
Federation: Boosting Per-Thread Performance of

Throughput-Oriented Manycore Architectures

Michael Boyer, David Tarjan, and Kevin Skadron

Manycore architectures designed for parallel workloads are likely to use simple, highly multi-

threaded, in-order cores. This maximizes throughput, but only with enough threads to keep
hardware utilized. For applications or phases with more limited parallelism, we describe creating
an out-of-order processor on the fly, by federating two neighboring in-order cores. We reuse the

large register file in the multi-threaded cores to implement some out-of-order structures and re-
engineer other large, associative structures into simpler lookup tables. The resulting federated
core provides twice the single-thread performance of the underlying in-order core, allowing the
architecture to efficiently support a wider range of parallelism.
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instruction-stream, multiple-data-stream processors (MIMD)

General Terms: Design, Performance
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1. INTRODUCTION

Increasing difficulties in improving frequency and instruction-level parallelism have
led to the widespread adoption of multicore processors. When designing such a
processor, there is a fundamental tradeoff between the complexity or capability of
each individual core and the total number of cores that can fit within a given area.
For applications with sufficient parallelism, Davis et al. [2005] and Carmean [2007]
show that maximum aggregate throughput is achieved by using a large number
of highly multi-threaded scalar cores. However, for applications with more limited
parallelism, performance would be improved with a smaller number of more complex
cores.

How can these two approaches be reconciled? To improve the single-thread per-
formance of an existing throughput-oriented system, one approach would be to
add dedicated out-of-order (OOO) cores to the existing scalar cores. Certainly a
dedicated OOO core will give great performance on one thread, and provisioning
a single OOO core is a sensible solution to deal with the Amdahl’s Law problem
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posed by serial portions of a parallel program or a single, interactive thread.1 Un-
fortunately, dedicated OOO cores come at the cost of multiple scalar cores, reducing
the aggregate throughput of the system. Using an even larger core with simultane-
ous multi-threading (SMT) would still limit the throughput and/or increase overall
power. This is because the area efficiency of OOO cores, even with SMT, is lower
than that of multi-threaded in-order cores [Davis et al. 2005].

Instead, we propose Federation, a technique that allows a pair of in-order cores to
be combined at runtime to form a higher performance OOO core, retaining a signif-
icant fraction of the performance benefit of the dedicated core with a much smaller
area overhead. We achieve this by re-engineering the major hardware structures
required for out-of-order execution for much lower complexity and power by re-
placing content addressable memories (CAMs) and broadcast networks with simple
lookup tables. This makes it possible for manycore processors to offer competitive
single-thread performance without incurring the major area and power overhead of
a dedicated high-performance core.

1.1 Contributions

In this work, we first describe how to take two minimalist, scalar, in-order cores
that have no branch prediction hardware and combine them to achieve two-wide,
OOO issue. We then show that the area-efficient structures used by Federation
can be used to construct a lightweight dedicated OOO core. Finally, we show that
Federation, with some small adaptations, can be extended to dual-issue in-order
cores, enabling the construction of a 4-way federated OOO core.

The main contributions of this paper are:

• We show how to build a minimalist OOO processor from two in-order cores with
less than 2KB of new hardware state and only a 5.7% area increase over a pair
of scalar in-order cores, using simple SRAM lookup structures and no major
additional CAM structures. Whereas a traditional 2-way OOO core costs 2.65
scalar cores in die area, Federation can synthesize a 2-way OOO core in the
area of 2.11 scalar cores, while still retaining the ability to use the scalar cores
independently for high throughput.2

We show that despite its limitations, such an OOO processor offers enough
performance advantage over an in-order processor to make Federation a viable
solution for effectively supporting a wide variety of applications. In fact, relative
to a traditional OOO organization of the same width, the two-way federated
organization provides nearly the same performance, is competitive in energy
efficiency, and has better area-energy-efficiency.

•• We introduce the Memory Alias Table (MAT), which provides approximately
the same functionality and performance as the Store Vulnerability Window
[Roth 2005] while using an order of magnitude fewer bits per entry.

1We see this approach embodied in the Sony Cell [Hofstee 2005] and AMD Fusion [Hester 2006].
2The total area comparison (2.65 vs. 2.11 scalar cores) underemphasizes the area advantage of
Federation. For example, assume we wish to add a higher-performance OOO core to an existing
throughput-oriented architecture composed of many scalar cores, without reducing the number
of scalar cores. Adding a dedicated core would require additional area equal to 2.65 scalar cores.

Adding a federated core, however, would only require additional area equal to 0.11 scalar cores.
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• We show that completely eliminating the forwarding logic between loads and
stores is a viable option for a small OOO core.

• We show that using these area- and power-efficient structures allows the con-
struction of a lightweight dedicated 2-way OOO core.3

• We show that it is possible to extend Federation to 2-way in-order cores and
achieve performance close to a dedicated 4-way OOO core.

Federated cores are best suited for workloads that usually need high throughput
but sometimes exhibit limited parallelism. Federation provides faster, more energy-
efficient cores for the latter case without sacrificing area that would reduce thread
capacity for the former case.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 outlines our approach to Federation and explains some fundamental as-
sumptions made in our design. Section 4 discusses how an in-order pipeline can
be adapted to support OOO execution and the new structures required. Section 5
presents the details of our Memory Alias Table design. Section 6 discusses a dedi-
cated OOO core using the same area- and energy-efficient principles as Federation.
Section 7 describes the details of our simulation environment and benchmarks. Sec-
tion 8 presents performance, power, and area-efficiency results. Section 9 extends
Federation to more complex baseline cores. Section 10 concludes the paper.

2. RELATED WORK

This paper extends previous work by Tarjan, et al. [2008] by discussing in greater
detail: the low-level operation of the OOO pipeline, the Memory Alias Table, the
performance and area impact of the new structures, and the overall performance of
the federated core. It also adds a discussion of a dedicated lightweight out-of-order
core that employs the same area-efficient principles as Federation and an evaluation
of the benefits of federating 2-way in-order cores.

The Voltron architecture from Zhong et al. [2007] allows multiple in-order VLIW
cores of a chip multiprocessor (CMP) to combine into a larger VLIW core. It re-
quires a special compiler to transform programs into a form that can be exploited
by this larger core. The performance is heavily dependent on the quality of the code
the compiler generates, as the hardware cannot extract fine-grained instruction par-
allelism from the instruction stream by itself. The work on composable cores [Kim
et al. 2007] leverages the block-level dataflow EDGE ISA [Burger et al. 2004] and
associated compiler [Smith et al. 2006] to allow multiple small cores to work on a
single instruction stream, without requiring traditional out-of-order structures such
as a rename table or issue queue. Our work does not assume an advanced compiler
and is applicable to RISC, CISC, and VLIW ISAs.

Salverda and Zilles [2008] explore the performance limits of a design that contains
a number of in-order lanes or pipelines that can be fused at run-time to achieve
out-of-order execution. Their work assumes a “slip-oriented out-of-order execution
model,” in which out-of-order execution only occurs when the individual lanes slip

3Note that the lightweight OOO core is not a viable solution to the problem of phases with limited
thread count, because a dedicated OOO core of any size comes at considerable area cost in terms

of the number of high-throughput scalar cores that are replaced.
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with respect to one another. In other words, within each lane, instructions al-
ways execute in-order. The performance constraints shown in their work are only
valid for machines that utilize this execution model. Federation is not based on
the slip-oriented out-of-order execution model. When in-order pipelines are feder-
ated, instructions can be issued out-of-order to any pipeline and thus instructions
within the same pipeline can execute out-of-order with respect to one another.
This approach raises some scaling issues of its own but frees Federation from the
fundamental constraints of the slip-oriented model.

Work by Kumar et al. [2004] on heterogeneous cores showed that the overall
throughput of a heterogeneous CMP can be higher than an area-equivalent homo-
geneous CMP, if the OS can schedule threads to different types of cores depending
on their needs. However, because the mix of large and small cores has to be set at
design-time, the OS or hypervisor cannot dynamically make a tradeoff at runtime
between the number of cores (i.e., the number of thread contexts) and single-thread
latency. Grochowski et al. [2004] follow up on this line of work and observe that the
combination of performance- and throughput-oriented cores with dynamic voltage
scaling can provide a better combination of single-thread latency and throughput
than either technique can provide alone.

Adjoining cores that are federated have their caches merged when in federated
mode, similar to work by Kumar et al. [2004] and Dolbeau and Seznec [2004]. How-
ever, we do not require two cores to be able to access the same cache simultaneously,
since only one core’s load and store ports are active when in federated mode.

Numerous groups have evaluated various combinations of clustered OOO proces-
sors and multi-threading. İpek et al. [2007] provide a comprehensive overview of
this body of work. Another approach to improve the single-thread performance is
to use runahead execution [Chou et al. 2004; Mutlu et al. 2003], which is orthog-
onal and even complementary to federating two simple cores. Runahead reduces
time spent waiting on cache misses, which would potentially help the more powerful
federated core relative to the underlying scalar core. Additionally, federating two
cores would help the runahead thread run faster and thus further ahead of the main
thread.

