
Power Issues Related to Branch Prediction

Dharmesh Parikh
�
, Kevin Skadron

�
, Yan Zhang

�
, Marco Barcella

�
, Mircea R. Stan

�
Depts. of

�
Computer Science and

�
Electrical and Computer Engineering

University of Virginia
Charlottesville, VA 22904�

dharmesh,skadron � @cs.virginia.edu,
�
yz3w,mb6nj,mrs8n � @ee.virginia.edu

Abstract

This paper explores the role of branch predictor organiza-
tion in power/energy/performance tradeoffs for processor
design. We find that as a general rule, to reduce overall en-
ergy consumption in the processor it is worthwhile to spend
more power in the branch predictor if this results in more
accurate predictions that improve running time. Two tech-
niques, however, provide substantial reductions in power
dissipation without harming accuracy. Banking reduces the
portion of the branch predictor that is active at any one
time. And a new on-chip structure, the prediction probe de-
tector (PPD), can use pre-decode bits to entirely eliminate
unnecessary predictor and branch target buffer (BTB) ac-
cesses. Despite the extra power that must be spent access-
ing the PPD, it reduces local predictor power and energy
dissipation by about 45% and overall processor power and
energy dissipation by 5–6%.

1. Introduction
This paper explores tradeoffs between power and per-

formance that stem from the choice of branch-predictor or-
ganization, and proposes some new techniques that reduce
the predictor’s power dissipation without harming perfor-
mance. Branch prediction has long been an important area
of study for micro-architects, because prediction accuracy
is such a powerful lever over performance. Power-aware
computing has also long been an important area of study,
but until recently was mainly of interest in the domain
of mobile, wireless, and embedded devices. Today, how-
ever, power dissipation is of interest in even the highest-
performance processors. Laptop computers now use use
high-performance processors but battery life remains a con-
cern, and heat dissipation has become a design obstacle as
it becomes more difficult to developing cost-effective pack-
ages that can safely dissipate the heat generated by high-
performance processors.

Copyright c
�

2002 IEEE. Published in the Proceedings of the 8th International Symposium on High-Performance Computer Architecture (HPCA 2002), February, 2002, Cambridge, Ma. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

While some recent work has explored the power-
performance tradeoffs in the processor as a whole and in
the memory hierarchy, we are aware of no prior work that
looks specifically at issues involving branch prediction. Yet
the branch predictor, including the BTB, is the size of a
small cache and dissipates a non-trivial amount of power—

10% or more of the total processor’s power dissipation—
and its accuracy controls how much mis-speculated execu-
tion is performed and therefore has a substantial impact on
energy. For this reason, it is important to develop an under-
standing of the interactions and tradeoffs between branch
predictor organization, processor performance, power spent
in the predictor, and power dissipation in the processor as a
whole.

Reducing power dissipated in the branch predictor can
actually have harmful effects. If reducing the power spent in
the predictor comes at the expense of predictor accuracy and
hence program performance, this localized reduction may
actually increase total power (i.e., energy) dissipated by the
processor by making programs run longer. Fortunately, not
all the techniques that reduce localized power dissipation
in the branch predictor suffer such problems. For exam-
ple, breaking the predictor into banks can reduce power
by accessing only one bank per cycle and hence reducing
precharge costs, and banking need not have any effect on
prediction accuracy. Eliminating some branch-predictor ac-
cesses altogether is an even more powerful way to reduce
power.

Overall, there are four main levers for controlling the
branch predictor’s power characteristics:

1. Accuracy: For a given predictor size, better prediction accu-
racy will not change power dissipation within the predictor,
but will make the program run faster and hence reduce total
energy.

2. Configuration: Changing the table size(s) and can reduce
power within the predictor but may affect accuracy.

3. Number of Lookups: Reducing the number of lookups into
the predictor is an obvious source of power savings.

4. Number of Updates: Reducing the number of predictor up-
dates is another obvious source, but is a less powerful lever
because mis-speculated computation means that there are
more lookups than updates, and we do not further consider it
here.

