
Load Balancing in a Changing World:
Dealing with Heterogeneity and Performance Variability

Michael Boyer and Kevin Skadron
Department of Computer Science

University of Virginia

{boyer,skadron}@cs.virginia.edu

Shuai Che and Nuwan Jayasena
AMD Research

{Shuai.Che,Nuwan.Jayasena}@amd.com

ABSTRACT

Fully utilizing the power of modern heterogeneous systems
requires judiciously dividing work across all of the available
computational devices. Existing approaches for partitioning
work require offline training and generate fixed partitions
that fail to respond to fluctuations in device performance
that occur at run time. We present a novel dynamic ap-
proach to work partitioning that requires no offline train-
ing and responds automatically to performance variability
to provide consistently good performance. Using six diverse
OpenCLTM applications, we demonstrate the effectiveness
of our approach in scenarios both with and without run-time
performance variability, as well as in more extreme scenarios
in which one device is non-functional.

Categories and Subject Descriptors

D.4.1 [Process Management]: Scheduling

General Terms

Algorithms, Performance, Reliability

Keywords

Heterogeneous scheduling, load balancing, GPU, OpenCL

1. INTRODUCTION
Applications running on heterogeneous, multi-device sys-

tems often target only the most powerful device, leaving
other devices idle and potentially wasting much of the avail-
able computational power. Unfortunately, developing an ap-
plication that can utilize all available devices effectively, and
do so consistently across a wide range of diverse systems, is
extremely challenging. Researchers have attempted to solve
this problem by developing load-balancing frameworks that
automatically divide work across the devices with little or
no extra programmer effort [11,14].
These existing frameworks either assume that all devices

in the system provide equal performance [11] or require a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’13,May 14–16, 2013, Ischia, Italy.
Copyright 2013 ACM 978-1-4503-2053-5 ...$15.00.

Configuration
Integrated Discrete Load

GPU GPU Balancing
Time (s) 0.95 0.74 0.43
Efficiency 44% 56% 97%

Table 1: Average execution time and efficiency of
Matrix Multiplication for native single-device exe-
cution and load balancing. Load balancing uses a
fixed partition with 56% of the work assigned to the
discrete GPU and 44% to the integrated GPU.

series of offline training runs to determine the relative per-
formance [14]. In this paper, we propose a dynamic schedul-
ing approach that supports heterogeneous hardware and re-
quires no offline training. In addition, our proposed sched-
uler is able to respond to dynamic performance fluctuations
that occur at run time, such as those caused by changes to
a device’s clock frequency.

We focus our attention on applications that execute a sin-
gle data-parallel kernel at a time, with the output of the ker-
nel consumed by the host program. Previous work has de-
scribed effective approaches for load-balancing applications
with multiple concurrently executing kernels [3,4,7,9,20,21]
or applications in which a single kernel is run repeatedly and
consumes its own output [1,6]. The challenge in the former
case is determining on which device to execute the entirety
of each kernel, while the challenge in the latter case is re-
fining the work partition in each iteration while taking into
account data locality. Solutions to these challenges do not
help in effectively load-balancing the single-kernel applica-
tions that we consider in this work.

Although our approach to load balancing is general enough
to apply to applications implemented in many program-
ming languages, here we explore its utility in the context
of OpenCL. We show that our dynamic approach provides
consistently good performance: compared to the best possi-
ble static partition, it is on average 9.6% faster in dynamic
conditions and only 2.2% slower in static conditions, without
the costly training required by a real static approach.

2. MOTIVATION
In the traditional GPGPU model, sequential or task-par-

allel control code is run on the CPU and performance-critical
data-parallel code is run on a single GPU. In a system with a
powerful multicore CPU or multiple GPUs, this model fails
to utilize the available resources fully and wastes much of the
system’s overall performance potential. Such systems are
becoming increasingly common as microprocessor vendors
incorporate accelerators onto CPU dies (e.g., AMD Acceler-

0%

20%

40%

60%

80%

200 300 400 500 600 700 800

Discrete GPU Core Frequency (MHz)

O
p
ti
m
a
l
P
a
rt
it
io
n

Integrated Discrete

Figure 1: Optimal partition of work between the
discrete and integrated GPUs for DCT over a range
of discrete GPU clock frequencies.

ated Processing Units or APUs and Intel Sandy Bridge) and
portable systems are configured with separate integrated
and discrete GPUs to provide a tradeoff between energy effi-
ciency and performance (e.g., AMD RadeonTM Dual Graph-
ics and NVIDIA Optimus).
Table 1 shows the performance of Matrix Multiplication [2]

running on a machine with two GPUs, one discrete and one
integrated. For single-device execution, the discrete GPU
was 23% faster than the integrated GPU but reached only
56% efficiency1. By dividing the work across both devices,
we further improved performance by 42% and reached 97%
efficiency. The potential impact of load balancing depends
on the relative performance of the devices in the system: the
smaller the performance gap, the larger the potential bene-
fit. However, even with relatively large differences in perfor-
mance, load balancing can still provide non-trivial speedups.
The optimal division of work depends on the relative com-

putation rates of the devices in a system, which can vary
significantly at run time due to system- or application-level
changes. For example, power or thermal constraints may
force the system to scale down the clock frequencies of one
or more devices, or contention from another application may
decrease the performance of one of the devices. Both throt-
tling and contention may occur more frequently in systems
with multiple computational devices integrated into a sin-
gle package and sharing a single memory system and power
budget, as is the case in an AMD APU.
To demonstrate the impact of dynamic performance varia-

tion, we measured the performance of Discrete Cosine Trans-
form (DCT) [2] running on the higher-powered discrete GPU
as we scaled its core clock frequency from 800 MHz to 200
MHz. Over this range, the discrete GPU’s execution time
increased by 3.04x. More importantly, the discrete GPU’s
performance relative to the integrated GPU fell from a 1.41x
speedup to a 2.16x slowdown.
Due to this large variability in relative performance, any

fixed partition of work that provides good performance at
one frequency will necessarily perform poorly at a different
frequency. Figure 1 shows the optimal partition of work at
each frequency, which varies from 62% discrete at the max-
imum frequency to 32% discrete at the minimum frequency.
Note that these partitions were discovered via exhaustive
search; in practice, partitions discovered via more reason-
able means may be less efficient.
Figure 2 shows the execution time of three of these par-

titions across the entire frequency range, normalized to the
execution time of the best partition at each frequency. No
partition did consistently well; the best partition on average

1
We define efficiency as the measured throughput divided by the sum

of the throughputs of the devices when executing separately.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Optimized for 200 MHz Optimized for 400 MHz Optimized for 800 MHz

N
o
r
m
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

200 MHz 300 400 500 600 700 800 Average

Figure 2: Average execution time of DCT for three
fixed partitions optimized for different frequencies,
normalized to the best partition at each frequency.

was the one optimized for 400 MHz, but it was 13% slower
than the optimal in aggregate and 39% slower in the worst
case. If we do not know a priori what frequency will occur
most often, or if the set of expected frequencies spans a wide
range, the partition we choose may be far from optimal.