The Store Vulnerability Window (SVW) was introduced by Roth [2005] as a
verification mechanism for load/store aliasing and ordering that can be used in
conjunction with several load speculation techniques. The Memory Alias Table is a
similar structure to the SVW, but uses much less hardware. More recent work [Sha
et al. 2005; 2006; Subramaniam and Loh 2006] has tried to largely or completely
eliminate the Load-Store Queue (LSQ) by using the SVW as the checking mecha-
nism for speculative forwarding, which we avoid due to its complexity. Our work
differs in that we do not try to replace a part of an OOO processor, but instead
augment a simple in-order processor so that it can detect memory order violations
with minimal hardware cost. We also do no speculative forwarding; indeed, we
abandon forwarding completely in our design.

Comparison to Core Fusion

The work on Core Fusion [İpek et al. 2007] provides an interesting comparison point
to Federation. Core Fusion and Federation employ very different approaches to the
problem of how to aggregate smaller cores into a single, higher performance core.
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Core Fusion aims to build an OOO core with a very deep execution window and
lots of execution resources. To achieve this goal, Core Fusion combines a larger
number of cores (up to four cores) than Federation (two cores). Due to the com-
plexity of the extra structures needed for Core Fusion and the latency required to
communicate between several cores at multiple locations in the pipeline, Core Fu-
sion must increase the length of many of the critical loops of the processor pipeline.
Federation employs almost exactly the opposite approach, focusing on aggregating
fewer, smaller cores and placing an emphasis on NOT increasing any of the critical
loops of the pipeline unless absolutely necessary. The choice of a centralized Issue
Queue and centralized MAT stem directly from trying to avoid such overheads.
We believe that the large body of work on clustered architectures show convinc-
ingly that distributing the critical structures of an OOO core only makes sense if
the workload exhibits large amounts of ILP and few serializing conditions such as
branch mispredictions and memory aliasing events; conditions that are not true for
many applications that are not easily decomposed into multiple threads and thus
need higher single-thread performance the most.

In both the work by İpek et al. [2007] and this paper, the performance of the
aggregated core is compared to that of a dedicated 4-way OOO core. Of course,
directly comparing the results is difficult, since the dedicated cores in the two
comparisons are configured differently and use different simulation methodologies.
Nevertheless, Core Fusion of four 2-way OOO cores achieves about 102% and 115%
of the performance of a dedicated 4-way core on SPECint and SPECfp, respectively.
We show in Section 9.3 that Federation of two 2-way in-order cores achieves 92%
and 86%, respectively, of the performance of a dedicated 4-way OOO core, with
half the execution resources and much lower power. Thus, even with much simpler
baseline cores, Federation is able to achieve performance that is competitive with
Core Fusion.

Comparing the areas of the aggregated cores is not necessarily useful, since one
can assume that a manycore processor will have more than enough cores for any
aggregation technique. Comparing the area overhead of the aggregation techniques
and the area efficiencies of the baseline cores is more instructive. The area overhead
of Core Fusion is estimated to be 8.64mm2 from a 200mm2 die with 100mm2 de-
voted to core area, or about 8.6% of the core area. Using scalar in-order cores as a
baseline, we estimate in Section 8.2 that the area overhead of Federation is approx-
imately 5.7% of each pair of cores, and thus 5.7% of the total core area regardless of
the number of cores. Using 2-way in-order cores with branch prediction as a base-
line, the area overhead is much smaller, since the majority of the area overhead of
federating scalar cores was due to the addition of a small branch predictor.

For phases of execution in which the thread count is high, a manycore processor
implementing either Core Fusion or Federation will be best off without any cores
fused/federated in order to provide as many hardware thread contexts as possible.
In such a case, Federation’s multi-threaded in-order baseline cores will provide much
higher aggregate throughput than Core Fusion’s 2-way OOO baseline cores because
of their significantly higher area efficiency. Carmean [2007] estimates that a multi-
threaded in-order core takes up only one-fifth the area of a traditional core while
providing more than 20 times the throughput per unit area. Thus, Core Fusion will
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provide superior performance when the thread count is extremely low. For medium
to high thread counts, however, the higher throughput of the underlying cores in
Federation will provide significantly higher performance.

3. BASELINE ARCHITECTURE

Future microprocessor designs will likely incorporate many simple in-order cores
rather than a small number of complex OOO cores [Asanovic et al. 2006]. Current
examples of this trend include the Sun Niagara I and II [Johnson and Nawathe
2007; Kongetira et al. 2005], each of which contain up to eight cores per proces-
sor. At the same time, graphics processors (GPUs), which traditionally consist
of a large number of simple processing elements, have become increasingly pro-
grammable and general purpose [Owens et al. 2007]. The most recent GPU designs
from NVIDIA [NVIDIA 2009] and AMD [AMD 2007] incorporate 240 and 320
processing elements, respectively. This so-called manycore trend will provide sub-
stantial increases in throughput but may have a detrimental effect on single-thread
latency. Federation is proposed to overcome this limitation.

When designing a federated processor, there are two possible approaches: de-
sign a new processor from the ground-up to support Federation or add Federation
capability to an existing design. For the purposes of this paper, we will take the
latter approach and add Federation support to an existing manycore, in-order ar-
chitecture. Based on the current trends cited above, the baseline in-order microar-
chitecture that we will focus on is similar to Niagara. It is composed of multiple
simple scalar in-order cores implementing the Alpha ISA, which are highly multi-
threaded4 to achieve high throughput by exploiting thread-level parallelism (TLP)
and memory-level parallelism (MLP) [Glew 1998]. Specifically, each in-order core
has four thread contexts, with hardware state for 32 64-bit integer registers and
32 64-bit floating point registers per thread context. Additionally, the integer and
floating point register files are banked, with one bank per context and two read
ports and one write port per bank. Unlike Niagara I (but like Niagara II), each
core in our baseline architecture has dedicated floating point resources. To deal
with multi-cycle instructions such as floating point instructions and loads, the in-
order core has a small (four-entry) completion buffer. This buffer is used both
to maintain precise exceptions and to prevent stalling when a multi-cycle instruc-
tion issues. The in-order cores implement only static not taken branch prediction5

and use a branch address calculator (BAC) in the decode stage to minimize fetch
bubbles and to conserve ALU bandwidth.

To simplify the discussion, in this paper we focus on a single pair of in-order
cores that can federate to form a single OOO core. In practice, the techniques we
describe are intended to be applied to a manycore processor with a significantly
larger number of cores, with each adjacent pair of cores able to federate into a
single OOO core.

4But as Table VIII shows, the area overhead of multi-threading is not very large and Federation
is thus an attractive option even for single-threaded cores.
5Niagara I provides no branch prediction whatsoever while Niagara II employs static not taken.
We chose the more complex of these two options in order to give the scalar cores a slight boost in

single-thread performance.
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Fig. 2. A simplified floorplan showing the ar-
rangement of two in-order cores. New struc-
tures necessary for Federation are shaded.

The process of federating and de-federating a pair of cores is controlled by the OS.
Although the software implications of Federation are beyond the scope of this paper,
we discuss them briefly here. After deciding to federate a pair of cores, the OS must
interrupt them, wait for outstanding memory operations to complete, save the state
of the cores’ threads as necessary, flush one of the core’s instruction and data caches
to ensure that no duplicated data exists, indicate to the hardware to federate the
cores, and finally set up the state of the thread that will run on the new federated
core. De-federating cores is similar, although no cache flushing is required. Perhaps
more interesting than determining how to federate and de-federate is deciding when

to do so. One straightforward approach would be to federate cores when a high-
priority thread needs a performance boost or when the number of runnable threads
drops below the number of thread contexts that would be available after federating,
and to de-federate when the number of runnable threads becomes larger than the
number of thread contexts. More complex approaches may prove beneficial, but
are left for future work.

4. OUT-OF-ORDER PIPELINE

The primary goal of Federation is to add OOO execution capability to the existing
in-order cores with as little area overhead as possible. Thus, each federated OOO
core is relatively simple compared to current dedicated OOO implementations.
Specifically, each federated core is single-threaded6 and two-way issue with a 32-

6Thus when the two in-order cores federate, the number of thread contexts provided by the pair

of cores is reduced from eight to one.

ACM Transactions on Architecture and Code Optimization, 2010.



8 · M. Boyer, D. Tarjan, and K. Skadron

Instruction 

Cache

Branch 

Prediction

Decode

IQ Free List

RF Free List
Active List

Speculative 

RAT

Retirement 

RAT

Issue Queue

MAT

Data

Cache

Fetch Buffer

Instruction 

Cache

Decode

Fetch Buffer

Integer ALU

FP ALU

Integer ALU

FP ALU

Data

Cache

AGU AGU

Bypass Network Bypass Network

IO RF

OOO RF

IQ (non-wakeup)

Store Buffer

IO RF

OOO RF

IQ (non-wakeup)

Fig. 3. Structural diagram of a federated core. New structures are shaded. The unified register

file, a portion of the issue queue, and the store buffer are mapped onto multiple banks in the
existing in-order register file. For simplicity, not all connections are shown, and connections not
used in federated mode, such as connections to the address generation unit (AGU) in the second

core, are intentionally omitted.

entry instruction window. The federated core implements the pipeline shown in
Figure 1, with the additional pipeline stages not present in the baseline in-order
cores shown in shaded boxes. A possible high-level floorplan for the federated core is
shown in Figure 2. A structural diagram of the OOO pipeline is shown in Figure 3.

