan, H.F. (1997) Computer Systems Design and Architecture. Addison Wesley Longman: Menlo Park, California.

Linux Source Code. (2002) Retrieved April 11, 2002 from http://www.kernel.org/

Ofelt. D., & Hennessy, J.L. (June 2000). Efficient Performance Prediction for Modern Microprocessors. ACM SIGMETRICS Performance Evaluation Review, Proceedings of the International Conference on Measurements and Modeling of Computer Systems, 28(1), 229-239.

Reny et al. (1998). The Linux Kernal Book. Chichester England: John Wiley & Sons, Inc.

Schaelicke, Lambert. (2000). L-RSIM: A Simulation Environment for I/O Intensive Workloads. Proceedings of the 3rd Annual IEEE Workshop on Workload Characterization 2000. 83-89.

Silberschatz, A., & Galvin, P.B. (1999). Operating System Concepts (5th ed.). New York: John Wiley & Sons, Inc.

SimOS, (2001). Retrieved April 11, 2002 from http://simos.stanford.edu/

� System : Celeron II 1066MHz, 640MB RAM, Windows XP using Cygwin 1.3.10.

PAGE
2

_1081580359