In principle, we could attempt to construct a model that
predicts the optimal partition based on the current clock
frequency. Unfortunately, this further increases the training
overhead (and may assume capabilities, such as the ability
to adjust clock frequencies, that might be inaccessible to the
training infrastructure). Also, frequency scaling is just one
source of performance variability, and it may be difficult or
impossible to anticipate all other sources. Even sources that
we do anticipate (such as contention from other applications)
may be significantly more difficult than frequency scaling to
measure and account for.

Instead, we propose a dynamic load-balancing approach
in Section 4 that can respond to performance variability re-
gardless of its underlying cause. We show in Section 6.2
that such a dynamic approach can effectively respond to fre-
quency scaling without any special knowledge or awareness
of the underlying cause of the performance variability.

3. RELATEDWORK
Previous approaches to load-balancing a single kernel dif-

fer significantly in the amount of training they require. The
simplest approaches, such as those proposed by Kim et al. [11]
and Moerschell and Owens [15], require no training because
they target systems with homogeneous GPUs and therefore
use a fixed, homogeneous work partition. At the other ex-
treme, Wang and Ren [23] proposed trying a large number
of different work distributions across a CPU and a GPU to
find the most efficient from either a performance or energy
perspective. Other approaches, like Qilin [14] and systems
proposed by Shei et al. [19] and Nere et al. [17], use more
modest amounts of training to select the work partition.

All of these approaches generate static work partitions
and are unable to respond to dynamic performance vari-
ability. Chen et al. [6] proposed a dynamic approach that
uses a centralized task queue to load-balance across multiple
GPUs. However, they focused only on load-balancing com-
putation, not data; they copied all of the input data to each
device and did not account for this overhead in their results.

A number of recently proposed load-balancing systems
support applications with multiple concurrent kernels [3, 4,
7, 9, 20, 21]. These systems attempt to maximize perfor-
mance by determining the best kernel-to-device mapping,
either automatically or through programmer directives, but
do not support dividing a single kernel across multiple de-
vices. Our proposed system, on the other hand, supports
either single- or multi-kernel applications. Acosta et al. [1]
proposed a load-balancing system for iterative applications,
in which the work partition is refined gradually over many
iterations of an application. Their system always begins
with a homogeneous partition and thus does not efficiently
support applications with only a single kernel invocation.
Many existing load-balancing approaches rely heavily on

manual intervention by the programmer. Extensions to Cg
and GLSL (Zippy [8]), CUDA (CUDASA [16]), Intel Thread-
ing Building Blocks (Merge [13]), and OpenCL [20] simplify
the process of dividing either a single or multiple kernels
across multiple devices, but all require the programmer to
manually specify the work partition. Same Program for All
Processors [10] partitions work semi-automatically, but still
requires the programmer to specify manually the expected
relative performance of the devices in the system for a given
application. Our proposed load-balancing algorithm does
not require the programmer to aid in partitioning.
Various self-scheduling approaches have been proposed for

load balancing in large-scale multi-processor machines. The
approaches differ in the granularity at which they distribute
“chunks” of work: chunk self-scheduling [12] uses a fixed
chunk size, guided self-scheduling [18] uses an exponentially
decreasing chunk size, and trapezoid self-scheduling [22] uses
a linearly decreasing chunk size. All three assume that the
underlying hardware is homogeneous and that the primary
source of performance heterogeneity is the workload itself.
In this paper, we consider applications and systems in which
the heterogeneity of the hardware vastly outweighs any het-
erogeneity in the workload, and our proposed scheduling al-
gorithm is designed explicitly to account for this.

4. DYNAMIC LOAD BALANCING
Given an OpenCL application and kernel targeting a sin-

gle compute device, the goal of our proposed load-balancing
approach is to partition the kernel efficiently into chunks of
contiguous work groups and schedule those chunks for ex-
ecution across multiple devices. Previous work described
the necessary mechanisms for intercepting and transform-
ing OpenCL API calls to support multi-device execution, as
well as automatically determining which data is required by
a given subset of the kernel [11]. Here we are concerned only
with the actual scheduling of the kernel executions and data
transfers that comprise a chunk.
Informally, our scheduling algorithm works by sending a

small portion of the available work to each device and then
using the execution time of that initial work to partition the
remaining work. Before presenting the details of the algo-
rithm in Section 4.2, we first derive equations for estimating
the optimal partition of the remaining work based on the
performance of the initial chunks. We focus on load balanc-
ing across two devices; however, the analysis presented in
this section is easily extended to more than two devices.

4.1 Optimal Partition
To estimate the optimal partition, we must be able to pre-

dict the time that will be required to complete the remain-
ing, unscheduled work as well as the time required to com-

plete any work that has already been scheduled but has not
yet completed. For both quantities, the critical parameter
is the execution time per work group2 for device i, denoted
Ωi. We assume that the performance observed for the most
recently completed chunk is a good predictor of the perfor-
mance expected for the next chunk because the amount of
work per work group is constant in most GPU kernels; Sec-
tion 6.3 explores the accuracy of this assumption. Thus,
we compute Ωi as the total execution time (including data
transfer time) of the most recently completed chunk divided
by the number of work groups in that chunk. We assume
that the amount of data transferred and data transfer time
is the same across all work groups; the algorithm could be
trivially extended to support applications in which this as-
sumption fails.