In order to limit the area overhead of Federation, we strive to avoid adding any
significant CAMs or structures with a large number of read and write ports. Table I
lists the sizes of the new structures required to support OOO execution, as well as
whether or not each structure is implemented by re-using the existing hardware
from the large, banked register file of the underlying multi-threaded core. While an
extremely area-conscious approach could use the register file to implement all of the
new structures, this would excessively increase the complexity and wiring overhead
of the design, as well as increasing the contention for register ports. The structures
that reuse the register file in our design are those that are close to the register read
and writeback stages in the pipeline, require few read and write ports, and are read
and written to at sizes close to those that the register file already supports.

The major new wiring required to support Federation is listed in Table II. The
following subsections provide a detailed explanation of the operation of each pipeline
stage, along with justification for the design tradeoffs that were made.
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Structure
Size

Type
Reuses

(bits) RF

Branch Predictor (NLS) 6,656 SRAM No

Branch Predictor (Bimodal) 4,096 SRAM No
Return Address Stack 256 SRAM No

Rename Tables 1,152 Reg No

Free Lists 384 Reg No

Active List 4,096 Reg No
Issue Queue (Wakeup) 176 Reg No

Issue Queue (Non-Wakeup) 896 Reg Yes

Unified Register File 6,144 Reg Yes
Store Buffer 1,024 Reg Yes

Memory Alias Table 96 Reg No

Worst Case Total (Bits) 11,008 SRAM / 13,968 Register

Assumed Total (Bits) 11,008 SRAM / 5,904 Register

Table I. Estimated number of bits required for the new structures added to the baseline in-order

processor. Type differentiates between: 6T SRAM cells, which are used for caches and large
tables; and registers, which are used for building the smaller structures inside the pipeline, have
full swing bitlines, and are potentially multiported. The last column indicates whether we assume
the structure can be built using only reused register file entries if the baseline core is multi-

threaded. The worst case total is calculated under the assumption that none of the structure can
reuse the register file.

New Wiring Width (bits)

Cross I-Cache to Decode 32
Decode to Allocate 64

Cross Core Value Copying 140

Memory Unit to Second D-Cache 128

Table II. The size of major wires that must be added to the baseline core in order to support
Federation.

4.1 Branch Prediction

Branch prediction is implemented using Next Line and Set (NLS) prediction [Calder
and Grunwald 1995; Kessler et al. 1998; Tremblay and O’Connor 1996] instead of
a branch target buffer. NLS maintains an untagged table indexed by the branch
address, with each entry pointing to a line in the instruction cache. NLS predicts
the location in the cache where the next line will be fetched rather than the actual
address to be fetched. This significantly reduces the overhead of supporting NLS.
For example, implementing a 512 entry NLS requires only about 0.75 KB of extra
state. A small return address stack (RAS) is also added, which requires only 256
bits of state. We have omitted the top 32 bits of the return addresses and assume
they do not change; no negative performance impact on our workload is observed.
Branches are resolved during the commit stage, as described in Section 4.10.

4.2 Fetch

The fetch stage starts by receiving a predicted cache line from the NLS predictor, a
return address from the RAS, or, in the case of a misprediction, a corrected PC from
the branch unit in the execute stage. It then initiates the fetch by forwarding this
information to the instruction cache (IC). The ICs of the two cores are combined
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into a cache with double the associativity and random replacement. We assume
that each core’s L1 cache has a 3-cycle latency for a hit. We further assume that
the clock frequency is low enough and there is enough slack in the cache access
time that, when federated, the combined cache still has a 3-cycle hit latency. Each
in-order core has a fetch buffer, which holds the most recently accessed cache line.
Fetching two instructions thus requires reading two instructions from one of the
fetch buffers, rather than increasing the width of the cache. Since each core can
only decode a single instruction, the second instruction is sent to the other core
for decoding. So that this extra wire does not influence cycle time, we allocate an
extra pipeline stage for copying the instruction to the other core, buffering the first
instruction in a pipeline register.

4.3 Decode

Once the instructions have been received from the fetch stage, the separate decode
units in the two cores can operate independently. The decoded instructions are then
routed to the allocate stage. If the first of the two instructions is a taken branch, a
signal is sent to the allocate stage to ignore the second decoded instruction. Since
the allocate unit is a new structure located between the two cores, propagating the
instructions to it in the same pipeline stage as decode or allocate might influence
overall cycle time. We instead allocate an extra pipeline stage (the first Allocate
stage in Figure 1) to allow the signals from both decode units to propagate to the
allocate unit. The performance implications of the extra front-end pipeline stages
are discussed in Section 8. The BAC of one of the baseline cores is used to calculate
and verify the target of any taken branch.

4.4 Allocate

During the allocate stage, each instruction checks for space in several structures re-
quired for OOO execution. All instructions check for space in both the Issue Queue
(IQ) and the Register File (RF). In traditional OOO architectures, load and store
instructions would also need to check for a free Load-Store Queue (LSQ) entry, but
our implementation uses a Memory Alias Table, which is free from such constraints
(see Section 5). If space is not available in any of the required structures, the
instruction (and subsequent instructions) will stall until space becomes available.

The allocate stage maintains two free lists, one for the IQ and one for the unified
register file, with both lists implemented as new structures. We decided against
using existing register file entries to implement these free lists because of their
early position in the pipeline, the small size of each entry, and the complexity of
deciding which entries to add to or remove from the free list. This complexity
means that only a fraction of a clock cycle is available for the actual read/write
operation. In addition to the free lists, the allocate stage also maintains the current
Active List (AL) head and tail pointers so that it can determine if there is space
available in the AL and then assign an AL entry to the current instruction(s).

4.5 Rename

The federated core uses a unified register file, in which integer and floating-point
instructions share a pool of physical registers, with speculative and retirement Reg-
ister Alias Tables (RATs). Since the design utilizes a subscription-based instruction
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queue (see Section 4.6), it must keep track of the number of subscribers for each
instruction. For each architected register, its status and the number of consumers
currently in the IQ is stored in a second table, which is accessed in parallel with
the RAT.

Each rename table for a two-way OOO processor requires four read ports and
two write ports, while each existing register bank has only two read ports and one
write port. Thus, implementing the rename tables using the existing register files
would require the exclusive use of two entire register banks. Given the relatively
small amount of state stored in the rename table, it makes sense to implement it
as a separate structure.

The unified register file consists of the 64 architected registers (32 integer and 32
floating-point) and a number of rename registers, implemented using the register
files of the underlying multi-threaded cores, with each register stored in both cores
simultaneously. As mentioned earlier, the existing register files are heavily banked.
The unified register files use part of several of these banks in order to support the
required number of read and write ports. Even so, it is still possible for a particular
register access pattern to require more writes to a single bank than that bank can
support. Additional logic detects this case and causes one of the two instructions
to stall. The performance impact of bank contention is explored in Section 8.

Logic is needed to check for read after write (RAW) dependencies between two
instructions being renamed in the same cycle. Additional logic is also necessary to
check for race conditions between an instruction being renamed and an instruction
that generates one of its input operands being issued in the same cycle. This logic
checks whether the status of one of the input operands is changing in the same cycle
as its status is being read from the rename table. This classic two ships passing in
the night problem is also present in many in-order processors, where instructions
that check the poison bits of their input operands must be made aware of any
same-cycle changes to the status of those operands. Thus, depending on the design
of the baseline in-order core, it might be possible to reuse this logic for the OOO
processor. We assume that this capability is not supported by our baseline in-order
core and that it must be introduced from scratch.

Because branches are only resolved at commit time, there is no need to checkpoint
the state of the RAT for every branch. If a branch misprediction or another kind
of exception is detected, the pipeline is flushed and a bit-vector (one bit associated
with each RAT entry) is reset to indicate that the most up to date version of all
registers is in the non-speculative RAT. During normal execution, an instruction
in the rename stage writing to a particular register sets the corresponding bit to
indicate that the speculative version is the most up-to-date. During rename an
instruction will either first access the bit-vector to determine the correct source for
the rename lookup, or access both speculative and non-speculative RAT and do a
late select based on the state of the corresponding bit. Which option to use would
be dependent on both power and timing tradeoffs.

Note that the per RAT-entry bit-vector indicating how many consumers an entry
in the IQ has is reset whenever a new value is written to an architected register. If
the RAT-entry indicates that the instruction producing a value has already executed
and/or is non-speculative, then the consumer bit-vector can be ignored.
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Each entry in the active list holds the logical register mapping as well as the
old and new physical register mappings for an instruction. This data is needed at
commit time in order to update the register file free list and the retirement RAT.

