Entity Resolution Acceleration using the Automata Processor

Chunkun Bo', Ke Wangl, Jeffrey J. Fox?2, Kevin Skadron!
!Department of Computer Science, 2Department of Material Science
University of Virginia
Charlottesville, USA
Email: chunkun, kewang, jif5x, skadron@virginia.edu

Abstract—Entity Resolution (ER), the process of finding
identical entities across different databases, is critical to many
information-integration applications. As sizes of databases ex-
plode in the big-data era, it becomes computationally expensive
to recognize identical entities among all records with variations
allowed across multiple databases. Profiling results show that
approximate matching is the primary bottleneck. The Au-
tomata Processor (AP), an efficient and scalable semiconductor
architecture for parallel automata processing, provides a new
opportunity for hardware acceleration for ER. We propose
an AP-accelerated ER solution, which accelerates the perfor-
mance bottleneck of fuzzy matching for similar but potentially
inexactly-matched names, and use several different real-world
applications to illustrate its effectiveness. We compared the pro-
posed method with several conventional methods and achieved
both promising speedups and better accuracy (more correct
pairs and less generalized merge distance cost) for different
datasets.

Keywords-Automata Processor; Entity Resolution; Accelera-
tion;

I. INTRODUCTION

Entity Resolution (ER), also known as Record Linkage
or Purging/Merging problems, refers to finding records that
store the same entity within a single database or across
different databases [1]. ER is an important kernel of many
information-integration applications. For example, Social
Networks and Archival Context (SNAC) collects records
from databases all over the world to provide an integrated
platform for searching historical collections [2]. In such ap-
plications, the records of the same person may be stored with
slight differences, because documents come from different
sources, with different naming conventions, transliteration
conventions, etc. SNAC needs to find the records referring to
the same entity despite different representations and merge
these records. The intuitive method of solving ER is to
compare all possible pair records and check whether a pair
represents the same entity.

Determining whether two records represent the same
entity is usually computationally expensive. For example,
the time complexity of the intuitive method is O(N?),
where N is the number of records. Prior work has proposed
different algorithms and computation models to improve the
performance [3] [4] [S]. However, the performance is still
unsatisfying and the average time used by record comparison
is much longer than the cost of simple string comparison [6].

This paper appears in Proceedings of BigDatal6. This is
the authors' final manuscript. The authoritative version
can be found in the digital library.

The Automata Processor (AP) is an efficient and scalable
semiconductor architecture for parallel automata process-
ing [7] introduced by Micron. It is a hardware implemen-
tation of non-deterministic finite automata (NFA) and is
capable of matching a large number of complex patterns
in parallel. The AP has been used in different fields such as
association rule mining [8], bioinformatics [9], string kernel
testing [10], natural language processing [11], etc. Such
applications need inexact matching and high throughput, just
as does ER. Therefore, we propose a hardware acceleration
solution to ER using the AP and focus on string-based ER.
To illustrate how the AP approach works, we present a
framework and evaluate the suitability using several real-
world ER problems in different applications.

In summary, we make the following contributions:

1. We propose a novel AP-based hardware acceleration
framework to solve string-based Entity Resolution.

2. We present several automata designs for string-based
ER, e.g. fuzzy name matching. We apply the proposed
approach in SNAC to illustrate the effectiveness of the
approach, and generalize it with small modifications for
other string-based ER problems.

3. We compare the prototype of the AP approach with
several conventional approaches (Apache Lucene, sorting,
hashing, and suffix-tree methods) to evaluate the suitability
of the proposed method. Results show both higher perfor-
mance and better resolution accuracy using various datasets
from different applications.

II. RELATED WORK

Many methods have been proposed to solve ER. One is a
domain-independent algorithm [3]. This paper proposed first
computing the minimum edit-distance to recognize possible
duplicate records, and then using a union/find algorithm to
keep track of duplicate records incrementally. This proposed
method achieves around 5x speedup compared with previous
methods. Another method sorts the records and checks
whether the neighboring records are the same [1]. For
approximate duplicates, these researchers define a window
size and a threshold of similarity, so that they can find similar
records to satisfy application requirements. Apache Lucene
is a high-performance search engine and uses a similar
method [12]. The difference is that it calculates the score of a



document based on the query, and sorts documents instead of
every individual record. As databases become much larger,
some researchers suggested dividing the original database
into small blocks based on prior knowledge and processing
smaller blocks, but the method is not always feasible because
not all databases are easily divided [4]. However, we are
unaware of any implementations of these algorithms using
accelerators. Furthermore, we hypothesize that the AP’s
massive parallelism can achieve much higher performance
than these methods. Therefore, we propose an AP-based
approach for the Hamming distance-based method.