Assuming there is a chunk currently executing on device
i, if Ui is the number of work groups in the uncompleted
chunk and Ti is the elapsed time since that chunk began
execution, we can estimate the remaining time before the
chunk completes, λi, as λi = ΩiUi − Ti. If there are no
chunks currently executing, then λi = 0.

Let W be the total number of work groups remaining to
be scheduled and Wi the optimal number of work groups to
schedule on device i. Assuming that we schedule all of the
remaining work, then W = W1 +W2; solving for W2 yields:

W2 = W −W1 (1)

To minimize execution time, we want both devices to com-
plete at the same time, satisfying the following3:

Ω1W1 + λ1 = Ω2W2 + λ2 (2)

Substituting Equation 1 into Equation 2 and solving for
W1 yields:

W1 =
λ2 − λ1 +Ω2W

Ω1 +Ω2

(3)

The number of work groups must be an integer, so instead
of W1 we must use ⌈W1⌉ or ⌊W1⌋. In extreme cases, the
difference in performance between the two partitions may
be large, so we compute the expected completion time for
both and use whichever we expect to finish earlier.

4.2 Scheduling Algorithm
We now present the complete scheduling algorithm, pa-

rameterized by the variables shown in Table 2:

1. Launch one chunk of size β on each device.
2. When a chunk completes execution on device D:

(a) If all devices have completed at least γ chunks, pro-
ceed to step 3.

(b) Otherwise, launch another chunk on D, increasing
the chunk size by a factor of δ; return to step 2.

3. Partition the remaining work using Equations 1 and 3,
sending W1 work groups to device 1 and W2 work groups
to device 2.

The goal of the scheduling algorithm is two-fold: to deter-
mine quickly and accurately the relative performance rates
in cases when devices provide similar levels of performance,
and allow the faster device to execute a large amount of work

2
For performance reasons, the minimum scheduling granularity is ac-

tually much larger than an individual work group. To simplify the
discussion, we compute the optimal partition in terms of work groups.
3
To extend this algorithm to N > 2 devices, this single equality would

be expanded into a system of N − 1 equalities.

Parameter Value
β Initial chunk size (fraction of total work) 7%
γ Minimum completed chunks per device 2
δ Chunk growth rate 1.5x

Table 2: Load-balancing algorithm parameters.

(or even all of the work) without waiting for the slower device
in cases when the devices are significantly imbalanced. The
algorithm begins with relatively small chunks to address the
former concern but exponentially increases the chunk size
to address the latter concern. For experiments presented in
this paper, we set the initial chunk size, β, to 7% of the total
work and the chunk growth rate, δ, to 1.5x; we found these
values provided the best average performance across the set
of applications we studied, although the full results of this
sensitivity study are omitted due to space constraints. We
set the minimum number of completed chunks per device,
γ, to 2 because the performance of the first chunk is often
slightly worse than later chunks and is thus a less accurate
predictor of expected performance.
Current GPUs are non-preemptive, so a kernel cannot

begin execution until all previously scheduled kernels have
completed. Thus, any scheduling algorithm that blindly
sends a fixed amount of work to all available devices may
wait an unbounded amount of time for that work to com-
plete. A lack of observed forward progress may be due
to a number of different causes: starvation caused by an-
other kernel, temporary or permanent unresponsiveness due
to software or hardware failures, or a severe performance
anomaly. To deal with all of these scenarios effectively, we
extend our algorithm slightly. In the second step of the al-
gorithm, if device A claims all of the remaining work and
device B has not yet completed a single chunk, we send all
of the uncompleted work (including the work already sent
to device B) to device A and no longer wait for device B
to complete its work. We explore the effectiveness of this
approach in Section 6.5.

4.3 Example Schedule
Figure 3 shows a real example of the sequence of opera-

tions scheduled by the dynamic load balancer while running
DCT [2]. Here we describe, in chronological order, the steps
taken by the scheduler:

1. The scheduler begins by sending an initial chunk to each
device, each representing 7% of the total work groups
available. Each chunk consists of transferring input data
to the device, invoking a subset of the kernel, and trans-
ferring output data back to host memory.

2. Because the discrete GPU provides higher performance
on this application, it completes its first chunk earliest,
at 16 milliseconds. The scheduler sends it a new chunk
that is 1.5x as large as the initial chunk.

3. The integrated GPU completes its first chunk at 23 mil-
liseconds. The scheduler sends a new, larger chunk to the
integrated GPU.

4. The discrete GPU completes its second chunk at 39 mil-
liseconds. Because the integrated GPU has not yet com-
pleted its second chunk, the scheduler sends a third, even
larger chunk to the discrete GPU.

5. The integrated GPU completes execution of its second
chunk at approximately 56 milliseconds. Both devices
have now finished two chunks and the scheduler has enough

information to schedule the remaining work. It took the
integrated and discrete GPUs an average of 51 and 35
microseconds, respectively, to finish each work group (in-
cluding data transfers and kernel execution) in the most
recently completed chunk. Based on this information
alone, we would conclude that we should schedule 59%
of the remaining work on the discrete GPU. But this ig-
nores the time required to complete the chunk that the
discrete GPU is already executing. The scheduler esti-
mates that this chunk will take 34 milliseconds in total;
because 17 milliseconds have already elapsed since that
chunk began execution, the scheduler estimates that the
chunk will take another 17 milliseconds to complete. Us-
ing Equation 3, the scheduler decides to send 47% of the
remaining work (23% of the total work) to the integrated
GPU and the rest to the discrete GPU.

6. This scheduling decision proves to be nearly optimal:
as both devices complete execution of their final chunks
about 1 millisecond apart, at around 136 milliseconds.

5. EXPERIMENTAL SETUP
We characterized the performance of our proposed load-

balancing approach using the six OpenCL applications shown
in Table 3, taken from version 2.7 of the AMD Accelerated
Parallel Processing (APP) SDK [2] and from version 2.1 of
the Rodinia benchmark suite [5]. Each application executes
a single kernel at a time, and the host program consumes
the output of the kernel4. For each application, we chose a
data-set size close to the maximum size supported by our
system. The original version of FFT supports the process-
ing of only a single vector of 1K elements. To achieve more
reasonable execution times, we modified FFT to support an
arbitrary number of vectors.