4.6 Issue

As with the register file, the federated core uses a unified Issue Queue (IQ) that
tracks both integer and floating-point instructions. The area and power constraints
of our design prevent the implementation of a traditional CAM-based IQ. To avoid
tag broadcast or tag match logic, we use a simple table in which consumers “sub-
scribe” to their producers by writing their IQ position into one of the producer’s
IQ entry’s consumer fields, similar to a number of prior designs [Brekelbaum et al.
2002; Huang et al. 2002; Raasch et al. 2002; Ramı́rez et al. 2004; Sato et al. 2001].
Huang et al. showed that, for a processor with a 96-entry instruction window, over
90% of all dynamic instructions have no more than one dependent instruction in the
instruction window when they execute [2002]. Thus, each IQ entry in our design
only has a small number of consumer fields. The exact number of consumer fields
per entry is a design choice; we found that limiting the number of fields per entry
to two reduced performance by only a fraction of percent compared to a traditional
IQ. The performance impact of this decision is evaluated in greater detail in Sec-
tion 8. Note that the designers of the TRIPS dataflow ISA made a similar decision,
limiting each instruction to at most two consumers [Sankaralingam et al. 2006].

Each entry in the IQ holds the usual opcode, operand register IDs, and immedi-
ate/displacement values, but also has several consumer ID fields and two ready bits,
which are set when the left and right operands become available, respectively. On
issue, each instruction checks its consumer fields and sets the appropriate ready bits
in the consumer’s entry. If both input operands are ready, the ready signal for that
entry is sent to the scheduler.7 Because the opcode and immediate/displacement
value are not required for the critical wakeup and select loop, they are stored in a
table physically separate from the ready bits and the consumer IDs (referred to as
the non-wakeup portion of the IQ). These fields are mapped onto the underlying
register file to conserve area.

The table holding the ready bits, while logically part of one larger structure,
is implemented separately since it is a combination of a state table with a larger
number of write ports than the other parts of the issue queue, per-entry logic for
checking that both input operands are ready, and logic to reset the ready bits when
an instruction is issued. The table does not require any read ports, since each
entry’s values, after being gated by resource constraints as described by Sassone et
al. [2007], are simply ANDed and routed to a priority encoder. When an instruction
issues, it must set the ready bits of its consuming instructions. Thus, for each issue
port, the table needs two write ports. When an asynchronous unit completes, it
must set the ready bits of its consuming instructions. Thus, for each asynchronous
unit, the table also needs two write ports. Overall, the table holding the ready bits
has 8 write ports for a table with 2N bits (where N is the size of the issue queue).
The table holding the consumer IDs needs two read ports, since two instructions

7Note that all loads can issue speculatively, without waiting on unresolved stores; see Section 5

for an explanation.
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can issue each cycle, and two write ports, since two instructions can be allocated
each cycle.

Since the number of consumer fields is small, an instruction can stall if its pro-
ducer’s consumer entries are all occupied. This necessitates the addition of an extra
bit to each entry in the IQ that is set if the instruction is oversubscribed. If this bit
is set when the instruction executes, a signal is sent to the rename stage to unstall
the waiting instruction(s).

The normal scheduling logic for an out-of-order processor tries to issue older
instructions first, which makes it complex and power hungry. We instead implement
a simpler pseudo-random scheduler [Sassone et al. 2007] that uses a static priority
encoder and does not take into account the age of different instructions. For a
small out-of-order window, this simplified scheduler has a negligible impact on
performance, as shown in Section 8.

In addition to favoring the oldest instructions, schedulers for clustered architec-
tures often attempt to schedule consuming instructions on the same cluster as their
producers in order to avoid the overhead of copying the result between clusters.
Given that our design maintains a copy of each register value on both cores, the
core on which a consuming instruction is scheduled is only relevant in the case
where it is ready to be issued as soon as its producer has issued. We again choose
the simplest design, scheduling all instructions on core zero when possible and only
assigning an instruction to core one when a previous instruction has been assigned
to core zero that cycle.

In order to prevent a producer-consumer pair from getting scheduled back-to-
back on different cores, when an instruction is issued, the ID of the core on which it
executes is buffered in the scheduling logic of its consuming instructions’ ready bits.
This information is treated as a resource constraint, as described above, so that the
consuming instruction will not be scheduled on the other core. To avoid maintaining
memory ordering across the two cores, loads and stores are only assigned to core
zero.

4.7 Execute

Each instruction executes normally on the ALU to which it was assigned, operating
on values read out from the local core’s register file during the issue stage. The
only change to the bypass network on each core is the addition of circuitry for
copying the result to the register file of the other core. Since this is not a zero-
cycle operation, the new circuits can be added without affecting the critical path.
Additionally, a benefit of using the subscription-based IQ is that we know during
execution whether it is necessary to broadcast the result using the bypass network,
based on whether or not any consumers have subscribed to the instruction.

4.8 Memory Access

The data caches are merged in the same way as the instruction caches, by having
each cache hold half the ways of a merged cache with twice the associativity. In-
stead of a traditional load-store queue, our design uses a simpler structure called
a Memory Alias Table (MAT). We do not allow memory bypassing and flush the
pipeline when we detect a load and store accessing the same address out-of-order.
A detailed description of the MAT is provided in Section 5.
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The only additional action required of load instructions in this stage is to index
into the MAT with their target address and increment a counter. Store instructions
write their effective address and data into an entry in the store buffer. Because we
do not support store-to-load forwarding, loads never access the store buffer.

4.9 Write Back

Similar to the Alpha 21264 [Kessler et al. 1998], all results are written to the register
files on both cores, to avoid the complication of having to generate explicit copy
instructions for consumers on the other core. Depending on the layout, copying the
results from one core to the other may incur one or more extra cycles of latency.
We assume a one-cycle latency in the results discussed in Section 8.

4.10 Commit

Branches are resolved at commit time, obviating the need to maintain multiple
snapshots of the speculative rename table or the need to walk the AL in the case
of a branch misprediction. We have also explored the performance impact of using
a limited number of branch checkpoints. However, since our focus is on simplicity,
our base case for the federated core still uses commit time branch recovery, which
reduces performance by approximately 3%. Adding just two snapshots of the re-
name table would almost completely eliminate this overhead, but we show results
for the simplest case.

Each baseline core has a post-commit write combining buffer in order to save
data cache bandwidth, which conceptually is considered part of the data cache.
At commit, store instructions copy their data from the store buffer to the write
combining buffer. As in the baseline cores, a load instruction accessing the cache
also accesses the write combining buffer.

5. MEMORY ALIAS TABLE

Traditional Load-Store Queues (LSQs) are used for enforcing correct ordering be-
tween loads and stores that can potentially execute out of program order, and to
forward values between aliasing loads and stores. They have large CAMs for ad-
dress matching, circuitry for age prioritization in case of multiple matches, and a
forwarding network. All these structures would add considerable power and com-
plexity to our baseline processor. Instead, we propose the Memory Alias Table
(MAT), which builds on ideas from the Store Vulnerability Window (SVW) [Roth
2005] and work by Garg et al. [2006] and Onder and Gupta [1999].

5.1 Store-to-Load Forwarding

Of the two main purposes of a traditional LSQ, only one is necessary to ensure
correctness: the enforcement of proper ordering between loads and stores accessing
the same memory address. The forwarding of values from stores to loads is a
performance optimization and can be omitted without impacting correctness, as
long as a load cannot execute until after any aliasing stores have committed.

To estimate the potential performance impact of omitting this functionality, we
first measured the number of forwarding events on a processor configuration that
does support forwarding. We measured the data for all of the benchmarks in
the SPEC2000 suite. The simulated processor is a 2-wide out-of-order machine
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Fig. 4. Fraction of load instructions that receive their values directly from an earlier store in-
struction. Benchmarks with multiple reference inputs that exhibit similar behavior have been
averaged; the number of inputs for those benchmarks is indicated in parentheses.

implementing the Alpha instruction set; the specific configuration is described in
greater detail in Table III. The details of our simulation environment are described
in Section 7.

The percentage of loads that receive a value forwarded from a store is shown
in Figure 4. To decrease the number of data points and improve readability, we
present the average across multiple reference inputs for those benchmarks that ex-
hibit similar behavior for all inputs. For over half (23 out of 39) of the benchmark
and reference input pairs, fewer than one percent of loads receive their values for-
warded from a store. Only three benchmarks exhibit a percentage greater than five:
bzip2 (two of three inputs), perlbmk (one of three inputs), and vpr. On average,
only 1.54% of loads receive their values from a store.8

This data alone presents an incomplete picture, because some benchmarks con-
tain many more load instructions than others. In other words, the importance of
forwarding hardware is dependent on how frequently store-to-load forwarding oc-
curs. Figure 5 shows the forwarding period, defined as the average number of clock
cycles between store-to-load forwarding events. Once again, for those benchmarks
that exhibit similar behavior across all reference inputs, we present the average
across the inputs. Note that the period is undefined for the benchmarks lucas, mcf,
and swim, because they exhibit no forwarding events. More than half (22 out of 39)
of the benchmark and reference input pairs have a forwarding period greater than
500 cycles. Only three benchmarks have a period less than 100 cycles: bzip2 (two
of three inputs), perlbmk (one of three inputs), and vpr. On average, a forwarding
event occurs once every 399 cycles.9

8This average was computed by first averaging across all reference inputs for those benchmarks

with multiple inputs, and then averaging across all benchmarks. This ensures that all benchmarks
are assigned equal weight.
9This average was computed by averaging the period across all reference inputs for those bench-
marks with multiple inputs, converting from cycles per event to events per cycle (because the

period of some of the benchmarks is undefined), averaging across the entire suite, and then con-
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Fig. 5. Average number of cycles between store-to-load forwarding events. Benchmarks with
multiple reference inputs that exhibit similar behavior have been averaged; the number of inputs

for those benchmarks is indicated in parentheses. Note the log scale on the y-axis.