Some novel architectures have been proposed to scale ER
to multiple nodes. For example, Kolb et. al. propose Dedoop,
a cloud-based infrastructure to accelerate ER [5]. They gain
80x speedup by using 100 Amazon EC2 nodes. This paper
only considers performance on a single node, but the AP
would benefit cluster and cloud infrastructures as well.

III. AUTOMATA PROCESSOR

The Automata Processor is an efficient and scalable semi-
conductor architecture for parallel automata processing [7].
It uses a non-Von-Neumann reconfigurable spatial architec-
ture, which directly implements NFA in hardware, to match
complex regular expressions. The AP can also match other
types of automata that cannot be conveniently expressed
as regular expression, by describing the NFA directly. The
ability to efficiently implement regular expressions or NFA
processing makes the AP well-suited for inexact pattern-
matching problems such as ER. Use of NFAs avoids the
exponential growth in automata size that can occur with
deterministic FAs (DFAs), thus achieving high density for
the number of automata structures that fit on the AP.

A. AP Functional Elements

The AP consists of three functional elements: STEs,
Counters, and Boolean elements [7]. Each STE can be
configured to match a set of any 8-bit symbols and up to
256 different characters can be stored in one STE. The
STE activates a set of successor STEs connected to it
when the symbols stored in it match the input symbol.
The 12-bit counter will trigger an output event when the
accumulated value reaches the pre-defined threshold. The
Boolean elements can perform classic logical functions. The
AP allows all STEs on the board to inspect the next input
symbol in parallel, and it is able to process a new input
symbol every clock cycle.

B. Speed and Capacity

The current generation AP chip (D480) is built on 50nm
DRAM technology running at an input symbol rate of
133MHz. The D480 chip has two half-cores and each half-
core has 96 blocks. Each block has 256 STEs, 4 counters,
and 12 Boolean elements. In total, one D480 chip has 49,152
STEs, 2,304 Boolean elements, and 768 counter elements.
Each AP board can have up to 32 AP chips, providing more
than 1.5 million STEs.

C. Programming and Reconfiguration

The AP workbench is a graphical user interface tool for
quick automata design and debugging. A “macro” is a con-
tainer of automata for encapsulating a given functionality.
The AP SDK also provides C and Python interfaces to build
automata, create input streams, parse the output, and manage
computational tasks. Furthermore, the symbols that an STE
matches can be reconfigured quickly. The replacement time
is around 0.24 milliseconds for one block. This feature is
helpful when one needs to modify the symbols stored in the
AP board without changing the automata structure [8], e.g.
for multi-pass algorithms.

IV. DESIGN DETAILS USING THE AP

In this section, we present how to use the AP to solve
string-based ER problems, using the Name Matching prob-
lem in SNAC as an example. At the end, we discuss how to
generalize the AP approach to other ER problems.

A. Real-world ER Problems

In ER, identity attributes distinguish each entity from one
another. String-based ER means that the identity attributes
are strings. In this paper, we focus on solving real-world
string-based ER problems.

When building the SNAC platform, the same person’s
name may not always be consistent from one record to
the next because of typos, mis-spellings, different abbrevia-
tion, etc. These differences lead to three major problems.
1) One may miss some correct results when querying a
particular record; 2) multiple entries for one entity waste
storage space; 3) the duplicated items slow down the search
speed. Therefore, SNAC needs to identify and combine
potentially similar records, which is a typical ER problem.
Similar problems also exist in DBLP, a website for browsing
Computer Science bibliographic information [13]. As DBLP
adds records to its database, the contents of the same record
may have different representations.

We also present how to identify restaurant records from
Fodor’s and Zagat’s restaurant guides using the AP.

B. Workflow

The general workflow of using the AP to solve string-
based ER problems is shown in Figure 1. The CPU first
reads the database and extracts the fields of interest from
the original database in a pre-processing step, because the
database may contain some other information. For example,
for the ER problem in SNAC and DBLP, the fields of
interest pertain to people’s names. We store these fields
of interest on the AP board. The input strings are then
streamed into the AP and the AP compares the stored
contents with the input. If the AP finds a match, it reports
back to the CPU. Each record is assigned a number before
being streamed into the AP. Based on the reporting STE
ID and the offset of the reporting time, the CPU can tell
which record finds a match and proceed to combine these



R

pre-process

[ r——]

combine records

] pisk1/0
CPU workload

2 AP workload

CPU/AP communication

store on the AP
P Yes
~ match report back to

No

PN

No _reconfig .