Although we envision our proposed load-balancing tech-
nique being applied in an automated fashion, as suggested
by prior work [11], for this study we manually modified each
application to add support for load balancing. We measured
all performance results using the same version of the appli-
cation, which can load-balance using dynamic scheduling or
a fixed partition, or execute natively on a single device.

We define the execution time for a single run as the total
time required to transfer input data to the GPU(s), complete
execution of the entire kernel, and transfer output data back
to host memory. Unless otherwise stated, all results repre-
sent the average (arithmetic mean) across 25 runs, with 2
preliminary runs ignored to avoid initialization overheads.
Because K-Means inherently requires multiple kernel invo-
cations, we first averaged its performance across all of the
invocations for a single run and then averaged across 25
separate runs. The data set we used converges after 20 in-
vocations.

We measured all performance results on a system with an
AMD A8-3850 APU (a 2.9-GHz quad-core CPU and an inte-
grated AMD Radeon HD 6550D GPU) and a discrete AMD
Radeon HD 6670 GPU; we use only the two GPUs for ker-
nel execution. We compiled the benchmarks with Microsoft
Visual Studio 2010 version 10.0.303191.1 and executed them
in Windows 7 with AMD Catalyst version 12.8. All bench-
marks use single-precision floating-point arithmetic. Unless
otherwise stated, we ran both GPUs at their default fre-
quencies.

4
K-Means requires multiple invocations of its kernel to converge on

a solution, but the output of one kernel invocation is not directly
consumed by the next invocation.

0 20 40 60 80 100 120
Time (ms)

25.5%

15.9%

10.5%

7.0%

23.4%

10.5%

7.0% Data Transfer

Kernel Execution

0 20 40 60 80 100 120

Time (ms)

Integrated
GPU

Discrete
GPU

1

2

3

4

5

6

Figure 3: Example schedule generated by the dynamic load balancer for the application DCT. The left and
right edges of a box represent the start and end time, respectively, of a given operation. Upticks indicate the
time an operation was enqueued by the scheduler; downticks represent the time an operation was submitted
to a device by the OpenCL runtime. Each kernel execution is labeled with the percentage of total work
groups scheduled in that chunk.

Application Description Data-Set Size Source
Black-Scholes Options pricing 12.8M samples

AMD APP SDK 2.7 [2]
Discrete Cosine Transform (DCT) Image compression 6K x 6K matrix
Fast Fourier Transform (FFT) Signal processing 32K 1K-element vectors

Matrix Multiplication Matrix-matrix multiplication 4K x 4K matrices
Mersenne Twister Random number generation 29M random numbers

K-Means Clustering 800K 34-dimensional features Rodinia 2.1 [5]

Table 3: Benchmarks and data sets used for evaluation.

5.1 Filtering Performance Anomalies
In the course of our measurements, we frequently observed

performance anomalies that caused unexplained slowdowns
of up to an order of magnitude or more for data transfers
and, less frequently, kernel execution. These anomalies oc-
curred most frequently with the dynamic scheduler, but also
occurred repeatedly with the static scheduler and even na-
tive execution. Of course, some performance degradation
due to load balancing is expected, especially for concurrent
data transfers that compete for the host memory system.
However, we do not believe these anomalies were caused by
contention for three reasons. First, the slowdowns were sig-
nificantly more severe than the slowdowns that would be
expected (and that we observed) from memory contention.
Second, the anomalies never occurred in FFT, which is the
most transfer-bound application we studied and thus the
one in which we would most expect contention to matter.
Third, as noted earlier, the anomalies occurred even during
native execution of some applications, when contention from
another device does not occur. Our investigations strongly
suggested that these slowdowns were due to inefficient in-
teractions among the operating system, graphics driver, and
OpenCL runtime.
To ensure that our results reflect differences due to schedul-

ing strategies rather than issues with constantly evolving
systems software, we ignored any runs in which these per-
formance anomalies occured. To determine objectively when
such an event occurred, we first computed the transfer and
compute throughput5 of each device for each run with a

5
We compare throughputs instead of execution times because the dy-

namic scheduler may send different amounts of work to a given device
on different runs, and thus we would expect changes in execution time
even in the absence of fluctuations in the underlying performance.

Native Execution Load Balancing
Application Int. Discrete Static Dyn.
Black-Scholes 0 0 0 69

DCT 0 0 0 0
FFT 0 0 0 0

K-Means 0 0 0 18
Matrix Mult. 0 0 1 32
Mersenne 35 0 37 35

Table 4: Of 100 runs, number of runs filtered when
using a threshold of 2x.

given configuration. We then determined the best transfer
and compute throughput for each device across all runs with
a given configuration and discarded any runs in which the
compute or transfer throughput of a device was more than
2x worse than in the best case. We applied this filtering
consistently, regardless of whether we were measuring the
performance of dynamic or static load balancing or native
execution.

Figure 4 shows the distribution of kernel and transfer
throughputs for 100 separate runs of the worst case: Black-
Scholes using dynamic load balancing. The distribution
of the poorly performing metrics is clearly bimodal. The
upper-left cluster most likely represents fundamental per-
formance losses due to contention or other load balancing-
related overheads, while the lower-right cluster represents
the performance anomalies we wish to filter out. For all
configurations and applications, including those not shown
here, a threshold of 2x reliably divides these two clusters;
however, some significant performance reductions may not

be filtered out. For example, the transfer throughput to the
integrated GPU in Black-Scholes drops by up to 30% during

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o
rm
a
li
z
e
d
 T
h
ro
u
g
h
p
u
t

Integrated Kernel Integrated Transfer Discrete Kernel Discrete Transfer

2X Threshold

Figure 4: Normalized throughput of kernel execu-
tion and data transfer for the integrated and discrete
GPUs during 100 runs of dynamic load balancing of
Black-Scholes. Each of the four metrics is indepen-
dently sorted in descending order from left to right;
thus, points at the same location on the X-axis may
not correspond to the same run. Using a threshold
of 2x, runs in which at least one of the four metrics
falls below 0.5 would be thrown out.

dynamic load balancing, but any runs with such poor per-
formance would be filtered out only if one of the three other
metrics were below the threshold.
Table 4 shows, out of 100 runs, the number of runs for each

application and configuration discarded using a 2x thresh-
old. For DCT and FFT, no results were filtered out, while
for Black-Scholes, K-Means, and Matrix Multiplication, runs
were filtered out only for dynamic load balancing (with the
exception of a single anomalous run for the static load bal-
ancer on Matrix Multiplication). For Mersenne Twister, all
configurations except native execution on the discrete GPU
were affected essentially equally by filtering. To ensure that
we always had 25 runs across which to average, we collected
data for more than 25 runs but used only the first 25 runs
that remained after filtering.