Motivated by the infrequency of store-to-load forwarding, the MAT does not pro-
vide a mechanism for forwarding store results to loads, eliminating the need for a
forwarding network that can deal with multiple (partial) matches. Instead, it only
detects memory order violations after they have occurred and causes the offending
instruction and all subsequent instructions to be re-executed. This provides con-
siderable area savings with minimal performance loss, as we will show in Section 8.
Garg et al. [2006] also found store-to-load forwarding to be an infrequent occurrence
and omitted forwarding hardware from their design.

Unlike in work by Sha et al. [2006], we do not implement a load-store alias pre-
dictor, but statically predict all loads and stores to not alias. A dynamic predictor
is necessary for a large, high-performance design, where store-to-load forwarding
would be needed to exploit the available machine resources, but can be omitted
from our small design.

5.2 Concept of the Memory Alias Table

Conceptually, the MAT operates as follows: each load places a token in an address-
indexed hash table when it executes and removes the token when it commits. Each
store checks the hash table at commit for a token from a load that is still in the
pipeline. Any store finding a valid token when it commits knows that the token is
from a potentially aliasing load that executed out-of-order and signals a memory
order violation. The store does not need to cause an immediate pipeline flush but
instead sets an exception flag in the table when it commits. The offending load will
discover this exception flag during commit when it invalidates its token in the hash
table. The load can then either replay or cause a pipeline flush.

The implementation of the MAT is relatively simple: each load increments a
counter when it executes and decrements the same counter when it commits. Stores
check the MAT only when they commit. Since any committed load will have re-

verting back to cycles per event.
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(b) (c) (d)(a)

st x, r1

ld r2, x

Index Counter Flag

0 0 0

1 0 0

2 1 1

3 0 0

Index Counter Flag

0 0 0

1 0 0

2 1 0

3 0 0

Index Counter Flag

0 0 0

1 0 0

2 0 0

3 0 0

Fig. 6. Example of the MAT’s operation for the sequence of instructions shown in (a), with the
load executing before the store. The MAT is shown (b) in its initial state, (c) after the load
executes, and (d) after the store commits.

moved any sign of its presence from the MAT before a store reaches commit, the
store knows that if its counter in the MAT is non-zero, there must be at least one
potentially aliasing load in the pipeline that executed out-of-order with respect to
the store. Previous proposals had the store check their equivalent of the MAT as
soon as the address generation for the store was complete, rather than at commit.
They thus had no way of telling if an aliasing load had executed out of program
order; they could only determine that it had executed earlier.

Figure 6 shows an example of the MAT detecting and recovering from a memory
order violation. The instructions being executed are shown in program order in
Figure 6(a). Since the store writes to the same memory location from which the
load reads, in order to guarantee correct execution the store must commit and
write to the data cache before the load reads from the data cache. In this example,
however, the load instruction executes out-of-order, before the store instruction.
Initially, all of the counters and exception flags in the MAT are set to zero, as
shown in Figure 6(b). During execution, the load indexes into the MAT using the
low-order bits of its memory address10 and increments the corresponding counter, as
shown in Figure 6(c). When the store commits, it also indexes into the MAT using
the low-order bits of its memory address and checks if the corresponding counter is
zero. Since the counter is non-zero, the exception flag for that MAT entry is set,
as shown in Figure 6(d). When the load attempts to commit, it indexes into the
MAT once again, observes that the exception flag is set, and initiates a flush of the
pipeline. The processor then resumes execution at the offending load instruction,
with all counters and exception flags in the MAT set to zero.

The hash table proposed by Garg et al. [2006] utilizes the same basic concept
as the MAT, while the SVW [Roth 2005] inverts the relationship between loads
and stores, with stores leaving tokens in a table and loads checking the table for
valid aliasing entries. A critical distinction between the MAT and these previous
proposals is how instruction age is represented in hardware. Previous proposals
used a store sequence number (SSN) or a load sequence number (LSN) to determine
relative age. Since it is non-trivial to determine when the last load vulnerable to
a store committed, a counter representing dynamic instruction age was used. This
required relatively large entries and the comparison of 16-bit or larger values to
determine the relative ages of a load and a store. The scheme presented by Onder

10Loads and stores are treated as though they access 64 bit (8 byte) values, since this is the largest

operand size in the Alpha ISA.
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Fig. 7. Example of the MAT’s operation for the sequence of instructions shown in (a), with events
occurring in the sequence shown in (b). The MAT is shown (c) after the load to r2 executes,
(d) after the coherence event (x ← 1) occurs, (e) after the load to r1 executes, and (f) after the
load to r1 commits. Note that the coherence exception (CE) flag shown here is different than the
exception flag set by store instructions; for simplicity, we omit the store exception flag here.

and Gupta [1999] is similar to the MAT in that loads access a table after executing
and stores check that same table for conflicting entries at commit. However, their
implementation is significantly more complicated, because each load stores in the
table its full address as well as the value it reads, and each store must search
the table for a matching address and compare the value read by the load with its
own value. Another proposal by Sethumadhavan et al. [2003] used simple counting
bloom filters, but could not determine the relative age of a load or store.

Since our proposal relies on the precision of the counters in the MAT for correct-
ness, the number of bits in each counter must equal the logarithm of the size of
the AL. Note that because our design does not have a separate LSQ structure, the
whole AL can be filled with loads and/or stores. Even for much larger instruction
windows than we discuss here, the size of the counters is still much smaller than the
16 bits required to store the SSN11 in work by Sha et al. [2006]. Moreover, multiple
counters can share a single set of higher-order bits (with only the LSB private to
each counter), further reducing the amount of storage required per entry without
impacting correctness (proof omitted). The sharing of the upper bits can be consid-
ered the inverse of sharing the LSB in certain branch predictor tables [Seznec et al.
2002]. We show in Section 8 that sharing all but the LSB between multiple counters
is feasible, as it introduces very few extra false positive memory order violations.

5.3 Dealing with Coherence

To ensure correct execution in the presence of cache coherence, the MAT must
ensure that no load get the wrong value, even if it initially executed out of program
order. Two loads from the same location can be out of order with respect to each
other as long as no change to that location occurs between the two accesses. To
ensure this property, any cache coherence transaction indexes into the MAT and sets

11The SSN can be smaller than 16 bits, but since overflowing the SSN counter requires a pipeline

flush and a reset of the hash table, a smaller SSN leads to lower performance in a traditional
processor. Federation, however, can most likely use smaller SSNs without significantly impacting
performance, because the SSN counter can be reset after each branch misprediction when the
pipeline is guaranteed to be empty. The performance results for the SVW presented in Section 8

are in the context of a traditional, dedicated out-of-order core and thus use 16-bit SSNs.
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a coherence exception flag (distinct from the exception flag set by store instructions)
for its entry if the corresponding counter is non-zero. Any load that maps to the
same MAT entry that has executed but not committed when this occurs will force
a flush of the pipeline when it tries to commit.

Any load committing in the same cycle as the cache coherence event can ignore
it, since it is assured to have received its value before the event. Any committing
load that decrements the counter to zero can reset the coherence exception flag,
since no loads that have already received their values and have this location as their
target are in the window any longer. To ensure forward progress, the first load to
see the coherence exception flag at commit can still commit, since it cannot have
received the wrong value in any combination of events. This load sets a separate
forward progress flag (shared across the whole table) to indicate that later loads
are not the first to have seen the coherence exception flag. All flags are reset at
pipeline flushes.

An example of the MAT’s operation in the context of coherence events is shown
in Figure 7. The instructions being executed are shown in program order in Fig-
ure 7(a). The shared variable x initially has the value zero. As shown in Figure 7(b),
the second load (to register r2) executes before the first load and receives the orig-
inal value of x (zero). The load also increments the counter in the MAT associated
with the address of x, as shown in Figure 7(c). Before the first load executes, a
remote core updates the value of x to one, which causes the value in the local cache
to be updated as well. When this update occurs, the MAT is accessed and, because
the counter associated with the address of x is non-zero, the coherence exception
flag for that entry is set, as shown in Figure 7(d). At some later time, the first
load executes and also increments the counter in the MAT, as shown in Figure 7(e).
When the first load attempts to commit, it sees the non-zero value of the coherence
exception flag and thus checks the table-wide forward progress flag. Since this flag
is zero, the load commits successfully but also sets the flag to one, as shown in
Figure 7(f). When the second load attempts to commit, it also sees the non-zero
value of the coherence exception flag and checks the forward progress flag. Seeing
that this flag is also non-zero, the pipeline is flushed and all counters and flags in
the MAT are reset. Execution resumes with the second load instruction.

6. BUILDING A LIGHTWEIGHT OUT-OF-ORDER CORE

In the previous sections, we have discussed how to build an OOO core with low
power and area overhead from relatively simple multi-threaded in-order cores. For
a system that aims for a different balance between single-thread performance and
aggregate throughput, the choice of a baseline core may be between larger, higher
performance in-order cores, or small and low power OOO cores. Implementing a
dedicated OOO core using the same area-efficient structures employed by Federation
allows designers to build a lightweight OOO core with competitive performance and
lower power relative to a traditional OOO core.