Branch predictors predict conditional branches taken or not
taken according to the outcome of the previous ones. This
state must be kept in some sort of on-chip storage. All the
tables used to store information—whether caches, branch
predictors, or BTBs—consist of essentially the same struc-
ture: a memory core of SRAM cells accessed via row and
column decoders. Correctly modeling such array structures

is very important for accurate estimations of performance
and power consumption.

1.1. Contributions
This work extends the Wattch 1.02 [3] power/perfor-

mance simulator to more accurately model branch-predictor
behavior, and then uses the extended system to:

� Characterize the power/performance characteristics of differ-
ent predictor organizations. As a general rule, to reduce over-
all energy consumption it is worthwhile to spend more power
in the branch predictor if it permits a more accurate organi-
zation that improves running time.

� Explore the best banked predictor organizations. Banking
improves access time and cuts power dissipation at no cost
in predictor accuracy.

� Propose a new method to reduce lookups, the prediction
probe detector (PPD). The PPD can use compiler hints and
pre-decode bits to recognize when lookups to the BTB and/or
direction-predictor can be avoided. Using a PPD cuts power
dissipation in the branch predictor by over 50%.

� Revisit and develop new techniques for speculation control
via pipeline gating [16]. Even despite adaptive speculation
control based on recent predictor accuracy, pipeline gating
has little effect for today’s more sophisticated and accurate
predictors.

Although a wealth of dynamic branch predictors have
been proposed, we focus on power issues for a represen-
tative sample of the most widely used predictor types: bi-
modal [23], GAs/gshare [17, 29], PAs [29], and hybrid [17].
We focus mostly on the branch predictor that predicts di-
rections of conditional branches, and except for eliminating
unnecessary accesses using the PPD, do not explore power
issues in BTB. The BTB has a number of design choices
orthogonal to choices for the direction predictor. Exploring
these is simply beyond the scope of this paper. Please note
that data for the “predictor power” includes power for both
the direction predictor and the BTB.

Our goal is to understand how the different branch-
prediction design options interact at both the performance
and power level, the different tradeoffs that are available,
and how these design options affect the overall processor’s
power/performance characteristics. Our hope is that these
results will provide a road-map to help researchers and de-
signers better find branch predictor organizations that meet
various power/performance design goals.

1.2. Related Work
Some prior research has characterized power in other

parts of the processor. Pipeline gating was presented by
Manne et al. [16] as an efficient technique to prevent mis-
speculated instructions from entering the pipeline and wast-
ing energy while imposing only a negligible performance
loss. Albonesi [1] explored disabling a subset of the ways
in a set associative cache during periods of modest cache
activity to reduce cache energy dissipation. He explores the
performance and energy implications and shows that a small
performance degradation can produce significant reduction
in cache energy dissipation. Ghose and Kamble [10] look

at sub-banking and other organizational techniques for re-
ducing energy dissipation in the cache. Kin et al. [15] and
Tang et al. [26] describe filter caches and predictive caches,
which utilize a small “L0” cache to reduce accesses and
energy expenditures in subsequent levels. Our PPD per-
forms a somewhat analogous filtering function, although
it is not itself a branch predictor. Ghiasi et al. [9] rea-
soned that reducing power at the expense of performance
is not always correct. They propose that software, includ-
ing a combination of the operating system and user applica-
tions, should use a performance mechanism to indicate a de-
sired level of performance and allow the micro-architecture
to then choose between the extant methods that achieve
the specified performance while reducing power. Finally,
Bahar and Manne [2] propose an architectural solution to
the power problem that retains performance while reducing
power. The technique, called pipeline balancing, dynam-
ically tunes the resources of a general purpose processor
to the needs of the application by monitoring performance
within each application.

The rest of this paper is organized as follows. The next
section describes our simulation technique and our exten-
sions to the Wattch power model. Section 3 then explores
tradeoffs between predictor accuracy and power/energy
characteristics, and Section 4 explores changes to the
branch predictor that save energy without affecting perfor-
mance. Finally, Section 5 summarizes the paper.