Yes

Figure 1. General workflow of the AP approach.

records. A reconfiguration phase is needed if the record
number exceeds the capacity of the AP. Intuitively, to config
the AP for the next batch of names, one can compile new
automata structures for the records which have not been
processed yet, but this usually takes a long time due to
the high cost of routing for these new structures. Instead,
we develop canonical matching macros, which new record
values can be loaded without reconfiguring the automata
structure; the data are then re-streamed. This approach
introduces the cost of replacing symbols (milliseconds), but
it is usually faster than compiling new structures (minutes).
In the following sections, one will see several design choices
to take advantage of the fast symbol replacement.

C. Extracting Name Formats

Intuitively, one can build an automaton for every single
record. However, this only works well if the database is
small and all records can be stored on one AP board. For
large databases, to exploit the fast symbol replacement, we
focus on designing a more general automata structure that
can be shared by different records [8].

Extracting records formats is a preliminary step for most
string-based ER solutions using symbol replacement. We
start by describing the approach for solving the Name
Matching problem in SNAC. One name is usually composed
of several sub-names, like family name, middle name, and
first name. We only use family name and first name for
SNAC, because middle names are both less common and
important for correct resolution in SNAC. Family names and
first names are sufficient to evaluate the suitability of the
proposed approach.

We choose a subset from the whole database randomly as
a basis to extract a representative set of formats for family
name and first name. Table I shows common variants of
family names and first names. However, not all names can
be represented by these formats (fewer than 1%). In this
case, we treat it as a failure (no match found). Refinement
of these rare cases is left for future work.

D. Automata for Family/First Name

After extracting name formats, we show how to design

automata for these formats. The designs are also important

First Name Formats
Bced (basic)

Family Name Formats
Abc (basic)

Abc Bed Bed X.

Abc Bed Cde Bed Cde

Abc 11 Bed X. (Bed Xyz)
B. X.
B. X. (Bed Xyz)
B. X. (Bed X))

Bed Cde (Xyz)

Bce. Xyz (Bede Xyz)

Bced, Cde

Bce

Bed O. X. (Bed Opq Xyz)
Bed (Bed X.)

Bced Cde Def Efg

Table 1
NAME FORMATS IN SNAC.

Figure 2. Exact-matching automata design for family name (exact match
for “Adams Smith Abbe”).

for generalizing the AP approach in other ER problems,
because they share similar design ideas and techniques.

Figure 2 shows the exact-matching automaton for family
names. Though exact-matching automata cannot recognize
the same entities with different representations, it is impor-
tant to understand how the following fuzzy automata work.
The three rows correlate with Abc, Bed, Cde in Table 1.
The first few STEs in each row store the characters in
the name to be matched. The subsequent ‘+’ signs are
used to pad the remaining positions, so that family names
with different lengths can share the same structure. The ‘$’
and the ‘# represent spaces and Roman numerals in the
database. The ‘,; STE is configured as a reporting STE.
When this STE is activated, it will report. The lengths can
be modified according to different dataset characteristics. In
this paper, all the four family name formats in SNAC share
this structure, although it may consume more STEs than
using different automata for different names. Again, this is
to utilize the feature of the fast symbol replacement.

This design may lead to some false positives because it
aims to support arbitrary string lengths; all of the STEs after
the second STE in a given row are connected to the reporting
STE. For example, if the automaton in Figure 2 reads Ada,
it reports a match; but Ada is not the name we want. False
positives are typically acceptable, and we still need to check
the first name. The chance that we get a false positive for
both family name and first name is small.

However, the exact-matching cannot fully solve the ER
problem and we need to execute ‘fuzzy’ matching. A fuzzy
macro in this paper refers to an automaton that can recognize



Figure 3.  Structure of fuzzy macro calculating Hamming distance. It
matches sequence ABCDEF with Hamming distance = 0, 1.

