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Abstract—Graphics processing units (GPUs) have become an
important platform for general-purpose computing, thanks to
their high parallel throughput and high memory bandwidth.
GPUs present significantly different architectures from CPUs
and require specific mappings and optimizations to achieve high
performance. This makes GPU workloads demonstrate applica-
tion characteristics different from those of CPU workloads. It is
critical for researchers to understand the first-order metrics that
most influence GPU performance and scalability. Furthermore,
methodologies and associated tools are needed to analyze and
predict the performance of GPU applications and help guide
users’ purchasing decisions.

In this work, we study an approach of predicting the per-
formance of GPU applications by correlating them to existing
workloads. One tenet of benchmark design, also a motivation of
this paper, is that users should be given capabilities of leveraging
standard workloads to infer the performance of applications of
their interest. We first identify a set of important GPU application
characteristics and then use them to predict performance of
an arbitrary application by determining its most similar proxy
benchmarks. We demonstrate the prediction methodology and
conduct predictions with benchmarks from different suites to
achieve better workload coverage. The experimental results show
that we are able to achieve satisfactory performance predictions,
although errors are higher for outlier applications. Finally, we
discuss several considerations for systematically constructing
future benchmark suites.

I. INTRODUCTION

GPUs have become increasingly popular for general-

purpose computing (GPGPU). GPUs offer a large number

of SIMD cores and high memory bandwidth; they achieve

significant speedups for many data-parallel applications. With

GPGPU use increasing, research challenges include under-

standing GPU application behaviors, identifying first-order

metrics that capture GPU performance, and designing method-

ologies for predicting performance. A better understanding of

these issues is useful for analyzing and comparing different

hardware platforms, and can guide users to choose the plat-

forms that best serve their computation needs.

Previous research explored the issues of analyzing and

predicting application performance for CPUs [5], [12], [16],

[29]. However, they mostly concentrate on single-threaded

applications. Recently, researchers have started to study perfor-

mance prediction for GPUs. Some researchers build analytical

models with detailed GPU hardware parameters as inputs [1],

[14]. However, one challenge is keeping up with rapid GPU

evolution, which invalidates highly tuned analytical models.

Other works use regression methods to construct empirical
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models [20]. However, machine-learning-based approaches

often make it difficult for researchers to draw conclusions.

An alternative way of helping understand GPU perfor-

mance behaviors is through benchmarking. Because users’

applications may not exist in standard benchmark suites, one

important goal of benchmark design is allowing users to

predict their applications’ performances based on the bench-

mark performance on different platforms. However, predict-

ing performance of arbitrary applications using benchmarks

remains an open problem, especially for new hardware. This

is important, especially because–due to the finite benchmark

mix offered by vendors–,customers may need to purchase

sample hardware, and port and characterize performance of

applications before making large-scale purchases [12]. This is

costly and time-consuming.

Our hypothesis is that, effective performance prediction

is possible with a set of key metrics and a well-designed

benchmark repository, without the need to purchase hardware,

by sampling and interpolating the benchmark space, and thus

taking advantage of data that vendors make available for

standardized benchmarks. Our framework determines the most

similar GPU benchmarks as proxies for an application of

interest based on their mutual similarity in the workload space,

using characterization on available hardware or a simulator.

The predicted performance for the target platform is then

determined by a linear interpolation of the performance of the

proxy benchmarks on the target platform. Our work focuses

on manycore architectures (e.g., GPUs), and uses a similar

approach to the study by Hoste et al. [16] for single-threaded

CPU applications. We also examine how well the applications

included in today’s GPU benchmark suites can represent

the characteristics of real workloads, which we believe will

facilitate a more scientific approach for future benchmark suite

construction.

Our paper makes the following contributions:

• We identify a set of simple, first-order application charac-

teristics for the GPU platform, and analyze their impacts

on performance. We then demonstrate the entire flow of

the performance prediction framework based on program

similarity.

• We use the Rodinia benchmark suite and workloads from

other benchmark suites for performance prediction.

• We evaluate the effectiveness of our prediction approach

using different processor configurations, program inputs

and numbers of nearest neighbors.

• We discuss important directions for future benchmark

construction. We point out that future benchmark design

should adopt a holistic approach to improve overall

feature coverage. One metric to evaluate how well a suite
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is designed can be its workload space coverage and how

effectively it can be used for performance projection.

The framework can accurately predict GPU application per-

formance except for applications that are isolated in the

workload space. Our experiment result shows an arithmetic

mean of 21.6% prediction error (14.6% excluding outliers)

using simulation, and an arithmetic mean of 24% prediction

error in predicting performance of an NVIDIA K20 based on

characterization on a C2050 (Fermi). In addition, the predicted

performance shows a strong correlation to actual performance

based on the Spearman’s rank analysis. This suggests that our

overall prediction is accurate, even with certain outliers whose

absolute errors are somewhat high.

II. MOTIVATIONS AND BACKGROUND

A. Motivations

Users’ applications are their best benchmarks. However,

because most of these applications are not included in stan-

dard benchmark suites, users sometimes need to predict the

performance of their applications by referring to benchmark

scores of standard benchmarks [16]. Therefore, researching

mutual relationships among applications becomes important.

One challenge is that it is almost impossible for users to

run their applications on all the systems available in the

market [12] due to accessibility and costs. Users sometimes

have to rely on hardware specifications or white papers to

estimate roughly the performance of a platform, which tends

to be less accurate than well-designed performance prediction

models. Furthermore, most users do not have the experience

or skills to configure and change architectural simulators

to model hardware of interest. Also, simulators are time-

consuming and prone to their own inaccuracies.