2. Simulation Technique and Metrics
Before delving into power/performance tradeoffs, we de-

scribe our simulation technique, our benchmarks, and the
ways in which we improved Wattch’s power model for
branch prediction.

2.1. Simulator
For the baseline simulation we use a slightly modified

version of the Wattch [3] version 1.02 power-performance
simulator. Wattch augments the SimpleScalar [4] cycle-
accurate simulator (sim-outorder) with cycle-by-cycle
tracking of power dissipation by estimating unit capaci-
tances and activity factors. Because most processors today
have pipelines longer than five stages to account for renam-
ing and en-queuing costs like those in the Alpha 21264 [14],
Wattch simulations extend the pipeline by adding three ad-
ditional stages between decode and issue. In addition to
adding these extra stages to sim-outorder’s timing model,
we have made minor extensions to Wattch and sim-outorder
by modeling speculative update and repair for branch his-
tory and for the return-address stack [20, 21], and by chang-
ing the fetch engine to recognize cache-line boundaries. A
more important change to the fetch engine is that we now
charge a predictor and BTB lookup for each cycle in which
the fetch engine is active. This accounts for the fact that in-
structions are fetched in blocks, and that—in order to make
a prediction by the end of the fetch stage—the branch pre-
dictor structures must be accessed before any information is
available about the contents of the fetched instructions. This
is true because the instruction cache, direction predictor,

2

and BTB must typically all be accessed in parallel. Thus,
even if the I-cache contains pre-decode bits, their contents
are typically not available in time. This is the most straight-
forward fetch-engine arrangement; a variety of other more
sophisticated arrangements are possible, some of which we
explore in Section 4.

Processor Core
Instruction Window RUU=80; LSQ=40
Issue width 6 instructions per cycle:

4 integer, 2 FP
Pipeline length 8 cycles
Fetch buffer 8 entries
Functional Units 4 Int ALU, 1 Int mult/div,

2 FP ALU, 1 FP mult/div,
2 memory ports

Memory Hierarchy
L1 D-cache Size 64KB, 2-way, 32B blocks, write-back
L1 I-cache Size 64KB, 2-way, 32B blocks, write-back
L1 latency 1 cycles
L2 Unified,2MB,4-way LRU

32B blocks,11-cycle latency,WB
Memory latency 100 cycles
TLB Size 128-entry, fully assoc., 30-cycle miss

penalty
Branch Predictor

Branch target buffer 2048-entry, 2-way
Return-address-stack 32-entry

Table 1. Simulated processor configuration,
which matches an Alpha 21264 as much as
possible.

Unless stated otherwise, this paper uses the baseline con-
figuration as shown in Table 1, which resembles as much
as possible the configuration of an Alpha 21264 [14]. The
most important difference for this paper is that in the 21264
there is no separate BTB, because the I-cache has an inte-
grated next-line predictor [5]. As most processors currently
do use a separate BTB, our work models a separate, 2-way
associative, 2 K-entry BTB that is accessed in parallel with
the I-cache and direction predictor.

To keep in line with contemporary processors, for Wattch
technology parameters we use the process parameters for a���������

m process at 	�
�
 2.0V and 1200 MHz. All the re-
sults use Wattch’s non-ideal aggressive clock-gating style
(“cc3”). In this clock-gating model power is scaled linearly
with port or unit usage, and inactive units still dissipate 10%
of the maximum power.

We have also enhanced Wattch to account for power ex-
penditures in column decoders and to better identify the best
“square-ified” structure for the branch predictor. The col-
umn decoders increase power dissipation in the branch pre-
dictor by 10-15%, and this can be important when modeling
changes that increase the size or numbers of decoders, such
as with banking. Without a proper accounting for power
expended in the column decoders, comparators and drivers,
resulting conclusions might be incorrect. Accurate choice
of the form factor of data arrays is important for similar

reasons. Although we are accustomed to thinking of array
structures (branch predictors, caches etc.) with their logical
dimensions, their implementations is different and is based
on delay and energy considerations. The physical dimen-
sions are typically as square as possible so that the bitline
and wordline lengths are minimized. Details about these
modifications can be found in an extended version of this
paper [19].