Compared to a federated core, a dedicated lightweight core has some important
advantages. Since it is designed from the ground up for OOO execution, there is
no need for extra pipeline stages in the frontend for copying values between cores.
The number of ports in the underlying register file is no longer a limiting factor, so
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Parameter Scalar IO Federated IO 2-way OOO 4-way OOO

Active List - - 32 128

Issue Queue - - 16 32

Load-Store Queue - - 16 64
Integer ALUs 1 2 2 4

FPUs 1 2 2 4

Data Cache 8KB 16KB 16KB 32KB

Instruction Cache 16KB 32KB 32KB 32KB
Unified L2 Cache 256KB 256KB 256KB 2MB

Branch Target Buffer - 512 (NLS) 512 4K

Direction Predictor not-taken 2K bimodal 2K bimodal 16K tournament

Memory 100 Cycles, 64-Bit

Table III. Simulator parameters for the different core types. The federated and lightweight cores

have the same sized resources as the dedicated 2-way core. Note that the federated and lightweight
cores use an MAT instead of an LSQ, and thus the number of loads and stores is limited by the
size of the Active List rather than the size of the LSQ.

there is no possibility of bank conflicts occurring. Also, because it does not use two
separate register files from two distinct cores, there is no need for an extra cycle
of latency for writing values to both register files. The biggest advantage of the
lightweight core, however, is that adding multiple rename table checkpoints is more
easily achieved, making it feasible for branch recovery to occur before the commit
stage.

In the following sections, we will evaluate such a lightweight OOO core that can
fetch, decode, issue and retire two instructions per cycle. For systems that need
higher performing cores or are so area constrained that adding a traditional high-
performance OOO core is not an option, adding a lightweight core that is small,
low-power, and still relatively fast might be an attractive alternative.

7. SIMULATION SETUP

We evaluate our design using a simulator based on the SimpleScalar 3.0 frame-
work [Burger et al. 1996] with Wattch extensions [Brooks et al. 2000]. For the OOO
cores, our simulator models separate integer and floating point issue queues, load-
store queues and active lists, and assumes that the scheduler receives the hit/miss
signal from the cache one cycle before the data payload [Skadron et al. 2003]. The
pipeline has been expanded from the 5-stage pipeline of the baseline simulator to
faithfully model the power and performance effects of the longer frontend pipelines.
When simulating the MAT, our simulator allows loads to issue in the presence of
unresolved stores. In the case that a memory order violation occurs, the pipeline
is flushed when the offending load attempts to commit.

Wattch has been modified to model the correct power of the separately sized issue
queues, load-store queues and active lists. Additionally, we accurately model the
power of misspeculation in the active lists. Static power has been adjusted to be
25% of maximum power, which is closer to recently reported data [Mesa-Martinez
et al. 2007].

We use the full SPEC2000 suite with reference inputs compiled for the Alpha
instruction set. The Simpoint [Sherwood et al. 2002] toolkit was used to select rep-
resentative 100 million instruction traces from the overall execution of all SPEC2000
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Subscriber Slots Change in IPC

1 -0.55%

2 -0.25%

4 +0.05%
8 0.00%

Table IV. Impact on harmonic mean IPC of the number of subscriber slots in the subscription-
based IQ, relative to a traditional IQ.

benchmarks. For each run the simulator was warmed up for 10 million instruction to
avoid startup effects. When presenting averages across the entire benchmark suite,
we weigh all benchmarks equally by first taking the average across the multiple
reference inputs for those benchmarks that have them.

The federated core is compared against five other cores: the baseline scalar, in-
order core from which the federated core is built; a 2-way in-order core, designated
federated in-order, built from two scalar cores; the lightweight 2-way OOO core;
and traditional, dedicated 2-way and 4-way OOO cores. The simulation parameters
for the different cores are listed in Table III. Although the in-order cores are highly
multi-threaded, the simulations run only a single thread, since this represents the
best case for single-thread latency. Note that the smaller L2 for the small cores
represents a single tile of a much larger L2, to simulate the fact that these cores
will not be the only cores active on the chip and thus do not have exclusive use of
the whole L2.12

8. RESULTS

We first present results from sensitivity studies of the changes to the major struc-
tures introduced earlier. To isolate the performance impact of each feature and to
avoid artifacts due to clustering, we evaluate each feature separately in the tradi-
tional, dedicated 2-way OOO core.

Table IV shows that restricting the number of subscription slots in each IQ entry
has very little impact on overall performance. We attribute this to the fact that
the majority of dynamic instructions have only a single consumer [Butts and Sohi
2002], and that only a fraction of those consumers are in the IQ at the same time
as their producers. Based on these results, each entry in the federated core has two
subscription slots. Figure 8 shows the scaling behavior of the subscription-based
IQ compared to a traditional IQ, as well as the impact of using pseudo-random
scheduling instead of oldest-first scheduling. The impact of both changes is very
small for all configurations, which is in agreement with previous work [Sassone
et al. 2007]. The largest combination of IQ and AL shows only a 1.5% difference in
absolute performance between the best and worst configurations.

The use of the MAT allows most loads to execute earlier than they would have
with a traditional LSQ, but at the cost of additional pipeline flushes due to both
true memory order violations and false positives from the limited size of the hash
table. Figure 9 shows the performance of the baseline core using either a MAT,

12We also simulated all cores with a 32MB L2 cache and verified that while absolute performance
improves by about 20%, this occurs across the board, so that the relative performance between

the federated and the dedicated OOO cores changes by less than 0.9%

ACM Transactions on Architecture and Code Optimization, 2010.



22 · M. Boyer, D. Tarjan, and K. Skadron

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

4/8 4/16 8/16 8/32 16/32 16/64 32/64 32/128 64/128 64/256

IQ size / AL size

IP
C
 I
m
p
ro
v
e
m
e
n
t

Traditional Pseudorandom Subscription Pseudorandom + Subscription

Fig. 8. Relative increase in harmonic mean IPC for different IQ designs as the sizes of the IQ
and the AL are increased. By default, designs use oldest-first scheduling and a CAM-based
IQ. Designs labeled “Pseudorandom” instead use pseudo-random scheduling and designs labeled

“Subscription” instead use a subscription-based IQ. The percent improvement in IPC is relative
to the “Traditional” configuration with a 4-entry IQ and an 8-entry AL.

Sharing Degree Change in IPC

2 0.00%

4 -0.04%

8 -0.14%
16 -0.37%

Table V. Impact on harmonic mean IPC of sharing the higher order bits of counters in the MAT.

SVW, or LSQ. As the sizes of of the hash tables are increased, the false positives
are reduced and essentially only the true memory order violations remain. Note
that since both the SVW and the MAT place no restrictions on the number of loads
and stores in the pipeline, even a 1-entry SVW or MAT can have as many loads
simultaneously in flight as there are AL entries. The MAT and SVW have almost
exactly the same performance and both use much less hardware than the LSQ. As
each entry of the SVW is 16 bits and each entry in the MAT is only 6 bits, the
MAT provides the best performance for a given amount of hardware. Since we
would need a 16-entry LSQ to outperform even the smallest MAT, the tradeoff of
hardware overhead versus performance is a very favorable one.

As discussed in Section 5.2, the MAT can save even more hardware by sharing
most bits of each counter among neighboring entries in the hash table. Table V
shows the impact on performance as we increase the number of counters sharing
one set of upper bits. Since the performance impact is minimal, for the federated
core we share one set of upper bits between eight entries. Thus, for a 32-entry
instruction window, each MAT entry only uses 1 + 4

8
bits for the counter and an

additional 1
8

bit for the shared exception bit (ignoring the hardware required for
coherence support).

Figure 10 shows the impact on performance of the individual design changes of the
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increased. The lines for the SVW and MAT are almost indistinguishable.

federated core. Using the dedicated two-way OOO core as a baseline, each energy-
or complexity-reducing feature is enabled individually to show its (negative) impact
on overall performance. Most of the individual limitations have only a very small
effect on performance; commit-time branch recovery causes the largest decrease in
harmonic mean IPC at 3.2%.

Figure 11 shows the cumulative performance impact of these same design changes.
Moving from left to right, each feature is enabled and remains on as subsequent fea-
tures are enabled. Note that the cumulative effect of these changes (6.9% reduction
in harmonic mean IPC) is greater than the sum of their individual contributions
(4.0% reduction).

To separate out the impact of those features that might be applied to a traditional
OOO core from the extra constraints imposed by federating two scalar cores, the
three constraints that are a direct consequence of combining two distinct cores
(increased fetch latency, register bank contention, and clustered ALUs) are shown
on the left of the figures. As described in Section 6, the lightweight OOO core
differs from the federated OOO core in that it does not suffer from these three
limitations, and also does not wait until the commit stage to recover from branch
mispredictions.

8.1 Other Points in the Design Space

The design chosen for the federated core represents only one point in a whole spec-
trum of possible designs. We have aimed for a balance between minimizing extra
area and maximizing performance, but would also like to discuss some alternative
design choices using the techniques we have presented that either provide greater
area savings or increased performance. Commit time branch prediction recovery has
a large negative performance impact on our design. The design tradeoff here would
be to limit the number of unresolved branches in the AL at any given time and
add a small number of shadow rename maps, which are saved on each branch and
restored on a branch misprediction, to allow OOO branch recovery at writeback.
Our experiments (not shown) reveal that adding only two shadow rename maps
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Fig. 11. Cumulative reduction in harmonic mean IPC as each feature/limitation of Federation is
enabled and left on, moving from left to right. The baseline design is the dedicated two-way OOO
core. The rightmost bar represents the performance of the federated core.