These issues motivate the need to research methodologies

that correlate the performance of a particular application with

that of existing benchmarks to predict the performance of

the target application accurately. Gustafson et al. [12] did an

early study of performance correlations among benchmarks.

Hoste et al. [16], [18] pioneered the research of benchmark

suite coverage and used standardized benchmarks to con-

duct performance prediction for single-thread CPU workloads.

Carrington et al. [5] predicted application performance using

single, simple synthetic metrics (i.e., diverse compute kernels)

and a linear combination of these simple metrics. For all

of these works, one common requirement is first to build a

benchmark repository covering diverse application behaviors.

As far as we know, there is no previous work studying this

issue for manycore architectures such as GPUs.

B. GPUs and Programming Models

GPUs differ from CPUs significantly in hardware archi-

tecture, programming models, and middleware support. For

example, GPUs possess many simple, light-weight scalar

cores focused on improving instruction throughput and hiding

memory latency through deep multi-threading. In contrast, the

heavy-weight out-of-order cores in CPUs target improving

instruction-level parallelism with pipelining, speculation and

latency-hiding through cache hierarchies. This suggests that

researchers are required to identify a set of effective metrics

unique to GPUs and understand their implications on applica-

tion performance.

GPU programming models (e.g., OpenCL [25] and

CUDA [10]) represent the GPU as a co-processor capable of

running a large number of threads. For example, threads are

managed by representing parallel tasks as compute kernels

mapped over a domain indexable by work-groups IDs (block

IDs in CUDA) and work-items (thread IDs in CUDA). With

CUDA terms, GPUs typically consist of multiple stream-

ing multiprocessors (SMs), each with multiple streaming

processors (SPs), executing instructions in a SIMT (Single

Instruction Multiple Thread) fashion [21]. The threads in

a thread block are time-sliced onto multiple SPs within a

SM in groups of 32 called warps. Each warp of 32 threads

operates in lockstep. Within a warp, divergent threads that

follow different execution paths due to branches (e.g., if

statements) are handled using hardware masking until they

reconverge. Warp divergence will lead to an underutilization

of GPU compute resources. Threads process data stored in

the GPU device memory (global memory) concurrently; data

is transferred from the main memory to the device memory

via the PCIe bus in a system with a discrete GPU. Data can

be loaded into shared, constant and texture memory spaces

for improving data locality and optimizing different access

patterns. In addition, efficient global memory accesses can

be achieved when threads within a warp access contiguous

memory locations; multiple accesses can be coalesced into

fewer memory transactions (memory coalescing). Synchro-

nization primitives are provided within each thread block and

entirely managed in hardware. A simple GPU execution model

is illustrated in Figure 1. Previous works [24], [37] showed

that GPU performance is highly sensitive to effective memory

bandwidth utilization and degree of branch divergence.

Fig. 1. Thread blocks (work-groups in OpenCL) are dispatched onto multiple
SMs for execution. Due to branch divergence, only some threads within a warp
may be active. Barrier synchronizations are supported for threads within a
thread block. GPUs have per-thread-block shared-memory space (local space
in OpenCL) and global constant and texture memory spaces.
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C. Prediction for GPU Kernels

A classic debate for CPU benchmarks is whether today’s

benchmarks represent the real workloads being used. This

issue is well-documented in the literature [12] for CPU

benchmarking. One major reason is that benchmark designers

usually pick relatively smaller problems (e.g., small applica-

tions and small inputs) so the benchmarks can fit all kinds

of machines and achieve general adoption. However, simple

problems sometimes lose important characteristics of real

applications [12]. This brings the challenge of predicting the

performance of “big” applications with “small” ones; in other

words, predicting the performance of real applications with

kernels [5].

This is less an issue for benchmarking and predicting GPUs.

Today’s GPU programming models like CUDA and OpenCL

require programmers to map algorithms and data structures

explicitly to their domain-based compute models. GPU appli-

cations themselves are a set of well-defined, small compute

kernels accelerating compute-intensive loops. In addition, de-

velopers sometimes have to divide a large logical function into

constituent smaller kernels due to the global synchronization

requirement. Thus, for a big GPU application with multiple

kernels, its application behavior can be predicted through

analyzing and combining individual kernels. Furthermore, the

GPU scaling behavior relative to input size is relatively easy

to predict once the input is sufficiently large to fill the GPU;

processing of the entire dataset will be divided into batches of

thread blocks, distributed onto the GPU’s processing elements

(i.e. a roughly linear and stepwise relationship between input

size and execution time). These features make accurate per-

formance prediction for GPU kernels possible and practical.

III. HIGH-LEVEL FRAMEWORK

In this section, we discuss the overall flow of performance

prediction and the metrics we use to determine program

similarity.

A. The Flow of Performance Prediction

Figure 2 illustrates our high-level prediction framework.

This approach accords with the framework proposed by Hoste

et al. [16] for CPU performance prediction. This paper differs

from their work by targeting manycore architectures and

identifying a set of first-order program metrics for GPU

applications.