N

Figure 4. Fuzzy-matching automata design for first name (fuzzy macros
allow Hamming distance = 0, 1).

a string with variances. One fuzzy macro example is shown
in Figure 3. It matches sequence the ABCDEF and reports
when the Hamming distance is < 1. This structure is also
used in [9]. Column ¢ corresponds to the ith symbol in
the sequence. The STEs in odd rows activate on symbols
in the target name and the ones in even rows activate
when there are mismatches. The Hamming distance can be
extended up to k£ with more (2k + 1) rows . All macros in
this paper adopt this structure, but with different sequence
lengths. For example, in Figure 4, the name length of macro
fuzzy and fuzzy2 is 11 while the length of macro fuzzy3 is
5. Furthermore, macro structures are not limited to Hamming
distance. One can have macro designs for other distances,
like general edit distance in [14].

With these fuzzy macros, we can find the same names
with variances (Figure 4). The first three rows are used to
match the three corresponding parts in family name formats,
and we use fuzzy macros in each row to recognize variances
of names. The design for the first name (Figure 4) is similar
to family name, but we need several extra STEs (last row in
red rectangle) to process the ‘. and parenthesis, which do
not exist in family name formats.

The design may produce false negatives if the AP stores
a shorter form first. For example, if AP stores ‘J.” first, it
will not report a match when it reads ‘Janet’, the full form
of ‘J.”. This problem causes most of the inaccuracy in our
ER outcomes (Section V-C). In this paper, we consider °.’
symbol as a character within a string. However, abbrevia-
tions such as ‘J.” often are meant to indicate J followed by
0 or more of any character. One possible solution is to use
an STE accepting any character when reading ‘., but this is
left for future work.

E. Hybrid Version

With these automata designs, we roughly evaluated the ap-
proach and found that the STE capacity is the bottleneck. To
reduce STE consumption, we use a hybrid version (Figure 5)
of automata for family name and first name in Figure 4. We

os9f

Figure 5. Automata design for the whole name in SNAC (‘&’ is the
delimiter of different names).

recognize the names using one single automaton in order
to save STEs. The hypothesis is that if the family name
is a match, one can compare fewer characters within the
first name. The hybrid technique also allows us to use two
fuzzy macros instead of three for family name and first
name, because it is unlikely that one finds a wrong match
for both sub-names. An STE pointing to itself is used to
accept all the remaining characters, further reducing STEs
consumed. This self-pointing technique is also used when
generalizing the AP approach for other ER problems. With
all these techniques, we reduce the STEs consumed from
174 to 99 for one name.

E Generalizing to Other String-based ER Problems

In this section, we discuss how to generalize the AP
approach to other string-based ER problems. As shown
in the above discussion, we can build macros that allow
different degrees of fuzziness. For example, we can extend
the macro in Figure 3 to support different string lengths
or different Hamming distances. We can also build macro
structures for other distances, such as edit distance [14].
Users can generalize the AP approach with these different
automata designs to solve their specific ER problems.

First, we show how to generalize the AP approach to solve
the ER problem in DBLP. The workflow is the same as
in Section I'V-B. Figure 6 shows the automaton design for
recognizing similar names in DBLP and middle name is used
because most names in DBLP have a middle name. Macro
fuzzy and fuzzyl are used to match first name and family
name. These two macros adopt the structure in Figure 3 with
different lengths (10). The middle part is used to recognize
middle name, which is mostly the abbreviation of the full-
length middle name. We use three STEs to store characters
in middle name. If the middle name is longer, we ignore the
remaining part; if the middle name is shorter, similar to what
we have discussed in Section IV-D, we use ‘+’ to pad the
position. The fourth self-pointing STE is used to accept all
the characters before the ‘space’ character. The automaton
is similar to the one in Figure 5 for SNAC, and they share
the same macro structures.

Secondly, we show how to identify the same restaurant
from Zagat’s and Fodor’s restaurant guides. The workflow
is still the same and the automata design is shown in



fuzzy Gl /\$ $

Figure 6. Automata design for DBLP (‘$’ is the delimiter of sub names).

N

Z

FY¥olYu + 0+ Y+ 0+ T+ WY s

beeeogeqa@;
‘ .

Figure 7. Automata design for identifying the same restaurant (‘$’ is the
delimiter of different parts inside a restaurant name and ‘&’ is the delimiter
between restaurant names).

Figure 7. We first work on the record formats, finding that
most of the variances come from different abbreviations of
the same word, like ‘deli’ vs. ‘delicatessens’. This feature
makes the automata look more like the exact match design
in Figure 2 but it can recognize the same word with different
lengths. Most of the restaurants’ names have fewer than
three parts, so we only use three rows to represent different
parts inside one name. If the name has more than three
parts, we only consider the first three; otherwise, we fill
the automaton using the latter rows first. For example,
for restaurant ‘Carneigie Deli’, we store ‘Carneigie’ in the
second row and ‘Deli’ in the third row. As for the first row,
we use ‘+’ as a placeholder as in Section IV-D. The second-
to-last STE in each row activates itself until it reads the
‘space’ symbol as discussed in Section IV-E.