6. RESULTS
We measured the effectiveness of our proposed dynamic

approach to load balancing by comparing it against the opti-
mal static partitions in two different cases in which the per-
formance of the underlying devices remains fixed or varies.
We then characterized the quality of the dynamic scheduler’s
prediction as well as the scheduler’s sensitivity to data-set
size. Finally, we evaluated the scheduling algorithm’s ability
to respond to extreme performance imbalances.

6.1 Load Balancing without Variability
We first present results measured with no performance

variability; that is, with the performance of each device
fixed. We compare our proposed dynamic approach to the
best possible static work partitioning, discovered via an ex-
haustive search of all possible partitions. This represents an
upper bound on the performance of static load balancing.

6.1.1 Comparison to Static Scheduling

Figure 5 shows the overall speedup of both dynamic and
static load balancing relative to single-device execution on
the fastest device in the system (the discrete GPU). Overall,

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Black-

Scholes

DCT FFT K-Means Matrix

Mult.

Mersenne

Twister

Average

S
p
e
e
d
u
p
 v
s
.
D
is
c
re
te
 G
P
U

Static Optimal Dynamic

Figure 5: Speedup of dynamic and static load bal-
ancing relative to single-device execution on the dis-
crete GPU. The static load balancer uses the opti-
mal partition, discovered via exhaustive search. Er-
ror bars show the minimum and maximum speedups
observed.

the dynamic scheduler was only 2.2% slower on average than
the static optimal across all six applications. The dynamic
scheduler provided an average speedup of 1.48x relative to
native execution, compared to the optimal static partition’s
average speedup of 1.51x. The dynamic scheduler’s perfor-
mance on individual applications fell into three categories:

Faster: The dynamic approach was 6.6% faster on DCT
due to better transfer performance. In a static partition, the
data transfers occur only at the beginning and end of exe-
cution, meaning that the data transfers to and from the two
devices are likely to occur concurrently and thus be slowed
by contention. The dynamic scheduler, on the other hand,
spreads out the data transfers, leading to less contention.
The two devices transferred data simultaneously 73% of the
time for the static partition but only 25% of the time for the
dynamic scheduler.

Same: The dynamic approach was marginally slower on
Black-Scholes and K-Means, by 0.2% and 1.1%, respectively.

Slower: The dynamic approach was slower on FFT, Ma-
trix Multiplication, and Mersenne Twister, by an average
of 6.2%. FFT and Mersenne Twister are highly transfer-
bound, which limits the benefits of load balancing in general:
these two applications achieved the lowest speedups in both
the static and dynamic cases. Transfers to the discrete GPU
were significantly slower in FFT and Mersenne Twister for
the dynamic scheduler than for the static partitions (by 17%
and 20%, respectively) because transfer performance suffers
more than kernel performance when breaking an operation
across multiple chunks. Additionally, for all three of these
applications, particularly Matrix Multiplication, the perfor-
mance of larger chunks is difficult to predict from the perfor-
mance of smaller chunks, which led to less efficient dynamic
partitioning. This issue is discussed futher in Section 6.3.

6.1.2 Training Overhead

The raw performance data alone does not tell the whole
story. One of the principal advantages of our proposed dy-
namic scheduler is that it requires no training. A static
scheduler, on the other hand, must be trained the first time
a given application is executed. For the results shown here,
we trained the static scheduler using an exhaustive search of

Sequential Concurrent
Application Training Training
Black-Scholes 1806 887

DCT - -

FFT 63 19
K-Means 275 132

Matrix Multiplication 37 16
Mersenne Twister 26 9
Overall (Actual) 738 330

Overall (Normalized) 702 300

Table 5: Number of times each kernel must be run
before the static approach can overcome its train-
ing overhead and reduce the total execution time
relative the dynamic scheduler. We consider two
hypothetical approaches to training: Sequential ex-
ecutes a kernel natively on each device, one after
the other; Concurrent executes a kernel natively on
each device at the same time.

all partitions to provide an upper limit on the performance
of static load balancing. In practice, less costly training
methods would be used, which may result in less optimal
static partitions. Because of this training overhead, even
when static load balancing is faster than dynamic load bal-
ancing, the static approach may require many runs of the
same application before it can overcome its initial training
overhead and provide a lower overall execution time.
Table 5 shows the number of runs of each kernel that

would be required for the optimal static partition to out-
perform the dynamic approach taking into account training
overhead. We consider two hypothetical training strategies,
in which the complete kernel (including requisite data trans-
fers) is either run sequentially or concurrently on the two de-
vices. To be conservative, we assume both training strategies
are able to find the same (optimal) static partition found by
exhaustive search. Because the dynamic scheduler provides
better performance on DCT, there is no point at which the
static scheduler breaks even.
The second to last row in Table 5 shows the total number

of kernel executions that would be required for the optimal
static partitions to outperform the dynamic scheduler if we
assume that all six kernels are run the same number of times.
Because the different kernels have significantly different ex-
ecution times, differing by as much as 7x, the overall result
is heavily weighted by the performance on the two longest-
running kernels, Black-Scholes and Matrix Multiplication.
To address this, the last row shows how many total kernel
executions would be required if all six kernels had the same
(statically partitioned) execution time. In both cases, static
load balancing makes sense only when we are sure that we
will run applications hundreds of times.