As shown in the diagram, performance prediction is

achieved through correlating the characteristics of the ap-

plication of interest with those of existing benchmarks in

the workload space, whose performance scores are known

before prediction. Program statistics are collected to construct

a workload space and calculate pair-wise similarity values

across different applications. Given an application of interest,

we profile it with exactly the same metrics, map the application

into the workload space and use the similarity information to

determine its nearest proxy benchmarks from the benchmark

repository [27]. Finally, the performance of the target applica-

tion is predicted by interpolating the performance of proxy

benchmarks. For example, many computer system vendors

report performance scores of their systems by instrumenting

the SPEC benchmark suite [30]; these scores can be used for

prediction and reference purposes for CPUs. The SPEC HPG

group has been developing a GPGPU standard benchmark

suite [33], and we anticipate that vendors may use it similarly

to report benchmark scores for their GPU platforms.

Two issues are of particular importance to accurate predic-

tion in our approach:

• How effectively can the chosen metrics capture the major

behaviors of the GPU and represent similarity?

• How diverse are the benchmarks included in today’s

benchmark suites and how well do they cover the work-

load space?

The first issue is important for accurately determining if two

applications are similar, while the second issue is important

to ensure the existence of appropriate proxy benchmarks to

the application of interest. The rest of this paper endeavors to

address these two problems.

B. Application Profiling and Metrics

To determine the similarity among different applications, we

use a set of metrics that play a major role in determining GPU

performance. Our choice of metrics is based on observations

of previous experiences of benchmarking GPUs [2], [9], [19].

These metrics have proved capable of effectively capturing

the program behaviors of both NVIDIA and AMD GPUs.

However, this does not preclude other metrics, that could

make the performance prediction more accurate. Furthermore,

a comprehensive and rigorous characterization of the most

suitable metrics would require statistical analysis (e.g., princi-

pal component analysis) and/or genetic algorithms [16], [18]

to select from a large pool of potential metrics. The following

list illustrates the metrics used in this study. They represent

degrees of compute intensity, memory locality, branch diver-

gence, etc.

• Instruction throughput This metric demonstrates the ag-

gregate throughput of an application. We use instruction

per cycle (IPC) in this work. Different applications can

achieve a similar level of IPC but quite different scaling

behaviors, which suggests additional metrics are needed

to present other aspects of application behaviors.

• Computation-to-memory access ratio A higher ratio

implies that an application stresses more arithmetic units,

while a low ratio suggests more stresses on memory

interface. This metric is a widely used to determine if

an application is compute-bound or memory-bound.

• Memory instruction mix A GPU application may take

advantage of multiple memory spaces on the GPU. Sig-

nificant global memory accesses lead to poor performance

and scalability. A high ratio of memory accesses to

GPU caches (scratchpad, constant, and texture) generally

means a better usage of data locality, fewer off-chip

accesses and better program scalability.

• Memory efficiency One important performance opti-

mization for GPUs is the coalescing of global memory

accesses [10]. A high ratio of uncoalesced memory ac-
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Fig. 2. First, benchmark statistics are collected to construct a workload space. An application of interest is profiled with exactly the same set of metrics and
mapped into the workload space. Prediction is achieved with the nearest proxy benchmarks to the application of interest [16].

cesses suggests a waste of effective memory bandwidth

and thus degrades the overall application performance.

• Warp occupancy Warp occupancy captures the average

number of active threads over all issued warps over the

entire runtime of the benchmarks [2]. We classify this

metric into four buckets, namely [1−8], [9−16],[17−24]
and [25 − 32]. A higher warp occupancy means a better

utilization of GPU computation resources.

IV. METHODOLOGY

In this section, we discuss our methodology, including the

experiment environment, the workloads used in this paper and

how we calculate similarity among benchmarks and further

use it for performance prediction.

A. Experiment Setup

To measure program characteristics, we use GPGPU-

Sim [2] from the University of British Columbia. GPGPU-

Sim provides a detailed simulation model of contemporary

GPUs. We use GPGPU-Sim 2.1.1b to report program statistics

such as IPC, instruction mix, warp occupancy, uncoalesced

memory accesses, etc., which will be used for subsequent

performance predictions. We also use GPGPU-Sim to simulate

the performance of GPU systems with different numbers of

SMs and memory channels. For hardware prediction, we

use an NVIDIA Tesla C2050 and a Kepler K20 GPU. The

program characteristics are collected with NVIDIA’s CUDA

(5.0) profiler nvprof.

The program characterictics needed to be collected once,

and the constructed benchmark space can be re-used for future

performance prediction. A GPU application usually consists

of CPU parts, CPU-GPU PCIe transfers and GPU kernels.

We restrict our performance prediction work to GPU kernels

and leave CPU execution time as a constant variable. In

addition, time spent on PCIe transfers is proportional to the

data size transferred across the CPU and the GPU. Therefore,

the transfer time can be predicted easily by dividing data size

with the PCIe bandwidth. In addition, we do not yet consider

applications in which computations and PCIe transfers are

overlapped.

B. Workloads

Accurate performance prediction requires the workload

repository to include a sufficient number of benchmarks to

TABLE I
APPLICATIONS.

Application Abbrev Suite Input Size

Back Propagation BP Rodinia 65,536 input nodes

CFD Solver CFD Rodinia 97,000 elements

Heart Wall Tracking HW Rodinia 609×590 pixels/frame

HotSpot HS Rodinia 500×500 grid

LU Decomposition LUD Rodinia 256×256 matrix

Needleman-Wunsch NW Rodinia 2,048×2,048 data points

SRAD SRAD Rodinia 512×512 data points

Stream Cluster SC Rodinia 2048×2048 data points

LIBOR Monte Carlo LIB GPGPU-Sim 4,096 paths, 15 options

Neural Network NN GPGPU-Sim 28 digits

NQueen Solver NQU GPGPU-Sim 10×10 grid

Ray Tracer RAY GPGPU-Sim 256×256 image

Weather Prediction WP GPGPU-Sim 10 time-steps

BlackScholes BLK NVIDIA SDK 4 million options

DXTC DXTC NVIDIA SDK 512×512 image

Matrix Multiply MM NVIDIA SDK 80×48, 48×128

Fast Walsh Transform FWT NVIDIA SDK 32,000 data points

MersenneTwister MT NVIDIA SDK 24,000,000 samples

construct a training set. These benchmarks also need to be

diverse in application characteristics and ideally distributed

evenly in the workload space. We use real workloads with

diverse characteristics for training. For this study, we first

evaluate the effectiveness of using only Rodinia [6] for per-

formance prediction, and then we will take other workloads

into account, which provides a richer workload space.