2.2. Benchmarks
We evaluate the programs from the SPECcpu2000 [25]

benchmark suite. Basic branch characteristics are presented
in Table 2. Branch mispredictions also induce other nega-
tive consequences, like cache misses due to mis-speculated
instructions, but we do not treat those second-order ef-
fects here. All benchmarks were compiled using the Com-
paq Alpha compiler with the SPEC peak settings, and the
statically-linked binaries include all library code. Unless
stated otherwise, we always use the provided reference
inputs. We mainly focus on the programs from the in-
teger benchmark suite because the floating point bench-
marks have very good prediction accuracy and very few
dynamic branches. We use Alpha EIO traces and the EIO
trace facility provided by SimpleScalar for all our experi-
ments. This ensures reproducible results for each bench-
mark across multiple simulations. 252.eon and 181.mcf,
from SPECint2000, and 178.galgel and 200.sixtrack, from
SPECfp2000, were not simulated due to problems with our
EIO traces. All benchmarks were fast-forwarded past the
first 2 billion instructions and then full-detail simulation
was performed for 200 million instructions.

2.3. Metrics
The following metrics are used to evaluate and under-

stand the results.
� Average Instantaneous Power: The total power consumed

on a per-cycle basis. This metric is important as it directly
translates into heat and also gives some indication of current-
delivery requirements.

� Energy: Energy is equal to the product of the average power
dissipated by the processor and the total execution time. This
metric is important as it translates directly to battery life.

� Energy-Delay Product: This metric [11] is equal to the prod-
uct of energy and delay (i.e., execution time). Its advantage
is that it takes into account both the performance and power
dissipation of a microprocessor.

� Performance: We use the common metric of instructions per
cycle (IPC).

3. Performance-Power Tradeoffs Related to
Branch Prediction

3.1. Branch Predictors Studied
The bimodal predictor [23] consists of a simple pattern

history table (PHT) of saturating two-bit counters, indexed
by branch PC. This means that all dynamic executions of
a particular branch site (a “static” branch) will map to the

3

Dynamic Unconditional Dynamic Conditional Prediction Rate Prediction Rate
Branch Frequency Branch Frequency w/ Bimod 16K w/ Gshare 16K

gzip 3.05% 6.73% 85.87% 91.06%
vpr 2.66% 8.41% 84.96% 86.27%
gcc 0.77% 4.29% 92.03% 93.51%
crafty 2.79% 8.34% 85.88% 92.01%
parser 4.78% 10.64% 85.37% 91.92%
perlbmk 4.36% 9.64% 88.10% 91.25%
gap 1.41% 5.41% 86.59% 94.18%
vortex 5.73% 10.22% 96.58% 96.66%
bzip2 1.69% 11.41% 91.81% 92.22%
twolf 1.95% 10.23% 83.2% 86.99%
wupwise 2.02% 7.87% 90.38% 96.62%
swim 0.00% 1.29% 99.31% 99.68%
mgrid 0.00% 00.28% 94.62% 97.00%
applu 0.01% 0.42% 88.71% 98.95%
mesa 2.91% 5.83% 90.68% 93.31%
art 0.39% 10.91% 92.95% 96.39%
equake 6.51% 10.66% 96.98% 98.16 %
facerec 1.03% 2.45% 97.58% 98.70%
ammp 2.69% 19.51% 97.67% 98.31%
lucas 0.00% 0.74% 99.98% 99.98%
fma3d 4.25% 13.09% 92.00% 92.91%
apsi 0.51% 2.12% 95.24% 98.78%

Table 2. Benchmark summary.