(768 register bits overhead) provides most of the benefit of OOO branch recovery
and results in 5.1% better performance than the normal federated core.

One of the biggest additional structure of the federated core is the NLS branch
predictor. To save even more space, we considered moving branch prediction from
the fetch stage to the decode stage and only using a way predictor, reducing the
number of bits in each NLS entry to the logarithm of the number of ways in the
instruction cache. The target of direct branches would be calculated using the BAC,
which is used to verify branch targets in all designs, and the NLS predictor would
only predict which way of the set to read from the instruction cache. The most
common indirect branches (returns) would be predicted by the RAS; however, the
core would have to stall on other indirect branches. Using the way predictor would
preserve the power savings due to reading out only one way during most cycles, but
reduce the size of the NLS from 6,656 to 1,536 bits. While the performance impact
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Structure Size (bits) Area (mm2)

Branch Predictor (Direction Table) 4,096 0.017

Branch Predictor (Target Table) 6,656 0.031

Return Address Stack 256 0.001
Rename Tables 1,152 0.019

Free Lists 384 0.006

Active List 4,096 0.068

Instruction Queue (Wakeup) 176 0.023
Memory Alias Table 96 0.001

Inter Core Wires - 0.052

Total 16,912 0.2185

Table VI. Estimated area of extra structures required for Federation.

Pipeline Stage
Area (mm2)
Old New

Branch Prediction - 0.049

Fetch 1.307 1.307
Allocate/Rename - 0.026

Issue - 0.023
Execute 1.425 1.450

Writeback 1.097 1.122

Commit - 0.069

Table VII. Area of each pipeline stage of a

pair of in-order cores before and after adding

Federation. The Fetch and Writeback stages

include the instruction and data caches, re-

spectively. The active list and MAT are con-

sidered part of the Commit stage.

Core Type Area (mm2)

1-way in-order 1.739
1-way in-order MT 1.914

Federated 2-way OOO 4.047
Lightweight 2-way OOO 3.946

2-way OOO 5.067

4-way OOO 11.189
Federated 4-way OOO 8.897

8KB L1 Cache 0.305
16KB L1 Cache 0.609
32KB L1 Cache 1.219

Table VIII. Estimated area of different core
types and cache sizes in 45nm technology.
Core areas include L1 instruction and data
caches. The federated 4-way OOO core is
described in Section 9.

of moving branch prediction to the decode stage is only 0.5% on average, stalling
on non-return indirect branches affects some programs significantly.

8.2 Area Impact of Federation

Estimating the sizes of the different core types and the area overhead of Federation
is a difficult task, and we can only provide approximate answers without actually
implementing most of the features of the different cores in a specific design flow. To
estimate realistic sizes for the different units of a core, we measured the sizes of the
different functional units of an AMD Opteron processor in 130nm technology from
a publicly available die photo. We could only account for about 70% of the total
area, the rest being x86-specific, system level circuits, or unidentifiable. We scaled
the functional unit areas to 45nm, assuming a 0.7 scaling factor per generation. The
sizes of the different cores were then calculated from the areas of their constituent
units, scaled with capacity and port numbers.13

The area of the federated core was calculated by adding the areas of all the major
new functional units, shown in Table VI, to the area of two scalar in-order cores.

13We do not account for the area of the decode logic, because decoding x86 instructions is sig-
nificantly more complicated than decoding Alpha instructions. This hurts Federation slightly,

because its relative area overhead appears larger than it would be if we accounted for decode area.
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Fig. 12. IPC of the dedicated 2-way OOO core and the federated OOO core on the floating point
benchmarks from the SPEC2000 suite, normalized to the IPC of the baseline in-order core.
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Fig. 13. IPC of the dedicated 2-way OOO core and the federated OOO core on the integer
benchmarks from the SPEC2000 suite, normalized to the IPC of the baseline in-order core.

We estimated the area needed by the major inter-core wiring listed in Table II by
calculating the width of the widest new unit (the integer and floating point rename
tables laid out side-by-side) and using the same 280nm wire pitch as used by İpek
et al. [2007]. In contrast to their work, which has a significant amount of extra area
devoted to new inter-core wires, the area used by the wires for federating two cores
is only 0.052mm2, since the wires do not have to cross over multiple large cores,
but only connect two immediately adjacent small cores. The estimated area of each
pipeline stage before and after adding Federation capability is shown in Table VII,
and the total area of each different core design is shown in Table VIII.14 Based on
these estimates, the area overhead of adding Federation to a pair of multi-threaded
in-order cores is only 5.7%.

8.3 Overall Performance and Energy Efficiency Impact of Federation

The performance of the federated OOO core relative to the baseline in-order core
and the dedicated 2-way OOO core is shown in Figures 12 and 13 for the floating

14It is interesting to note that the ratio of the area of the 4-way OOO core to the area of the
in-order core is close to the 5-to-1 ratio found by Carmean [2007], even though our assumptions

and baseline designs are somewhat different.
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Fig. 14. Harmonic mean IPC.

point and integer benchmarks in the SPEC2000 suite, respectively. The perfor-
mance of the federated core is very similar to that of the dedicated OOO core for
the floating point benchmarks. The federated core actually provides slightly higher
performance on three benchmarks (swim, mgrid, and applu), most likely due to
the MAT allowing loads to execute earlier than in a traditional design. Based on
weighted harmonic mean IPC, the federated core provides 124% higher performance
than the baseline scalar core and 3.7% lower performance than the dedicated OOO
core for the floating point benchmarks.

Unfortunately, the federated core does not come as close to matching the per-
formance of the dedicated OOO core on the integer benchmarks. Much of the
performance gap is most likely due to the combination of two factors: more branch
mispredictions, due to the use of a simpler branch predictor; and a larger branch
misprediction penalty, due to the longer pipeline and the commit-time branch re-
covery. The federated core performs particularly poorly on bzip for two of its
three reference inputs. These benchmark and input pairs exhibit the most frequent
store-to-load forwarding events on the traditional core and so are particularly im-
pacted by the lack of forwarding hardware. The federated core provides 75% higher
performance than the baseline scalar core and 12.8% lower performance than the
dedicated OOO core for the integer benchmarks.

The average performance of the six different core types is shown in Figure 14,
with their average power consumption shown in Figure 15. The 4-way OOO core
achieves 68% higher IPC than the federated OOO core but uses about three times as
much power, while the dedicated 2-way OOO core achieves 8.4% higher performance
than the federated OOO core but dissipates 30% more power. The lightweight OOO
core achieves 8.8% better performance than the federated OOO core with only a
fraction of a percent higher power consumption. The lightweight core also performs
1.7% worse than the dedicated core on the integer benchmarks, but performs 2.7%
better on the floating point benchmarks, mostly due to the MAT allowing loads
to execute early. The dedicated in-order core and the federated in-order core have
substantially lower performance than the federated OOO core, which is not fully
offset by their lower power consumption. This can be partially attributed to the
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Watt
), computed using harmonic mean performance and power values

and normalized to federated OOO.

fact that all cores—except for the 4-way OOO core, which has larger caches—have
similar amounts of leakage in their caches and thus the savings in active power are
offset to some degree by the static leakage power.

Figure 16 shows the average energy efficiency in BIPS3

Watt
of the different cores.15

The high-performance 4-way OOO core has a large advantage over the smaller
cores in SPECfp, because it is able to use its higher power to achieve substantially
better performance. On the other hand, it provides much lower energy efficiency in
SPECint, because its higher power comes with a much smaller performance gain.
The dedicated 2-way OOO core has better efficiency than the federated OOO core
in SPECint, but lower efficiency in SPECfp. The lightweight OOO core has higher

15 BIPS3

Watt
is like ED

2 in that both are voltage-independent metrics to capture the energy cost
required for a particular performance level. We prefer the BIPS-based metric because (unlike

ED
2) larger values imply better results.
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Fig. 17. Area-energy efficiency ( BIPS3

Watt·mm2
), computed using harmonic mean performance and

power values and normalized to federated OOO.

energy efficiency than the federated core, thanks to its higher performance and
essentially equivalent power dissipation; it also provides higher efficiency than the
dedicated 2-way OOO core. The two in-order cores have the lowest energy efficiency,
even though they have the lowest absolute power consumption. Once again, this is
mostly due to leakage power, which penalizes cores with longer execution times.

To measure both the energy- and area-efficiency of the different cores, Figure 17

shows the BIPS3

Watt·mm2 of the different configurations.16 The purpose of this metric

is to account for the area cost of attaining a certain BIPS3

Watt
value. In fact, this

metric does not even show Federation’s true benefits, since most of the area of
the federated core is reused from the underlying scalar cores, whereas the area of
the dedicated cores must be cannibalized from the existing cores. Nevertheless, in

terms of BIPS3

Watt·mm2 , the lightweight OOO core outperforms the federated OOO core
by 32%, while the federated OOO core outperforms the dedicated, traditional 2-way
OOO core by 25% and the 4-way core by 85%. In terms of just area-performance
efficiency (data not shown), the federated core provides approximately equivalent
BIPS3

mm2 as the dedicated 2-way OOO core, while the lightweight and 4-way cores

provide 32% and 70% better BIPS3

mm2 than the federated core.