The input sizes we choose for all the benchmarks can make

full use of the GPU. We also restrict our study to applications

that do not take advantage of a GPU’s texture memory space.

CUDA and OpenCL allows programmers to bind big read-

only data structures to texture memory, which is cached and

optimized for arbitrary memory access patterns. Texture units

present a unique access pattern, that we leave for future work.

C. Similarity and Proxy Benchmarks

We define similarity between two benchmarks as their

mutual Euclidean distance in the n-dimensional workload

space. Each benchmark is represented by a data vector with

multiple dimensions; each dimension of the workload space

represents one characteristic. We calculate pair-wise distances

for all the benchmarks. For each benchmark, we search the

entire workload space to find k (k ≥ 1) closest benchmarks

for the interpolation purpose. We use the k-Nearest Neighbors

algorithm for searching [27]. K benchmarks will be used as

the proxy benchmarks for the application of interest. The

values of different metrics vary in the range. Therefore,
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when calculating the Euclidean distances among benchmarks,

normalization is applied first to raw data for all characteristics

across all benchmarks.

The choice of the value k is also important to prediction

accuracy, which we will discuss in details in section V-D. We

use MATLAB [34] to process data for collected characteristics,

calculate similarities among benchmarks (i.e. pdist) and search

nearest neighbors for individual benchmarks.

D. Scaling Prediction

Weight(i) =

1
dist(i)

n∑

i=1

1

dist(i)

(1)

SpeedupPred =

n∑

i=1

Weight(i) ∗ Speedupi (2)

Error =
|SpeedupPred− SpeedupReal|

SpeedupReal
∗ 100% (3)

After we determine the most similar benchmarks to an

application of interest, we predict its relative performance: the

speedup of running an application on one platform against

another platform. The predicted speedup is calculated with

Equations (1) and (2). In each equation, n represents the

number of proxy applications. The predicted speedup of the

application of interest is represented by a linear combination

of its nearest neighbors, each contributing a component to

the overall predicted value. The weights of the neighboring

applications are assigned to be inversely proportional to the

distances to the application of interest [16]. This means that

the more similar a benchmark is to the application of interest,

the more weight it should be given for prediction. If we can

obtain the run-times on one platform, we can also predict the

run-times on another platform by multiplying the speedups.

To evaluate how accurate the prediction is, we compare the

predicted speedup with the real speedup achieved. The abso-

lute prediction error can be calculated with Equation (3). In

addition, we choose the arithmetic mean of absolute prediction

errors because we are reporting results that are samples from

the overall population of application behaviors.

V. PERFORMANCE PREDICTION AND RESULTS

In this section, we report performance prediction results

with different numbers of benchmarks and across multiple

processor configurations and multiple application inputs. We

also study the impact of the number of proxy benchmarks and

verify the statistical significance of prediction accuracy.

A. Performance Prediction with Existing GPGPU Benchmarks

In real-world practice, users may rely on standard bench-

marks with widely-accessible information and performance

scores. There are several benchmark suites released for

GPGPU [2], [6], [8], [32]. However, how representatively they

can be used as references has not been sufficiently understood

by prior works.

In the first experiment, we consider eight benchmarks from

the Rodinia benchmark suite. To predict the performance of

a particular application, the rest of applications are deemed

as the training set. We use a “leave-one-out” approach for

each application [16], [27], and calculate its pair-wise dis-

tances with the rest of Rodinia applications. We subsequently

calculate the nearest neighbors of the target application and

predict that application’s scaling behavior with determined

proxies. Figure 3 shows the predicted and actual speedups for

eight Rodinia applications switching from an 8-SM to 28-SM

configuration. For each application, the predicted speedup is

calculated by taking a weighted sum of the speedups of its

proxy applications. The prediction result for this experiment

tends to be inaccurate. This is attributed to the small appli-

cation space covered by these benchmarks both in number

and feature. In addition, the experiment result suggests that to

evaluate the prediction framework, we should consider more

benchmarks enriching the application coverage.

In the second experiment, we consider some other appli-

cations from the GPGPU-Sim suite and NVIDIA’s CUDA

SDK. We report the results for the benchmarks we are able

to simulate successfully and exclude those making use of

the texture memory. We also did not consider simple kernels

such as vector add and matrix transpose from the CUDA

SDK. Figure 4 shows the new prediction results comparing

the predicted speedups to the actual speedups. Including

new applications improved the prediction accuracy except for

some outlier applications. The results show an average 21.9%

absolute errors. In particular, NQU (50.3%) and LUD (133.3%)

are poorly predicted. These two applications tend to have

low warp occupancies and limited parallelism [2], [6]. On

the other hand, as proxy benchmarks they contribute to the

accurate predictions of other benchmarks (e.g., NN and NW).