These two examples show how we generalize the AP
approach for SNAC in other string-based ER problems. They
all use the same workflow in Section IV-B. Even though we
need to modify the automata designs to solve the specific
problem, the structures are similar and we can re-use many
design ideas and techniques, such as macro structures, self-
pointing STEs, and using ‘+’ as placeholders.

Howeyver, this is still not a universal method. There are
some applications for which the proposed method is not
suitable. The AP approach did not work well when we tried
to resolve consumer-electronics products from online shop-
ping websites. This is because the various representations
of products are not due to different spellings; instead, they
usually have semantic meanings of words or abbreviations
or different descriptions, such as ‘PlayStation4’ vs. ‘PS4’
or ‘black headphone’ vs. ‘headphone in black’. In such
situations, it is difficult for the AP approach to identify these
records, because too many variations are required, and a
dictionary of all possible relationships is needed.

V. EVALUATION
A. Experiment Setup

To evaluate the suitability of the prototype of the AP
approach, we compare both execution time and resolution
accuracy of the AP approach with other conventional meth-
ods. The experiments are executed on a server with AMD
Opteron 4386 Cores (3100MHz). We use an AP simulator
to derive the execution time for the AP approach until the
real hardware is available. The data used in the following
experiments are sampled from different databases, including
SNAC [2], DBLP [15], Fodor’s and Zagat[16]. We use a
random selector to select records from these databases.

B. Performance

We first compare the performance of the AP approach
with conventional methods, including Apache Lucene, a
sorting-based method as suggested in [1], a suffix-tree-based
method, and a hashing-based method. Apache Lucene is a
widely used searching library and supports advanced query
types, such as proximity queries, which enables us to execute
fuzzy matching [12]. The sorting-based method first sorts
the names and then compares the Hamming distance of
neighboring names. The suffix-tree-based method builds a
suffix tree for the names and searches names against the
suffix tree. The hashing-based method builds a hash table
for the names and searches the exact names inside the table.
We only execute exact matching with these two methods
in this paper. There are some methods which can execute
fuzzy matching using suffix tree and hashing-table, but it
takes much more time than exact matching.

The matching time is used as the primary metric to eval-
uate these methods. Because using Apache Lucene involves
some other overhead like building indexes for databases, we
only collect the time of the search function that executes
matching operations. We evaluate these methods with both
small datasets and large datasets sampled from SNAC. The
results for small datasets are shown in Figure 8. When
the database is smaller than 10,000, the suffix-tree-based
method is the least effective, yet the matching time increases
slower than Apache Lucene as the database size increases.
The sorting-based method works as well as the hashing-
based method for these datasets. But the sorting-based
method achieves better result quality, and the details will be
discussed in Section V-C. The AP approach runs faster than
all the other four methods for these datasets. The matching
time of the AP approach increases almost linearly as the
database increases. The slope of the AP approach is nearly
flat because the AP can process a new input character every
clock cycle. However, the AP can only hold 14,000! names
at a time; if a dataset is larger than 14,000, a symbol
replacement operation is needed to load the next 14,000

IThe AP capacity in the number of names or other records is a function
of the expected record size and complexity (e.g. Hamming distance) of
matching.



Performance vs. Conventional Methods

w

=

Matching time (seconds)
N

o

3000 f:
4000 ||
000 I
600

oo coooo9ooQ S oooo ocooo
SRS ISESESR-R-R-R°] S6666 868698
o o o O O © O - O O O O O o ©Q O O
- N wn N oy © - O™~ OO m < n O
— R B I B R B I B oY) L I B |
Number of Names from SNAC
— Sorting ---Suffix-tree Hashing - Lucene[1]
- -Lucene[10] Lucene[50] —AP
Figure 8. Performance vs. conventional methods for small SNAC

databases. (X axis represents the number of names, ranging from 1,000
names to 20,000 names.)

names. This shows up in Figure 8 as steps in the AP curve.
We also compare the AP approach with Apache Lucene
with its multiple search support. Apache Lucene supports
simultaneously searching multiple records (90 at most), but
this does not always work for all datasets, and searching
50 names is the largest number that works for all datasets.
The average speedup is calculated over all samples in a
given dataset. For example, samples of different numbers of
names from SNAC (1,000 to 20,000 names in Figure 8) are
used to calculate the average speedups against conventional
methods (in Table II). Though searching multiple names
helps to reduce the matching time, the AP approach still
achieves 20.3x speedup compared with searching 50 names
simultaneously and up to 373x speedup compared with the
suffix-tree-based method.

