Benchmark Suite Construction for Multicore and Accelerator Architectures

Kevin Skadron University of Virginia

Context

- The multicore era has spawned massive diversity
 - 2,4,6, soon 8-way ILP cores
 - Many simple, multithreaded cores (e.g. Niagara)
 - Heterogeneous organizations
 - -GPUs, FPGAs, etc. as accelerators
- How do we design hardware and software?
- Need driving workloads

Session Objectives

- Come up with specific recommendations for future benchmarks
 - Features, research questions
 - Perhaps publish as an article in ACM SIGARCH Computer Architecture News, or even IEEE Computer
- Open discussion
 - Can form brief breakout groups if warranted
- Can have follow-up meetings if sufficient interest

- Many Questions! pec-

- What is the role of a benchmark suite? Comparison or research?
 - Current or futuristic benchmarks?
- Primarily for HW or SW? Can we use the same benchmark suite?
 - HW: run on native hardware or in simulation?
 - SW: primarily for middleware or end-users?
- How optimized?
 - Trying to capture "average" or "code hero" programming?
 - Maybe both?
- How to make portable?
 - How to deal with current and *future* heterogeneity
 - Porting large applications is expensive
 - If software is optimized for specific hardware details, how to deal with rapid evolution?

Ftc...

scheduling

4

- What workloads are "representative"? Are they open source?
- Stressmarks, building blocks, standalone applications, workflows?
- What language(s)?
- Metrics?
- Support for simulation?

A Few Examples

- Arch research
 - Identify bottlenecks in current hardware
 - Propose new features or architectures
- Compiler research
 - Code generation
 - Parallelization
- Software development
 - Templates/exemplars

Incremental Performance Improvement

- Which optimization to apply and the order to apply optimizations is not always intuitive
- Some optimizations are unlikely to be discovered by the compiler

	Parsec	SPLASH-2	Rodinia (IISWC'09)
Platform	CPU	CPU	CPU and GPU
Programming Model	Pthreads, OpenMP, TBB	PARMACS macros	OpenMP, CUDA
Machine Model	shared memory	shared memory	shared memory, offloading
Application Domain	scientific/engineering finance, multimedia	g, scientific/engineering, graphics	scientific/engineering, data mining
NO. of Applications	3 kernels, 9 apps	4 kernels and 8 apps	6 kernels and 5 apps
Optimized for	multicore	distributed shared memory multiprocessor	manycore, accelerator
Incremental Opt. Ver		Ę	\odot
Memory Space	HW cache	HW cache	HW/SW cache
Problem Sizes	small - large	small - medium	small - large
Special SW techniqu	les SW pipelining	NA	ghost-zone, persistent thread-block
Synchronization	parrier/lock/condition	barrier/lock/condition	barrier 7

Brief Characteristics of Other Suites

	Multithreaded	Domain-specific	Model	Platform
SPEC CPU 2006	E.	E Company	NA	CPU
SPEC OMP 2001		Ę	OpenMP	CPU
ALPBench			Pthreads	CPU
Biobench	E Company		NA	CPU
BioParallel	\bigcirc		OpenMP	CPU
MediaBench	E C		NA	CPU
MineBench	\bigcirc		OpenMP	CPU
Parboil	\bigcirc	Fig.	CUDA	GPU

Questions for the Participants

- What important features are missing?
- What is needed for heterogeneous computing?
- How much should benchmarks focus on the most challenging (vs. most common)?
 - e.g., doall vs. fine-grained, irregular parallelism