Excluding NQU and LUD, the average absolute error of the

rest applications is 14.6%, which is close to that of the GPU

analytical model [14] constructed with a set of detailed GPU

parameters (13% error). This suggests that our approach has a

potential for accurate performance prediction if the benchmark

repository is well constructed, covering most of the application

space.
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Fig. 3. The predicted speedups (28 SMs vs. 8 SMs) and measured speedups.
We use only Rodinia benchmarks in this experiment.

To illustrate better similarity/dissimilarity among bench-

marks, we conduct a principal component analysis (PCA)

across all benchmarks for all characteristics. PCA transforms a
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Fig. 4. The predicted speedups (28 SMs vs. 8 SMs) v.s. measured speedups for all the applications. Prediction is conducted with real workloads from
Rodinia, GPGPU-Sim and NVIDIA CUDA SDK.

number of possibly correlated variables (or dimensions) into a

set of uncorrelated variables, called principal components [18].

PCA has the ability to describe a big data set along a limited

number of dimensions while still capturing the essence of the

entire data set. For illustration, we plot all the benchmarks

in the 3-D PCA space (the max dimension we can show)

in Figure 5. However, three PCs already represent 78% of

total variance, which accounts for most differences among

benchmarks. It is interesting that some outlier benchmarks

(e.g., NN and NW) in the workload space are not badly pre-

dicted. Similar to their scaling behaviors, the nearest neighbors

determined by the framework (see Table III) also exhibit

relatively poor scaling, making prediction relatively accurate.

From our experiment, the worst-predicted benchmarks (LUD

and NQU), though also belonging to the category of outlier

benchmarks, are located at the “transition” region in the

workload space; the nearest neighbors to LUD and NQU both

include benchmarks that scale well (i.e., over-prediction).
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Fig. 5. Applications in the 3-D PCA space. The big contributors to each
principal component are: warp occupancy [24-32] and IPC for the first PC,
cached memory accesses and memory efficiency for the second PC, and
computation/memory ratio for the third PC.

B. Spearman’s Rank

Using the metric of absolute error alone is not sufficient

to justify accurate prediction; the evaluation of correlation

between predicted and real values is needed. We use Spear-

man’s rank correlation, a non-parametric statistical measure

of mutual relationship and dependence between two variables.

Furthermore, it does not require that samples meet specific

distribution requirements (e.g., normal distribution in Pearson

correlation coefficient). This statistical method was also used

by the work [16] to evaluate the accuracy of performance

prediction. The rank of a given value is its position in the

ascending order of the sample values. For instance, for a set

of four values {0.3, 0.1, 0.5, 0.2}, their corresponding ranks

are {3, 1, 4, 2}. We convert the actual speedup value Ai and

predicted speedup value Pi into ranks ai and pi. ρ is calculated

with the Equation 1 −
6
∑

d
2

i

n(n2
−1) , where di = ai − pi and n

represents the sample size. Figure 6 illustrates 2-D views with

the x-axis representing the predicted speedup while the y-axis

represents the actual speedup. The predicted speedups show a

strong correlation with the actual speedups across all applica-

tions. Ideally, all the points should be on the y = x line (i.e.

perfect prediction). For instance, to evaluate the significance of

prediction for the experiment shown in Figure 4, we rank all

the predicted and actual speedups and calculate Spearman’s

rank correlation coefficient, which results in a high ρ value

of 0.738. Then we determine the “critical value”. We use the

common significance level of α = .05. The corresponding

significance value is 0.429 (0.582 when α = .01 ). Our

calculated correlation efficient, 0.738, is much higher than this

value, which means that our approach is reasonably accurate.

C. Prediction with Different GPU Configurations

We also predict the scaling of applications under different

GPU configurations. Table II shows the prediction results for

the speedups of a 28-SM GPU (8 memory channels) against

GPUs with 4, 8 and 16 SMs. These three configurations are

associated with 4, 6 and 8 memory channels respectively.

When we refer to X vs. Y (e.g., 28 vs. 8) in this paper, it means

we compare the predicted speedup with the actual speedup

of an application, going from a Y-SM (e.g., 8-SM) to X-SM

(e.g., 28-SM) GPU configuration. The arithmetic mean of the

absolute prediction errors ranges from 15.8% to 27.3% and

the ρ values range from 0.620 to 0.774. All three cases show

similar patterns to Figure 4, suggesting that the proposed ap-

proach is capable of predicting performance accurately except

for outlier applications. The 28 vs. 4 SM case (27%) shows a

relatively higher average prediction error but a higher ρ. The

28 vs. 16 SM case shows a relatively lower average absolute

error as well as a lower ρ. Interestingly, ρ decreases as the

prediction error decreases. This sounds contradictory at first

glance, but is due mostly to outlier applications. For instance,

for NQU, a highly serialized application, its performance is

insensitive to the changing number of SMs; in the 28 SM vs.
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Fig. 6. Actual speedups (x-axis) and predicted speedups (y-axis). Each dot in the graph represents one benchmark.

4 SM case, its actual speedup is approximately 1.1 while the

predicted speedup (calculated by its neighboring applications

that benefit from parallelism) is 4.5, which contributes a

significant portion to the average prediction error. On the other

hand, a high degree of correlation is observed for the overall

set of applications. Similarly, in the 28 SM vs. 16 SM case, the

error contribution of the outlier benchmarks becomes smaller

because the individual predicted value does not exceed 1.75

(i.e. 28/16), which explains a smaller prediction error. Figure 6

shows the prediction results for three GPU configurations.