Speedup
Sorting 479
Suffix-tree 373
Hashing 45.8

Lucene[1] 248
Lucene[10] | 75.7
Lucene[50] | 20.3

Table II
AVERAGE SPEEDUPS FOR SMALL SNAC DATABASES.

To evaluate how the AP approach works for large
databases, we then work on larger datasets (from 14,000
names to 140,000 names) from SNAC. Figure 9 shows
that even when the number of names exceeds the capacity
and several reconfigurations are needed, the AP approach
still runs at least 8.5x faster than other methods. On aver-
age, the proposed method achieves 17x, 33.4x, and 16.9x
speedup compared with the sorting-based, suffix-tree-based,
and hashing-based methods.

Furthermore, we evaluate the AP approach for DBLP.
We can store 45,000 names with the design in Figure 6
on one AP board. We collect the matching time for 1
million to 10 million names, since DBLP has a much larger
database. Because the number is larger than the capacity
of the current board, we need to replace the symbols and
re-stream the input. Figure 10 shows that even for much

Performance vs. Conventional methods

-

\) O O ) O
N\ \ \ O

N \ QO N

& & F

Number of Names from SNAC

—AP — Improved-AP---sorting-based---suffix-tree-based - —hashing-based

Figure 9. Performance vs. conventional methods for large SNAC databases.
(X axis represents the number of names, ranging from 14,000 names to
140,000 names. Y axis represents the matching time.)

Performance vs. CPU methods

Im 2m 3m 4m 5m 6m 7m 8m 9m 10m
Number of Names from DBLP

—AP — improved-AP Sorting-based -+ suffix-tree-based — —hashtable

Figure 10.  Performance vs. conventional methods for DBLP. (X axis
represents the database size, ranging from 1 million names to 10 million
names. Y axis represents the matching time.)

larger datasets, the AP approach still works the best among
all the methods. On average, it achieves 3x, 29.7x, and 15x
speedup against the sorting-based, the suffix-tree-based, and
the hashing-based methods. The speedups are not as high
as small datasets when compared with the sorting-based
method in SNAC, but we achieve much better resolution
accuracy (Section V-C). To achieve similar accuracy as
the AP approach does, conventional methods need longer
time. For example, we can improve the accuracy of the
sorting-based method by increasing neighboring group size.
However, the time consumed increases linearly as the size
increases. We will discuss how to further improve the AP
approach performance for large databases in Section V-D.

In general, the prototype of the AP approach achieves
promising speedups compared with conventional methods
for both small and large datasets, even when many reconfig-
urations are needed. The speedups come from the massive
parallelism when comparing the records using the AP. We
can store a large number of records (14,000 for SNAC and
45,000 for DBLP) on one AP board and compare these
records simultaneously.

C. Resolution Accuracy

Results quality is also important to study the suitability of
the approach; therefore, we use two different metrics (correct
pair numbers and generalized merge distance(GMD)) to
evaluate the accuracy of the AP approach.



Correct # Pct Merge | Split | Total
Apache Lucene | 262 80.6% | 51 3 54
Sorting 233 71.7% | 63 0 63
Hashing 213 65.6% | 72 0 72
Suffix-tree 213 65.6% | 72 0 72
AP 292 89.8% | 30 1 31
Manual 325 100% 0 0 0
Table 11T

RESOLUTION ACCURACY RESULTS FOR SNAC.

The first metric is the number of correct pairs (Table III).
If there are more than two records in one group, every two
records inside the group are counted as one correct pair. The
AP approach finds 9.2%, 18.1%, 24.2%, and 24.2% more
correct pairs than Apache Lucene, sorting-based, hashing-
based and suffix-tree-based methods respectively.

The second metric is GMD [17], which is based on the
elementary operations of merging and splitting the records
group to correct results. We use a simple version of GMD,
where the costs of merging and splitting are equivalent
(Table IIT). The AP approach method only needs 31 op-
erations, while other methods need at least 54. The AP
approach needs 50% fewer operations compared with the
best conventional method. We observe that most GMD of the
AP approach comes from merging operations, which implies
that the AP approach may miss some names that should
be grouped together instead of recognizing wrong names.
To further reduce GMD cost, we can design more complex
fuzzy macros in order to identify more similar names. But
this may consume more STEs.