9. FEDERATING 2-WAY CORES

In the previous section we explored federating two multi-threaded scalar cores into
an OOO core, based on the assumption that scalar cores were the most efficient
use of area for throughput. There have been several recent designs [Johnson and
Nawathe 2007] that employ 2-way in-order cores, even when the power budget is
very limited. Reasons for choosing 2-way cores instead of scalar cores might in-
clude an inability to include a single high-performance core along with the multiple
throughput cores, or under-utilization of expensive structures like the data caches

16The results for the “Scalar IO” core are based on the area of the single-threaded scalar core

shown in in Table VIII, not the multi-threaded core, since only a single thread is executing.
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and floating-point units. Such systems need the higher single-thread performance
a 2-way core can offer.

For designs that use 2-way in-order cores as their baseline, we explored federating
two of these cores into a 4-way OOO core. While all the new structures we intro-
duced for Federation can be scaled to support a 4-way core, we add improvements
to some structures to enable both higher performance and energy-efficiency when
scaled. The estimated area of the federated 4-way core is given in Table VIII.

9.1 Changes to Federation Structure

Many high performance OOO cores support predicting multiple branches per cycle.
While NLS can implicitly jump over non-taken branches, we do not extend either
the direction or NLS predictor to produce multiple predictions per cycle.

Commit time branch recovery was already the biggest single performance cost in
the 2-way federated core, and would have imposed a 7.3% performance penalty on
the 4-way federated core (data not shown). Changing the processor to allow OOO
branch recovery requires a small number of rename map checkpoints, as well as
logic in the rename stage that steers updates of the rename map to the appropriate
branch checkpoint. We found that four branch checkpoints delivered performance
almost equivalent to having no limit to the number of branches in the AL.

Simply scaling the subscription-based issue queue to support 4-way issue would
require doubling both the number of read and write ports as well as extending the
arbitration logic to support issuing four instructions to the different ALUs. To
reduce the number of ports required as well as the complexity of the arbitration
logic, we use ideas from Tseng and Asanovic [2006] to partition the issue queue
among the issue ports in a fixed manner. For a federated core of 2-way baseline
cores, the instruction queue is partitioned into four equal partitions. Each partition
can only receive and issue a single instruction per cycle, but receives wakeup signals
from all partitions. Instructions are assigned to issue queue partitions at rename
time primarily based on which ALU type is assigned to which issue port, and
secondarily on a load-balancing heuristic. As with load-balancing between cores
and selecting among ready instructions, we choose the simplest mechanism possible
of distributing instructions round-robin to partitions with empty slots.

Unlike issue queues in clustered architectures, which are distributed among the
different clusters, assigning an instruction to a particular partition of the instruction
queue does not mean a fixed assignment to a fixed ALU on a fixed core. For the
case of a federated 4-way core, the partitioned instruction queue steers instructions
to the two cores based on how many instructions are being issued in any given
cycle. This is accomplished by taking the ready signals from the four partitions
and feeding them into a four-entry priority encoder. The first two partitions with
ready instructions get to execute their instructions on core zero, while the next
two partitions execute their instructions on core one. For most benchmarks this
steering policy means that the great majority of instructions are executed on core
zero and do not incur any extra latency when sending or receiving values from the
load/store unit. Because the ready information for instructions in the issue queue
has to be available before select can occur, the inter-partition priority encoder can
operate in parallel to instruction select and not impact the critical path.

An issue that parallels the problems of the issue queue is the increasing number
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Parameter 2-way IO 4-way OOO

Active List none 128

Issue Queue none 32

Load-Store Queue none 64
Data Cache 32KB 64KB

Instruction Cache 32KB 64KB

Unified L2 Cache 2MB 2MB

Branch Target Buffer 512 4K
Direction Predictor 2K bimodal 16K tournament

Memory 150 Cycles, 64-Bit

Branch Misprediction Penalty 16 Cycles minimum

Table IX. Simulator parameters for the 2-way in-order and 4-way out-of-order cores.

of ports on the register file. While the number of read ports required by Federation
is matched by the underlying cores, the number of write ports is not. To avoid
having to increase the number of write ports, we partition the unified register file
between the different functional units, as proposed by Kucuk et al. [2003]. Using
the banked register file of the underlying core, we assign one bank per issue port,
reducing the number of write ports required to just one per bank.

Because the 4-way core can still only issue one load and one store per cycle, the
MAT retains the same number of ports as the 2-way federated core. To support
a larger number of memory instructions in flight without too many false positive
aliasing events, we increase the number of entries in the MAT from 32 to 128.

9.2 Simulation Setup

The simulation infrastructure described in Section 7 was also used for this set of
experiments. The resources of the dedicated 2-way in-order and 4-way OOO cores
are shown in Table IX. To reflect the greater emphasis on single-thread performance
that a design using 2-way in-order cores might have, we substantially increased the
pipeline depth of all of the core types to more accurately represent designs that aim
at achieving higher frequencies.

We compare the 4-way federated core against five other cores: the scalar and
2-way in-order cores used as the baseline for the 2-way and 4-way federated cores,
respectively; the lightweight 2-way OOO core; and the dedicated 4-way OOO core.
The resources of the lightweight core have been scaled to match those of the the
dedicated 4-way OOO core.

9.3 Results

Figure 18 shows the relative performance and energy efficiency of the six core types.
The 4-way federated core achieves performance only 11% worse than the dedicated

4-way OOO core. Comparing the BIPS3

Watt
of the different cores shows that the 4-way

federated core provides 7.3% better energy efficiency than the dedicated 4-way core.
This result shows that even large OOO cores can benefit significantly from more
power efficient structures, as long as they do not impact performance too heavily.

The changes to the Federation structures outlined in Section 9.1 impact perfor-
mance as follows: the enlarged MAT boosts performance by 1.0% due to fewer false
positive memory aliasing events; the partitioned instruction queue has only a neg-
ligible impact on average performance; and the introduction of branch checkpoints
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Fig. 18. Harmonic mean IPC and BIPS3

Watt
, normalized to federated 4-way OOO.

improves performance by 7.8% and is the single largest contributor to the improved
performance of the 4-way federated core.

10. CONCLUSIONS AND FUTURE WORK

Manycore chips of dozens or more simple but multi-threaded cores will need the
ability to cope with limited thread count by boosting the per-thread performance.
This paper shows how 2-way OOO capability can be built from very simple, in-order
cores, with performance 99% better than the in-order core, 21% lower average power
than a dedicated 2-way OOO core, and competitive energy efficiency compared to
a 2-way OOO core. Using a subscription-based issue queue and eliminating the
Load-Store Queue in favor of the Memory Alias Table, we have shown that no
major CAM-based structures are needed to make an OOO pipeline work. In fact,
these same insights can be used to design a new, more efficient, dedicated OOO
core, as the lightweight OOO results show. We have also shown that the techniques
of Federation can be applied to higher performance 2-way in-order cores to achieve
performance close to that of a dedicated high-performance 4-way OOO core.

As mentioned in Section 2, the structure of Federation was chosen with the lessons
of clustering in mind. As such, we designed Federation without further plans for
horizontally aggregating more than two cores into a single very wide core. For
higher single-thread performance, the combination of Federation with techniques
that can effectively shorten the critical path — such as runahead execution [Mutlu
et al. 2003], sophisticated pre-fetchers [Ganusov and Burtscher 2006], or dynamic
optimization [Almog et al. 2004] — seems to be the most fruitful path to pursue. An
advantage of many such techniques is their toleration of infrequent or long latency
communication with the main core, which makes it much easier to implement them
using multiple cores of a manycore processor.

The most important advantage of Federation is that it can be added to a many-
core architecture without sacrificing the ability to use the constituent in-order
cores as multi-threaded, throughput-oriented cores. Federation requires several
new structures, but with very low area overhead—about 1.3KB of new SRAM ta-
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bles and less than 0.7KB of new register-type structures in the pipeline per pair of
cores—only 5.7% area overhead per pair. Put another way, this means that for a
set of 32 scalar cores, the area of Federation for each pair only adds an aggregate
area equivalent to 0.91 cores or 0.57 MB of L2 cache. For 2-way in-order cores with
branch prediction the relative area overhead is even less. As a result, Federation

actually provides greater energy efficiency per unit area: 25% better BIPS3

Watt·mm2 than
a dedicated 2-way OOO core, and 85% better than a 4-way OOO core!

The option of adding Federation therefore removes the need to choose between
high throughput with many small cores or high single-thread performance with
aggressive OOO cores and the associated problems of selecting a fixed partitioning
among some combination of these. This is particularly helpful in the presence of
limited parallelism as it allows a manycore chip to trade off throughput for latency
on a very fine-grained level at runtime. Federation thus allows manycore chips
to give higher performance across a wider spectrum of workloads with different
amounts of TLP, as well as deal with workloads that have different amounts of
parallelism during different phases of execution.
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