same PHT entry. This paper models 128-entry through 16
K-entry bimodal predictors. The 128-entry predictor is the
same size as that in the Motorola ColdFire v4 [27]; 4 K-
entry is the same size as that in the Alpha 21064 [7] and is
at the point of diminishing returns for bimodal predictors,
although the 21164 used an 8 K-entry predictor [8]. The
gshare predictor [17], shown in Figure 1a, is a variation on
the two-level GAg/GAs global-history predictor [18, 29].
The advantage of global history is that it can detect and pre-
dict sequences of correlated branches. In a conventional
global-history predictor (GAs), a history (the global branch
history register or GBHR) of the outcomes of the � most re-
cent branches is concatenated with some bits of the branch
PC to index the PHT. Combining history and address bits
provides some degree of anti-aliasing to prevent destructive
conflicts in the PHT. In gshare, the history and the branch
address are XOR’d. This permits the use of a longer his-
tory string, since the two strings do not need to be concate-
nated and both fit into the desired index width. This paper
models a 4 K-entry GAs predictor with 5 bits of history; a
16 K-entry gshare predictor in which 12 bits of history are
XOR’d with 14 bits of branch address (this is the configu-
ration that appears in the Sun UltraSPARC-III [24]); a 32
K-entry gshare predictor, also with 12 bits of history; and a
32 K-entry GAs predictor with 8 bits of history. Instead of
using global history, a two-level predictor can track history
on a per-branch basis. In this case, the first-level structure
is a table of per-branch history registers—the branch his-
tory table or BHT—rather than a single GBHR shared by all
branches. The history pattern is then combined with some
number of bits from the branch PC to form the index into the
PHT. Figure 1b shows a PAs predictor. Local-history pre-
diction cannot detect correlation, because—except for un-
intentional aliasing—each branch maps to a different entry
in the BHT. Local history, however, is effective at exposing

patterns in the behavior of individual branches. The Intel
P6 architecture is known to use a local-history predictor, al-
though its exact configuration is unknown.This paper exam-
ines two PAs configurations: the first one has a 1 K-entry,
4-bit wide BHT and a 2 K-entry PHT; the second one has
a 4 K-entry, 8-bit wide BHT and a 16 K-entry PHT. Both
are based on the configurations suggested by Skadron et al.
in [22].

Because most programs have some branches that per-
form better with global history and others that perform bet-
ter with local history, a hybrid predictor [6, 17], Figure 1c
combines the two. It operates two independent branch pre-
dictor components in parallel and uses a third predictor—
the selector or chooser—to learn for each branch which of
the components is more accurate and chooses its prediction.
Using a local-history predictor and a global-history predic-
tor as the components is particularly effective, because it
accommodates branches regardless of whether they prefer
local or global history. This paper models four hybrid con-
figurations:

1. Hybrid 1: a hybrid predictor with a 4K-entry selector that
only uses 12 bits of global history to index its PHT; a global-
history component predictor of the same configuration; and
a local history predictor with a 1 K-entry, 10-bit wide BHT
and a 1 K-entry PHT. This configuration appears in the Alpha
21264 [14] and is depicted in Figure 1c. It contains 26 Kbits
of information.

2. Hybrid 2: a hybrid predictor with a 1 K-entry selector that
only uses 3 bits of global history to index its PHT; a global-
history component predictor of 2K entries that uses 4 bits of
global history; and a local history predictor with a 512 entry,
2-bit wide BHT and a 512 entry PHT. It contains 8 Kbits.

3. Hybrid 3: a hybrid predictor with an 8 K-entry selector that
only uses 10 bits of global history to index its PHT; a global-
history component predictor of 16K entries that uses 7 bits of

4

taken/not−taken

 PHT
(16K)

xor

branch address

GBHR

14

1412

(a)

taken/not−taken

branch address

BHT

 PHT

(b)

component #1
 (global)

component #2
 (local)

taken/not−taken

GBHR (12)

PHT
(4K) selector

(uses global hist)

PHT
(1K)PHT

(4K)

BHT
 (1K
 x10)

(c)

Figure 1. (a) A gshare global-history branch predictor like that in the Sun UltraSPARC-III. (b) A PAs
local-history predictor. (c) A hybrid predictor like that in the Alpha 21264.

global history; and a local history predictor with a 1 K-entry,
8-bit wide BHT and a 4 K-entry PHT. It contains 64 Kbits.