We then evaluate the AP approach (Table IV) using a
subset from DBLP provided by [15]. The AP approach
finds 17% more correct pairs and uses 66% fewer GMD
operations than the best conventional method.

Correct Pair # | Percentage | GMD
Correct 675 100 0
AP 615 91.4 62
sorting 502 74.4 183
suffix-tree 484 71.7 212
hashing-table | 484 71.7 212

Table IV
RESOLUTION ACCURACY RESULTS FOR DBLP.

Lastly, we evaluate the design for identifying the same
restaurant from Fodors and Zagat. The dataset is achieved
from [16] and the matching results are provided. 112
matched tuples should be found and the AP approach finds
105 (93.75%) correct results, while the other three methods
only find around 90 (80.36%) correct pairs.

For all three datasets, the AP approach achieves better
results quality. This is because the differences in these
datasets are usually caused by typos, mis-spellings or dif-
ferent abbreviations, and the fuzzy macros we present in the
previous section can recognize these differences and identify
the same entities yet with small differences.

D. Improved AP Approach

When the name number is larger than the AP capacity,
we re-stream the whole database. However, we do not need

Performance for Improved AP Approach

60000 2
1.8
— 50000 P
< 40000 14
£ 1.2_%
E" 30000 19
£ 20000 085
S
,E*g 0.6
10000 04
0.2

0

S P O O
S &S
F N

O ® & & &
SFFFF &S
A I VRO O

Number of Names from SNAC
““““ AP —Improved-AP = =speedup

Figure 11. Performance for improved AP approach. (X axis represents
the database size, ranging from 14,000 names to 140,000 names. Y axis
on the left represents the matching time and Y axis on the right represents
speedup against original algorithm.)

to re-stream all records after reconfigurations. For example,
for the ER problem in SNAC, 14,000 names are compared
in each round and these 14,000 names do not need to be
streamed in the next round since they have already been
compared. We improve the algorithm by deleting unneces-
sary processed names, thus reducing the total number of
comparisons on the AP. Figure 11 shows that the speedups
using the improved algorithm increase from 1.3x to 1.8x
compared to the simple AP approach. For the ER problem
in DBLP, we also implement the improved algorithm and
the results are shown in Figure 10 (solid line) and it works
2x faster than the streaming the whole database.

E. Scalability

For the current generation of the AP, we can compare
14,000 names for SNAC and 45,000 names for DBLP in
one pass. The number may not be large enough for some
applications, where databases are much larger, like DBLP.
There are several possible ways to address this problem.

The STE capacity is the current bottleneck of the AP
approach. Therefore, if we can increase the STE capacity,
we can store more records and reduce the number of recon-
figurations, thus improving the matching time. In Figure 12,
we estimate how the matching time varies when STE num-
ber increases using the datasets from DBLP. Results show
that the speedup increases almost linearly as STE number
increases. We achieve 1.97x, 4.91x, and 9.56x speedups if
we can have 2x, 5x, and 10x more STEs on one AP board.

The method we use for larger datasets introduces the
cost of replacing the symbols and re-streaming the input.
We estimate the performance if we can reduce the symbol
replacement time or increase the input rate. For relatively
small datasets, reducing symbol replacement time helps
more to reduce the matching time than reducing re-streaming
time, because symbol replacement time takes most of the
matching time. Figure 13 shows how the matching time in
SNAC varies when reducing the symbol replacement time.
For the ER problem in SNAC, when the number of names is
fewer than 230,000, the symbol replacement consumes more



Performance if STE Capacity increased

200000 r 12
3
c - 10
S 150000 =
g ez
o ]
£ 100000 e g
0 -4
= 50000
S 2
(T
2 0 -0

Im 2m 3m 4m 5m 6m 7m 8m 9m 10m

Number of Names from DBLP

—1x 2X 5x 10x — Speedup(2x) Speedup(5x) Speedup(10x)

Figure 12. Performance if STE capacity increased. (X axis represents the
database size, ranging from 1 million names to 10 million names. Y axis
on the left represents the matching time and Y axis on the right represents
speedup against original performance.)