6.2 Load Balancing with Variability
To measure the impact of performance variability, we var-

ied the discrete GPU’s core clock frequency from its nominal
value of 800 MHz down to a minimum of 200 MHz, in incre-
ments of 100 MHz. Although frequency scaling itself may be
an important source of performance variability, it can also be
considered a proxy for other sources of performance variabil-
ity, such as contention. We used frequency scaling in these
experiments because it easily controllable and repeatable.
We first discovered, via exhaustive search, the optimal

static partition for each frequency. We then measured the

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Black-

Scholes

DCT FFT K-Means Matrix

Multiplication

Mersenne

Twister

A
v
e
ra
g
e
 N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Static (200 MHz) Static (800 MHz) Static (Best) Dynamic

Figure 6: Average normalized execution time across
a range of discrete GPU core frequencies for three
static partitions and the dynamic scheduler, relative
to the static oracle. The three static partitions are
the one optimized for the minimum frequency (200
MHz), the one optimized for the nominal frequency
(800 MHz), and the one that provides the best av-
erage performance.

performance of these static partitions as well as the dynamic
scheduler across the entire range of frequencies. We used as
a baseline a static oracle that always selects the optimal
static partition at each frequency.

6.2.1 Average Performance

Figure 6 shows the execution time for three static parti-
tions and the dynamic scheduler, normalized to the execu-
tion time of the static oracle and then averaged across all
frequencies. The first two static partitions are those opti-
mized for 200 and 800 MHz, respectively; the other partition
is the one that provides the best average performance (de-
cided on a per-application basis6).

For Black-Scholes, DCT, and K-Means, the dynamic sched-
uler provided significantly better average performance (14%
to 20% better) than even the best static partition. The
advantage was more modest for Matrix Multiplication and
FFT: the dynamic scheduler was 6.3% and 1.2% faster, re-
spectively. The dynamic scheduler performed the worst on
Mersenne Twister, where it was 3.9% slower than the best
static partition. With the exception of Mersenne Twister,
the dynamic scheduler was always better on average than
the static partition optimized for the discrete GPU’s nom-
inal frequency (800 MHz). Across all six applications, the
dynamic scheduler was on average 9.6% faster than the best
static partition and 15% faster than the static partition op-
timized for the nominal frequency.

As mentioned earlier, the execution times of both FFT
and Mersenne Twister are dominated by the time required
to transfer data between host and device memory. Because
transfer time is much less sensitive to frequency than is ker-
nel execution, neither application’s performance suffers sig-
nificantly when the frequency is reduced. For both applica-
tions, the best static execution time at 200 MHz was only

6
The best overall partition for Black-Scholes, K-Means, and Matrix

Multiplication is the one optimized for 500 MHz; for DCT and FFT,
it is the one optimized for 400 MHz; for Mersenne Twister, it is the
one optimized for 300 MHz.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Static (Best) Static (Nominal) Dynamic

N
o
r
m
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

200 MHz 300 400 500 600 700 800 Average

Figure 7: Average execution time of DCT for two
static partitions and the dynamic scheduler, normal-
ized to the best static partition at each frequency.
The two static partitions are the one that provides
the best average performance and the one optimized
for the nominal frequency (800 MHz).

about 16% slower than at 800 MHz, leaving little room for
the dynamic scheduler to improve on the static partitions.
Across the entire range of frequencies, the dynamic sched-

uler was never slower than native execution on the fastest
device in the system. The same cannot be said for all of the
static partitions. When the discrete GPU was running at
200 MHz, the static partition optimized for the nominal fre-
quency was slower than native execution on the integrated
GPU for all six applications. In fact, for four of the appli-
cations, at 200 MHz the partitions optimized for 800 MHz
down to 400 MHz were all slower than native execution.
Figure 7 shows more detailed results for two static parti-

tions and the dynamic scheduler for DCT. The static parti-
tions are a subset of those shown in Figure 2; both Figures
employ the same Y-axis scale and are thus directly compara-
ble. We can see clearly that while the performance of each
static partition varied widely over the complete frequency
range, the dynamic scheduler provided a much more consis-
tent level of performance. To achieve good performance with
a static approach, we must accurately predict at which fre-
quency the GPU will typically run to choose an appropriate
partition. The dynamic approach frees us from this burden
because it provides good performance regardless of the spe-
cific frequency or, more generally, the relative performance
of the underlying devices.

6.2.2 Worst-case Performance

Our analysis so far has focused on average performance. In
some scenarios, however, such as when attempting to meet
a real-time target or quality-of-service constraint, we may
care only about the execution time at whichever clock fre-
quency produces the worst performance. Figure 8 shows the
highest average normalized execution time for static and dy-
namic configurations across the entire range of clock frequen-
cies. The best static partition in this case is the one with
the lowest maximum normalized execution time, which for
all applications was different from the partition that mini-
mized the average time. For four of the applications, the dy-
namic scheduler provided significantly better worst-case ex-
ecution time than the best static partition (19% to 33% bet-
ter). Performance was less impressive for the two transfer-

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Black-

Scholes

DCT FFT K-Means Matrix

Multiplication

Mersenne

Twister

W
o
r
s
t-
C
a
s
e
 N
o
r
m
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Static (200 MHz) Static (800 MHz) Static (Best) Dynamic

Figure 8: Maximum normalized execution time
across a range of discrete GPU core frequencies for
three static partitions and the dynamic scheduler,
relative to the static oracle. The three static par-
titions are the one optimized for the minimum fre-
quency (200 MHz), the one optimized for the nomi-
nal frequency (800 MHz), and the one that provides
the best worst-case performance.

dominated applications: the dynamic scheduler’s worst-case
performance was only 2.4% better than the best static par-
tition for FFT and 4.3% worse for Mersenne Twister. Over-
all, the dynamic scheduler was on average 20% faster in the
worst case than the best static partition. And for all six
applications, the dynamic scheduler provided better worst-
case performance than the static partition optimized for the
nominal frequency.

6.2.3 Comparison to Self-scheduling

We also measured the performance in the presence of fre-
quency scaling of the three dynamic self-scheduling algo-
rithms mentioned in Section 3: chunk (CSS) [12], guided
(GSS) [18], and trapezoid (TSS) [22]. For all three algo-
rithms, we swept the (minimum) chunk size from 1% to
25% of the total work, in increments of 1%, and report re-
sults only for the parameter that provided the best perfor-
mance at the default frequencies. Relative to our proposed
algorithm, CSS with a chunk size of 21% was on average
8.2% slower, GSS with a minimum chunk size of 22% was
5.0% slower, and TSS with a minimum chunk size of 4%
was 4.0% slower. Artificially increasing the number of pro-
cessors in the GSS algorithm (from two to four) to decrease
the initial chunk size, as suggested by Tzen and Ni [22], sig-
nificantly increased the performance consistency across the
applications and decreased the overall average slowdown to
4.4% (with a minimum chunk size of 16%).