4. Hybrid 4: a hybrid predictor with an 8 K-entry selector that
only uses 6 bits of global history to index its PHT; a global-
history component predictor of 16K entries that uses 7 bits
of global history; and a local history predictor with a 1 K-
entry, 8-bit wide BHT and a 4 K-entry PHT. It also contains
64 Kbits.

Hybrid 2, 3, and 4 are based on configurations found to
perform well by Skadron et al. in [22].

3.2. Base Simulations for Integer Benchmarks
We now examine the interaction between predictor con-

figuration, performance, and power/energy characteristics.
In our discussion below, the term “average”, wherever it oc-
curs, means the arithmetic mean for that metric across all
the benchmarks simulated.

Figure 2 (left) presents the average branch predictor
direction accuracy for integer benchmarks, and Figure 2
(right) presents the corresponding IPC. For each predictor
type (bimodal, GAs, gshare, hybrid, and PAs), the predic-
tors are arranged in order of increasing size, and the arith-
metic mean is superimposed on each graph as a thicker and
darker curve. The trends are exactly as we would expect:
larger predictors get better accuracy and higher IPC, but
eventually diminishing returns set in. This is most clear
for the bimodal predictor, for which there is little benefit to
sizes above 4K entries. For the global-history predictors,
diminishing returns set in at 16K entries. Among different
organizations, gshare slightly outperforms GAs, and hybrid
predictors are the most effective at a given size. For exam-
ple, compare the 32 K-entry global predictors, hybrid 3 and
4, and the second PAs configuration: they all have 64 Kbits
total area, but the hybrid configurations are slightly better
on average and also for almost every benchmark.

Together Figure 3a and Figure 3b show that processor-
wide energy is primarily a function of predictor accuracy

and not energy expended in the predictor. For example, al-
though the energy spent locally in hybrid 3 and hybrid 4 is
larger than for a gshare predictor of 16 K-entry, the chip-
wide energy is almost the same. And the small or otherwise
poor predictors, although consuming less energy locally
in the predictor, actually cause substantially more chip-
wide energy to be consumed. The hybrid 4 predictor, for
example, consumes about 7% less chip-wide energy than
bimodal-4K despite consuming 13% more energy locally in
the predictor. This suggests that “low-power” processors
(which despite their name are often more interested in long
battery life) might be better off to use large and aggressive
predictors if the die budget can afford it. The best predictor
from an energy standpoint is actually hybrid 1, the 21264’s
predictor, which attains a slightly lower IPC but makes up
for the longer running time with a predictor of less than
half the size. Although hybrid 1 is superior from an en-
ergy standpoint, it shows less advantage on energy-delay;
the 64 Kbit hybrid predictors (hybrid 3 and hybrid 4) seem
to offer the best balance of energy and performance charac-
teristics.

The power data in Figure 4 shows that power dissipa-
tion in the predictor is mostly a function of predictor size,
and that unlike energy, power in the processor as a whole
tracks predictor size, not predictor accuracy. This is be-
cause power is an instantaneous measure and hence is un-
affected by program running time. Average activity outside
the branch predictor is roughly the same regardless of pre-
dictor accuracy, so predictor size becomes the primary lever
on overall power. Figure 4 also shows that if power dissipa-
tion is more important than energy, GAs 1 4K, gshare 16K,
or one of the smaller hybrid predictors is the best balance of
power and performance.