Each dot in the graph represents one benchmark and most

benchmarks show up along the y = x line.

GPUs 4 SM-4 MEM 8 SM-6 MEM 16 SM-8 MEM

Avg. Errors 27.3% 21.9% 15.8%

Significance: ρ 0.774 0.738 0.620

TABLE II
PREDICTION ERRORS AND SPEARMAN’S RANK RESULTS ACROSS

DIFFERENT GPU CONFIGURATIONS. X SM-Y MEM MEANS THE

SIMULATOR IS CONFIGURED TO USE X STREAMING MULTIPROCESSORS

AND Y MEMORY CHANNELS.

D. Number of Proxies

The number of proxies is an important parameter critical to

accurate prediction. We compute the speedup for the applica-

tion of interest using a number of proxies. The actual proxies,

as discussed in Section IV-C, are determined by the k-Nearest

Neighbors algorithm. It is not feasible for the sample space

to include all the points (i.e., essentially all the theoretical

applications); therefore, our assumption of the framework is

that we will need more than one nearest neighbor ( k > 1) for

interpolation purpose. On the other hand, if k is too large, it

will adversely degrade the accuracy of prediction; using a large

k risks that some applications dissimilar to the application of

interest may be treated as proxies.

Figure 7 quantifies the sum prediction error as a function

of number of proxies. The prediction error improves when

increasing the number of proxies and then starts to degrade

with larger numbers, which proves our hypothesis. The best

prediction happens when we use three proxies in our exper-

iments: the prediction results are thus reported with three

proxy benchmarks in this paper. If switching to a different

benchmark repository, an appropriate proxy number needs

to be re-determined. Additionally, deciding how many proxy

benchmarks are needed as a function of their closeness to the

target application and their distribution in the workload space

is an open research question.
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Fig. 7. The changes of prediction errors while increasing the number of
nearest neighbors (i.e. proxies).

E. Different Input Sizes

In this section, we predict performance using different

application input sizes. The GPU schedules thread execution

by dispatching thread blocks on multiple SMs. As discussed in

Section II-C, when the number of thread blocks are sufficiently

large to fill the GPU, further increasing the input size will

not influence the scaling behavior much (i.e. there is an

approximately linear relationship between run-time and input).

We show two applications, SRAD and Needleman-Wunsch, as

examples and vary their input sizes from 512×512 to 2, 048×
2, 048 and from 1, 024×1, 024 to 2, 048×2, 048 respectively.

We measure the execution time in cycles on a 8-shader GPU

and calculate the execution time of different inputs on a 28-

shader GPU with the predicted speedup. Figure 8 shows the

results comparing the actual cycles versus the predicted cycles.

SRAD achieves an average 19.3% absolute prediction error

while Needleman-Wusnch achieves an average 11.6% error.

Of course, this is restricted to pnly those applications whose

behaviors are not data-dependent.

F. Prediction on Real Hardware

We verify the robustness of our prediction approach by

predicting performance for a “future” GPU. We predict ap-
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TABLE III
THE THREE PROXIES AND THEIR WEIGHTS FOR EACH BENCHMARK

First proxy Second proxy Third proxy

Benchmark Weight Benchmark Weight Benchmark Weight

Needleman-Wunsch LU Decomposition 0.3423 N-Queen Solver 0.3330 Back Propagtion 0.3247

HotSpot DXTC 0.4522 Back Propagation 0.2925 SRAD 0.2553

Back Propagation SRAD 0.3755 Heartwall 0.3417 DXTC 0.2828

SRAD Heartwall 0.4004 Fast Walsh Transform 0.3572 Monte Carlo 0.2424

Streamcluster Heartwall 0.3477 SRAD 0.3429 Monte Carlo 0.3094

CFD Solver MersenneTwister 0.4733 Monte Carlo 0.2735 Streamcluster 0.2532

LU Decomposition Matrix Multiply 0.3916 Streamcluster 0.3208 N-Queen Solver 0.2876

Heartwall Monte Carlo 0.4023 SRAD 0.3317 Fast Walsh Transform 0.2660

Monte Carlo Heartwall 0.4769 Fast Walsh Transform 0.2849 SRAD 0.2382

Neuro Network N-Queen Solver 0.3549 Needleman-Wunsch 0.3265 Back Propagation 0.3186

Ray Tracer HotSpot 0.3921 CFD Solver 0.3096 DXTC 0.2983

Weather Prediction CFD 0.3682 MersenneTwister 0.3440 Ray Tracer 0.2878

BlackScholes Monte Carlo 0.3757 Fast Walsh Transform 0.3326 Heartwall 0.2917

DXTC HotSpot 0.3794 SRAD 0.3362 Back Propagation 0.2844

N-Queen Solver CFD Solver 0.3574 Streamcluster 0.3311 Back Propagation 0.3115

Fast Walsh Transform SRAD 0.3689 Heartwall 0.3315 Monte Carlo 0.2996

MersenneTwister CFD Solver 0.4790 BlackScholes 0.2661 Monte Carlo 0.2549

Matrix Multiply LU Decomposition 0.3915 Streamcluster 0.3147 DXTC 0.2938
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Fig. 8. The actual and predicted execution times (in cycles) of SRAD and
Needleman-Wunsch with different input sizes.