6.3 Prediction Quality
The ability of the load balancer to make efficient schedul-

ing decisions relies on a key assumption: that the relative
performance we observe on the small, initial chunks is pre-
dictive of the relative performance of the larger, final chunks.
To measure how well this assumption holds in practice, Fig-
ure 9 shows the speedup of the discrete GPU relative to the
integrated GPU over a range of chunk sizes. For some ap-
plications (Black-Scholes, K-Means, and DCT), the speedup
remained relatively constant, and thus we would expect our
load balancer to generate efficient schedules. For the other

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0% 10% 20% 30% 40% 50%

Chunk Size

D
is
c
re
te
 v
s
.
In
te
g
ra
te
d
 S
p
e
e
d
u
p

Black-

Scholes

K-Means

DCT

Mersenne

Twister

FFT

Matrix

Mult.

Figure 9: Speedup of the discrete GPU relative to
the integrated GPU as a function of chunk size.

0%

2%

4%

6%

8%

Black-

Scholes

DCT FFT K-Means Matrix

Multiplication

Mersenne

Twister

Id
le
 T
im
e

Figure 10: Time between the first and second de-
vices finishing execution for the dynamic load bal-
ancer, as a fraction of the total execution time.

applications (Mersenne Twister, FFT, and Matrix Multipli-
cation), the speedup varied significantly, which we would
expect to produce less efficient schedules.
The goal of the dynamic scheduler is for both devices to

complete execution at the same time. To demonstrate how
close the scheduler came to achieving this goal, Figure 10
shows for each application the average time that one device
was idle at the end of execution, expressed as a fraction
of the application’s total execution time. The applications
we identified earlier as most predictable (those maintain-
ing consistent speedups across different chunk sizes) had the
shortest idle times, averaging 0.7%. The less predictable
applications, on the other hand, had longer idle times, aver-
aging 4.2%. This has a direct correlation with performance:
the three applications with the lowest idle times also pro-
vided the best performance relative to static load balancing.

6.4 Sensitivity to Data Size
Our results so far have focused on relatively large data

sizes. We now focus on how well the dynamic scheduler
performs at smaller data sizes. There are two important
effects that we would expect to observe as we scale down the
data size. First, for some applications, the optimal partition
of work between the two devices will change. This may
benefit the dynamic scheduler because it can potentially do
a better job of partitioning the work evenly across the two
devices. Second, the overhead of using a specific number of
chunks remains essentially fixed with decreasing data size
even as the total execution time decreases. This means that
the relative overhead of using more chunks will increase,
benefiting the static approach because it uses fewer chunks.

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Black-

Scholes

DCT FFT K-Means Matrix

Mult.

Mersenne

Twister

Average

S
p
e
e
d
u
p
 v
s
.
S
ta
ti
c
 L
o
a
d
 B
a
la
n
c
in
g

¼ N ½ N ¾ N N

Figure 11: Speedup of dynamic load balancing rela-
tive to static load balancing for a range of data sizes.
Values greater than one indicate that dynamic load
balancing is faster than static. N is the default data
size specified in Table 3.

0%

2%

4%

6%

8%

10%

Black-

Scholes

DCT FFT K-Means Matrix

Multiply

Mersenne

Twister

S
lo
w
d
o
w
n
 R
e
la
ti
v
e
 t
o
 O
r
a
c
le

Integrated GPU Unresponsive

Discrete GPU Unresponsive

Figure 12: Performance of the dynamic load bal-
ancer when one device is blocked, normalized to an
oracle that sends all work to the unblocked device.

We measured the performance of native execution and
load balancing across a range of data sizes. We define the
data size of an application to be the total amount of data
written to and read from the GPU during native execution.
We set N to the default data size used in previous experi-
ments (and listed in Table 3) and swept the data size from
N down to 1

4
N in increments of 1

4
N .

Figure 11 shows the speedup of dynamic load balancing
relative to static for each data size across all six applications.
The dynamic approach performed worst on the two transfer-
dominated applications, FFT and Mersenne Twister. This
is because the relative overhead of using multiple chunks is
larger for data transfers than for kernel execution. Averag-
ing across the four other applications, the dynamic scheduler
was actually slightly faster than the static load balancer.
Averaging across all six applications, the overall trend was
for dynamic load balancing to get slower relative to static
load balancing as the data size decreased: dynamic was 2.2%
slower at the largest data size but 7.5% slower at the small-
est data size. At a data size of 1

2
N , however, the dynamic

scheduler essentially matched the performance of static load
balancing, with an average slowdown of only 0.3%.

6.5 Severe Performance Imbalances
As described earlier, GPUs are non-preemptive and thus

an application may wait an unbounded amount of time for
a chunk to begin execution on a particular device. We mea-
sured the performance of the dynamic load-balancing algo-

rithm when one GPU makes no forward progress by forc-
ing commands sent to that GPU to wait on an event that
will never finish. Figure 12 shows the normalized execution
time of the dynamic load-balancing algorithm relative to an
oracle that simply sends all of the work to the unblocked
GPU. Any purely static load balancer would be forced to
wait arbitrarily long for the blocked device to become free,
and would thus become deadlocked in this case. The dy-
namic approach performed worst on the two transfer-bound
applications, FFT and Mersenne Twister, because the use of
multiple (five in this particular case) relatively small chunks
had a much larger impact on transfer performance than it is
does on kernel performance. Overall, the dynamic algorithm
was only 3.6% slower on average than the oracle.