Performance if Symbol Replacement Time Reduced

800 r
< 700 r
£ 600
£ 500
S 400
= 300
£ 200
= 100
O L

e
$
SN
W

wv wv
Speedup

wvi

wv

T
CORRFPNNWWAL

O
N
,-ib

Number of Names from SNAC
—1x e 0.5x 0.1x speedup(0.1x) — speedup(0.5x)

Figure 13. Performance if the symbol replacement time is reduced. (X
axis represents the database size, ranging from 28,000 names to 140,000
names. Y axis on the left represents the matching time and Y axis on the
right represents speedup against original performance.)

time than re-streaming the input. A reduction of 50% in the
symbol replacement time leads to 1.42x to 1.67x speedup
and a reduction of 90% leads to 2.16x to 3.63x speedup.
The speedup decreases as the number of names increases,
which implies that the symbol replacement time becomes
less dominant for larger databases. For larger datasets like
DBLP, the re-streaming time dominates the matching time.
When the input size is 10 million, 94.7% of the matching
time is used for re-streaming. In such a case, increasing input
rate helps more to reduce the matching time. The speedup
increases almost linearly as the input rate increases.

In summary, the AP shows advantages on both perfor-
mance and result quality compared with different conven-
tional methods. Note that the AP board we use to derive
the performance is the first generation. Technology scaling
projections and performance estimation suggest that, in the
future, we may have a larger capacity and higher frequency,
which could lead to even better performance.

VI. SUMMARY AND FUTURE WORK
In this paper, we propose a prototype using the AP to

accelerate string-based ER problems. We present the design
details of how to solve ER problems in several datasets.

The proposed approach makes full use of the massive
parallelism of the AP, and compares up to 14,000 names
for SNAC and 45,000 names for DBLP in each pass. To
evaluate the suitability of the AP approach, we measure both
performance and resolution accuracy using various datasets
from SNAC, DBLP, Fodors and Zagat. The AP approach
achieves promising speeds and also enhances resolution
accuracy (more correct pairs with less GMD cost) compared
with conventional CPU methods. In summary, the AP shows
great potential for accelerating string-based ER problems.
Future work includes using the AP to process larger datasets,
improve accuracy, and solve other string-based ER problems.

VII. ACKNOWLEDGEMENTS

This work is sponsored in part by C-FAR, a funded center
of STARnet, a Semiconductor Research Corporation (SRC)
program sponsored by MARCO and DARPA.

REFERENCES

[1] Hernandez, M. A. et al. The merge/purge problem for large databases.
In ACM SIGMOD Record, 1995.

[2] Social Networks and
http://socialarchive.iath.virginia.edu.

[3] Monge, A. et al. An efficient domain-independent algorithm for
detecting approximately duplicate database records. In Proceedings of
the SIGMOD Workshop on Data Mining and Knowledge Discovery,
1997.

[4] Whang, S. E. et al. Entity resolution with iterative blocking.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 2009.

[5] Kolb, L. et al. Parallel entity resolution with dedoop. Datenbank-
Spektrum, 2013.

[6] Benjelloun, O. et al. Swoosh: a generic approach to entity resolution.
The International Journal on Very Large Data Bases (VLDB), 2009.

[7] Dlugosch, P. et al. An efficient and scalable semiconductor architec-
ture for parallel automata processing. IEEE Transactions on Parallel
and Distributed Systems, 2014.

[8] Wang, K. et al. Association rule mining with the Micron Automata
Processor. In Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2015.

[9] Roy, L. et al. Finding motifs in biological sequences using the
Micron Automata Processor. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2014.

[10] Bo, C. et al. String kernel testing acceleration using the Micron
Automata Processor. In Proceedings of the Workshop on Computer
Architecture for Machine Learning (CAMEL), 2015.

[11] Zhou, K. et al. Brill tagging on the Micron Automata Processor.
In Procedings of the IEEE International Conference on Semantic
Computing (ICSC), 2015.

[12] Apache Lucene. http://lucene.apache.org.

[13] Ley, M. The DBLP computer science bibliography: evolution,
research issues, perspectives. In Proceedings of the International
Symposium on String Processing and Information Retrieval. Springer,
2002.

[14] Tracy, T. II. et al. Nondeterministic finite automata in hardware-the
case of the Levenshtein automaton. In Proceedings of the Workshop
on Archtectures and Systems for Big Data (ASBD), 2015.

[15] Fuzzy document finding in Ruby.
https://github.com/brianhempel/fuzzy_tools.

[16] Duplicate Detection, Record Linkage, and Identity Uncertainty:
Datasets. http://www.cs.utexas.edu/users/ml/riddle/data.html.

[17] Menestrina, D. et al. Evaluating entity resolution results. In
Proceedings of the VLDB Endowment, 2010.

Archival Context.