plication speedups upgrading from an NVIDIA Tesla C2050

to a Kepler K20 GPU and compare the results to the actual

speedups achieved for all the applications. When identifying

program similarity, we collect application characteristics on

the Tesla C2050 using hardware counters with NVIDIA’s

CUDA profiler nvprof and use counter values to calculate pair-

wise distances. The metrics we evaluated include instructions

per cycle (IPC), percentage of divergent branches to total

branches, percentage of memory instructions to total instruc-

tions, percentage of cached instructions (e.g. shared memory),

L2 cache miss rate and warp execution efficiency [11]. The

profiler supports only per-kernel profiling, so for each appli-

cation we report numbers for each individual kernel. Some

applications in the simulator study are not reported here due

to that (e.g., MT and WP failed to successfully execute and

compile respectively on our system). Figure 9 shows the

predicted speedups and actual speedups across all application

kernels. Our prediction approach can achieve an arithmetic

mean of 24% error. The Spearman’s ranking coefficient is

0.4308, higher than the critical value of 0.353 (N = 26,

α = .05), which suggests that our approach is reasonably

accurate and the results are statistically significant.

G. Discussion

Our analysis shows that one challenge of this approach

to performance prediction is the difficulty of predicting an

application of interest that is isolated in the workload space

(discussed in Section V-A). The same observation has been

made by Hoste et al. [16]. For these applications, their proxy

benchmarks determined by the framework are relatively farther

away from the application of interest than those applications

in “richer” areas of workload space, which means the bench-

marks might not accurately represent the application behavior

of the target application. We have shown that predictions can

be poor with inappropriately determined nearest neighbors.

Therefore, constructing a comprehensive benchmark reposi-

tory for training is critical to accurate prediction.

Based our analysis, the workload space in this study can be

enriched further by adding applications with several features.

These include applications with diverse warp occupancies,

especially applications with low SIMD utilizations (e.g., NW),

limited parallelism (e.g., NN and NQU) and significant off-

chip memory accesses (e.g., WP and NN). These regions of

application space are underrepresented, with only a few appli-

cations. Additional benchmarks are needed because accurate

prediction for a given application requires sufficient number

of benchmarks with similar characteristics as nearby proxies.

This raises important questions of benchmark suite design

in general: What programs we should select for inclusion

in a standard benchmark suite [16] and how many bench-

marks are sufficient in terms of both feature coverage and

cost? Several prior works have examined similar issues for

today’s research workloads. Phansalkar et al. [26] make the

argument that the SPEC CPU benchmark suite only covers

a subset of application behaviors and its workloads exhibit

redundant behaviors. Hoste et al. [15] use microarchitecture-

independent characteristics and PCA to characterize single-

threaded workloads. Heirman et al. [13] use a cycle-stack

approach to compare multithreaded CPU workloads including

SPLASH2 [36], PARSEC [4] and Rodinia. Goswami et al. [9]

and Che et al. [7] analyze GPU workloads and their coverage.

Their findings agree with our observations: a thorough exam-
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Fig. 9. Actual and predicted speedups on real hardware (a Kepler K20 GPU vs. an NVIDIA Tesla C2050)

ination for benchmark construction requires a comprehensive

evaluation and comparison of all the current benchmark suites

to establish a single set of workloads with sufficient coverage

and little redundancy.

Phansalkar et al. [26] propose using hierarchical clustering

to guide benchmark construction (also used in prior work [7],

[9], [13]). With the help of the clustering tree (e.g., dendro-

gram), users can choose appropriate benchmarks to meet their

needs (e.g., benchmark construction) - selecting the N most

diverse benchmarks for any N. One benchmark can be chosen

from each cluster by tracking down the clustering tree. If a

cluster consists of more than two benchmarks, the benchmark

closest to the center of the cluster is chosen as a representative.

Our prediction framework also can be used as a method to

test how well the benchmark suite is constructed, in terms

of covering diverse workload behaviors, by following the

prediction process discussed in this paper and determining how

well outliers are predicted. The size and workload coverage of

a suite can be modified to make tradeoff between prediction

accuracy and instrumentation cost. Benchmark vendors (e.g.,

SPEC) may consider adopting similar approaches to ensure

the diversity of their provided benchmark suites meets dif-

ferent needs, including performance prediction. In addition to

reporting metrics such as SPECratio, SPECrate, power, etc.,

it also would be helpful to report program characteristics so

the benchmark space can be contructed easily. These save

users from needing to determine a reasonable benchmark set

independently as well as the effort of application profiling.

Another interesting open research question is whether some

real-world applications exist to cover those “desert” areas of

application space. This issue might partially be resolved by

developing synthetic benchmarks to mimic diverse application

behaviors.

In this work, we assign weights to proxy benchmarks merely

based on their distances to the target benchmark (i.e., the

shorter the distance, the larger the weight; see Section IV-D).

However, it is possible that different metrics may contribute

different weights to the overall predicted value, which may

potentially make the prediction more accurate. In this work,

we assume all the metrics have equal weights. We leave the

understanding of the contribution of each metric as future

work.

VI. OTHER POTENTIAL METRICS

Our work has shown promising trends of predicting GPUs’

application performance with existing benchmarks. We hope

to address some limitations in future work. In this paper,

we consider only a few first-order characteristics that affect

GPU performance. Other factors might make performance

prediction more accurate. We plan to study metrics capturing

memory access efficiency of other GPU caches (e.g., texture

and Fermi’s hardware caches). We also plan to consider

synchronization overhead within each thread block (e.g., sync-

thread()) and across thread blocks (i.e., global synchroniza-

tion). On the other hand, in certain cases, some of these factors

might not influence prediction results significantly (e.g. first-

order metrics). For instance, when syncthread()s are used at the

points of exchanging data between global memory and shared

memory, interleaved warp executions may hide most syn-

chronization overheads. Global synchronization overhead is

caused by different finishing times of thread blocks dispatched

to multiple SMs. If there are a sufficiently large number

of thread blocks evenly distributed to SMs, synchronization

overhead is negligible – the execution time of one or a few

thread blocks. Also, part of the program characteristics can be

directly collected through GPU hardware counters; we leave

instrumentation and analysis of GPU hardware for future work.