7. CONCLUSIONS AND FUTUREWORK
Load balancing in heterogeneous systems can provide sub-

stantial performance improvements, but only with appro-
priately chosen work partitions. Existing partitioning ap-
proaches require offline training and generate fixed parti-
tions. Using a fixed partition can lead to suboptimal per-
formance as the state of the system or application changes;
in some cases, it can lead to worse performance than would
be achieved with native execution. To guard against this,
we have presented a dynamic load-balancing algorithm that
can respond effectively to relative performance changes with
no training and with no special knowledge of the source of
performance fluctuations. We have demonstrated that our
algorithm can provide consistent performance results even
in the face of inconsistent system behavior.
In static performance conditions, our dynamic scheduler

was only 2.2% slower than the optimal static partition and
still 47% faster than native execution. A real static sched-
uler, even if it were able to find the optimal partitions, would
still require hundreds of separate kernel executions before it
would be able to overcome its training overhead. Under dy-
namic performance conditions, our dynamic scheduler was
9.6% faster than the best static partition on average and 20%
faster in the worst case. And, unlike static partitions, our
dynamic scheduler was never slower than native execution,
even when the performance of one of the underlying devices
changed by a factor of nearly four. Our proposed algorithm
can also deal effectively with more extreme scenarios, such
as when a device becomes unresponsive.
One avenue for future work is to explore a hybrid approach

to load balancing that, like a dynamic approach, does not re-
quire an offline training phase but, like a static approach, can
leverage past performance information for improved parti-
tioning. For example, if Matrix Multiplication were run mul-
tiple times, such a hybrid approach might gradually improve
its ability to predict the kernel’s performance and thereby
generate increasingly efficient partitions.

8. ACKNOWLEDGMENTS
This work was supported in part by NSF grant CNS-

0916908, a GRC AMD/Mahboob Khan Ph.D. fellowship
in association with GRC task 1972.001, and equipment do-
nated by AMD. The authors thank Jayanth Gummaraju for
his important contributions to the early phases of this re-
search. The authors also thank Chris Gregg, formerly of
the University of Virginia; Sean Keely, Jeff Golds, Laurent
Morichetti, and SiuChi Chan of AMD; and the anonymous
reviewers for their helpful feedback.

9. REFERENCES
[1] A. Acosta, R. Corujo, V. Blanco, and F. Almeida. Dynamic

load balancing on heterogeneous multicore/multiGPU systems.
In International Conference on High Performance Computing
and Simulation (HPCS), July 2010.

[2] AMD. AMD accelerated parallel processing (APP) SDK.
http://developer.amd.com/appsdk.

[3] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst.
Data-aware task scheduling on multi-accelerator based
platforms. In International Conference on Parallel and
Distributed Systems (ICPADS), Dec. 2010.

[4] S. Benkner et al. PEPPHER: Efficient and productive usage of
hybrid computing systems. IEEE Micro, 31(5):28–41,
Sept./Oct. 2011.

[5] S. Che et al. Rodinia: A benchmark suite for heterogeneous
computing. In International Symposium on Workload
Characterization (IISWC), Oct. 2009.

[6] L. Chen, O. Villa, S. Krishnamoorthy, and G. Gao. Dynamic
load balancing on single- and multi-GPU systems. In
International Symposium on Parallel & Distributed
Processing (IPDPS), Apr. 2010.

[7] G. Diamos and S. Yalamanchili. Harmony: An execution model
and runtime for heterogeneous many core systems. In High
Performance Distributed Computing (HPDC), June 2008.

[8] Z. Fan, F. Qiu, and A. E. Kaufman. Zippy: A framework for
computation and visualization on a GPU cluster. Computer
Graphics Forum, 27(2):341–350, Apr. 2008.

[9] C. Gregg, M. Boyer, K. Hazelwood, and K. Skadron. Dynamic
heterogeneous scheduling decisions using historical runtime
data. In Workshop on Applications for Multi- and Many-Core
Processors (A4MMC), June 2011.

[10] Q. Hou, K. Zhou, and B. Guo. SPAP: A programming language
for heterogeneous many-core systems. Technical report,
Zhejiang University Graphics and Parallel Systems Lab, Jan.
2010.

[11] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving a single
compute device image in OpenCL for multiple GPUs. In
Symposium on Principles and Practice of Parallel
Programming (PPoPP), Feb. 2011.

[12] C. Kruskal and A. Weiss. Allocating independent subtasks on
parallel processors. IEEE Transactions on Software
Engineering, 11(10):1001–1016, Oct. 1985.

[13] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: A programming model for heterogeneous multi-core
systems. ACM SIGPLAN Notices, 43(3):287–296, Mar. 2008.

[14] C.-K. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In
International Symposium on Microarchitecture (MICRO),
Dec. 2009.

[15] A. Moerschell and J. D. Owens. Distributed texture memory in
a multi-GPU environment. In Graphics Hardware, Sept. 2006.

[16] C. Muller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl.
A compute unified system architecture for graphics clusters
incorporating data locality. IEEE Transactions on
Visualization and Computer Graphics, 15(4):605–617,
July/Aug. 2009.

[17] A. Nere, A. Hashmi, and M. Lipasti. Profiling heterogeneous
multi-GPU systems to accelerate cortically inspired learning
algorithms. In International Symposium on Parallel &
Distributed Processing (IPDPS), May 2011.

[18] C. D. Polychronopoulos and D. J. Kuck. Guided
self-scheduling: A practical scheduling scheme for parallel
supercomputers. IEEE Transactions on Computers,
36(12):1425–1439, Dec. 1987.

[19] C.-Y. Shei, P. Ratnalikar, and A. Chauhan. Automating GPU
computing in MATLAB. In International Conference on
Supercomputing (ICS), May 2011.

[20] E. Sun, D. Schaa, R. Bagley, N. Rubin, and D. Kaeli. Enabling
task-level scheduling on heterogeneous platforms. In Workshop
on General Purpose Processing with Graphics Processing
Units (GPGPU), Mar. 2012.

[21] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective
and low-complexity task scheduling for heterogeneous
computing. IEEE Transactions on Parallel and Distributed
Systems, 13(3):260–274, Mar. 2002.

[22] T. H. Tzen and L. M. Ni. Trapezoid self-scheduling: A practical
scheduling scheme for parallel compilers. IEEE Transactions
on Parallel and Distributed Systems, 4(1):87–98, Jan. 1993.

[23] G. Wang and X. Ren. Power-efficient work distribution method
for CPU-GPU heterogeneous system. In International
Symposium on Parallel and Distributed Processing with
Applications (ISPA), Sept. 2010.