VII. RELATED WORK

Gustafson and Todi [12] performed an early work in cor-

relating the performance of benchmarks with others. Hoste

et al. conducted a benchmark suite coverage study [18] and

they used standardized benchmarks to conduct performance

prediction [16]. The framework they proposed for prediction is

based on principal component analysis and genetic algorithms.

Snavely et al. [29] studied an approach to predict parallel

application performance on HPC systems. They collected

machine profiles and application signatures, and combined

them for prediction with a convolution method. Carrington et.

al. [5] predicted application performance using single, simple

synthetic metric (i.e. compute kernel) and a linear combination

of these simple metrics as well. The individual “metrics”

are small synthetic benchmarks such as LINPACK [22],

STREAM [31] and HPC Challenge benchmarks [3], etc. All

of these prior works mainly focused on CPU workloads.

Hong et al. [14] proposed an analytical model that estimates

the execution time of massively parallel programs on GPUs.
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Similarly, Baghsorkhi et al. [1] proposed a performance model

capturing performance effects of major GPU microarchitecture

features using an approach based on the program dependence

graph (PDG). Meng et al. [23] proposed GROPHECY, a

GPU performance projection framework that can estimate the

performance benefit of GPU acceleration without actual GPU

programming or hardware. Users only need to skeletonize

pieces of CPU code as targets for GPU acceleration, which

are transformed further in various ways to tune GPU code

in the optimization space. The code characteristics are used

by an analytical model to project GPU performance. Kerr et

al. evaluated a set of metrics for GPU workloads [19] and

used them to analyze the behavior of GPU programs. They

further used PCA and regression modeling to predict GPU

performance [20]. Another regression-based approach was

proposed by Jia et al. [17] to build application-specific models

for performance prediction and identification of significant

architectural parameters. In contrast to these works based

on analytical and regression models for GPUs, our approach

predicts GPUs’ application performance by taking advantage

of the characteristics and performance numbers of existing

benchmarks.

Wong et al. [35] developed a set of microbenchmarks

to detect various microarchitectural parameters for NVIDIA

GPUs. Zhang et al. [38] developed a microbenchmark-based

performance model that allows programmers and architects

to identify GPU program bottlenecks and predict the benefits

of potential program optimizations and architectural improve-

ments. Our work focuses on real GPU applications instead of

microbenchmarks.

Piccart et al. [28] proposed another approach for CPU

performance prediction. They exploited machine similarity and

used a data transposition technique to identify a predictive

machine that is most similar to the target machine of interest

for predicting the performance of an application of interest.

It assumed that benchmark results for a sufficient number

of machines are available. Different from their work, this

paper uses benchmarks as a training set and determines the

benchmarks that are most similar to the target benchmark for

performance prediction.

VIII. CONCLUSION

In this paper, we study an approach of using existing bench-

marks to predict performance of arbitrary GPU applications.

This is helpful when performance of these benchmarks on the

target GPU is available, but user access to the GPU is not

possible, such as when making purchasing decisions. Given a

target application, prediction is conducted by collecting a set

of important GPU characteristics for all the benchmarks in the

repository, identifying the proxy benchmarks in the workload

space that are most similar to the GPU application to be

predicted, and using the performance of the proxy benchmarks

to predict that of the target application. We predict perfor-

mance speedups of various applications across different GPU

configurations. The predicted value for a particular benchmark

is determined by a weighted sum of the speedups of its proxy

benchmarks. We allocate the contribution of each benchmark

to be inversely proportional to its distance to the target appli-

cation. We consider real workloads from Rodinia, GPGPU-

Sim and NVIDIA CUDA SDK to construct a diverse and

representative workload space. The results show that accurate

performance prediction is possible with the proposed metrics

and the methodology based on nearest neighbors. We are able

to achieve an arithmetic mean of 21.9% prediction error using

simulation and an arithmetic mean of 24% prediction error

on real GPU hardware. Much of the error is due to a few

outlier applications in the workload space. This problem can

be reduced by improving the baseline set of benchmarks to

cover these outlying areas more effectively. In addition, the

predicted performance shows a strong correlation with the

actual performance according to a Spearman’s rank analysis.

Users can take advantage of performance scores of a variety

of standard GPU benchmarks provided by GPU vendors (e.g.

CPU vendors report performance scores for standardized CPU

benchmarks such as SPEC [30]). Achieving this goal requires

a well-constructed GPU benchmark suite with sufficient di-

versity and feature coverage. Furthermore, studying mutual

relationships among benchmarks allows users to focus on

understanding and analyzing the most important and relevant

proxy benchmarks, which is useful in helping them make

appropriate design and purchasing decisions.

Future work will study the robustness of this prediction

approach with different programming styles and the impact

of hardware ISA and architecture changes (e.g., across AMD

and NVIDIA GPUs, different core configurations, and memory

sub-systems). We plan to compare our approach to analytical

models based on detailed GPU parameters. We also will study

the application space coverage with benchmarks from a much

larger set of workloads drawn from real applications. Using

a benchmark correlation-based approach to predict power

remains an interesting research question.
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