Finally, Figures 2, 3 and 4 also show data for individual
benchmarks. It is clear that the group crafty, gzip, vortex,
and gap, with high prediction rates, have high IPCs and cor-
respondingly low overall energy and energy-delay despite
higher predictor and total instantaneous power. The group

5

Bp r e d D ir e c tio n R a te

0 .7 3

0 .7 8

0 .8 3

0 .8 8

0 .9 3

0 .9 8

Bim
_ 1

2 8

Bim
_ 4

k

Bim
_ 8

k

Bim
_ 1

6 k

G A s _
1 _

4 k
_ 5

G A s _
1 _

3 2
k _

8

G s h
_ 1

_ 1
6 k

_ 1
2

G s h
_ 1

_ 3
2 k

_ 1
2

H y b
r id

_ 2

H y b
r id

_ 1

H y b
r id

_ 3

H y b
r id

_ 4

P A s _
1 k

_ 2
k _

4

P A s _
4 k

_ 1
6 k

_ 8

P r e d ic to r s

D
ir

e
c
ti

o
n

 P
re

d
ic

ti
o

n
 R

a
te

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

IP C

1 .1

1 .3

1 .5

1 .7

1 .9

2 .1

2 .3

B im
_ 1

2 8

B im
_ 4

k

B im
_ 8

k

B im
_ 1

6 k

G A s _
1 _

4 k
_ 5

G A s _
1 _

3 2
k _

8

G s h
_ 1

_ 1
6 k

_ 1
2

G s h
_ 1

_ 3
2 k

_ 1
2

H y b
r id

_ 2

H y b
r id

_ 1

H y b
r id

_ 3

H y b
r id

_ 4

P A s _
1 k

_ 2
k _

4

P A s _
4 k

_ 1
6 k

_ 8

P r e d ic to r s

IP
C

1 6 4 .G Z IP 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Figure 2. (a) Direction-prediction accuracy and (b) IPC for SPECint2000 for various predictor organi-
zations. For each predictor type, the predictors are arranged in order of increasing size along the
X-axis. The arithmetic mean is the dark curve in each of the graphs.

Bp re d E n e r g y

0 .1 9

0 .2 4

0 .2 9

0 .3 4

0 .3 9

0 .4 4

B
im

_ 1
2 8

B
im

_ 4
k

B
im

_ 8
k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H
y b

r id
_ 2

H
y b

r id
_ 1

H
y b

r id
_ 3

H
y b

r id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e A)

E
n

e
r
g

y
(J

o
u

le
s
)

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Ov e r a ll E n e r g y

2 .8

3

3 .2

3 .4

3 .6

3 .8

4

4 .2

4 .4

4 .6

B
im

_ 1
2 8

B
im

_ 4
k

B
im

_ 8
k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H
y b

r id
_ 2

H
y b

r id
_ 1

H
y b

r id
_ 3

H
y b

r id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e B)

E
n

e
r
g

y
(J

o
u

le
s
)

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Ov e r a ll E n e r g y D e la y

0 .2
0 .2 5
0 .3

0 .3 5
0 .4

0 .4 5

0 .5
0 .5 5
0 .6

0 .6 5
0 .7

B
im

_ 1
2 8

B
im

_ 4
k

B
im

_ 8
k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H
y b

r id
_ 2

H
y b

rid
_ 1

H
y b

r id
_ 3

H
y b

r id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e C)

E
n

e
r
g

y
 D

e
la

y
(J

o
u

le
s
*
s
e

c
)

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Figure 3. Energy expended in (a) the branch predictor and (b) the entire processor, and (c) energy-
delay for the entire processor for SPECint2000.

Bp r e d P o w e r

2

2 .5

3

3 .5

4

4 .5

Bim
_ 1

2 8

Bim
_ 4

k

Bim
_ 8

k

Bim
_ 1

6 k

G A s _
1 _

4 k
_ 5

G A s _
1 _

3 2
k _

8

G s h
_ 1

_ 1
6 k

_ 1
2

G s h
_ 1

_ 3
2 k

_ 1
2

H y b
r id

_ 2

H y b
r id

_ 1

H y b
r id

_ 3

H y b
r id

_ 4

P A s _
1 k

_ 2
k _

4

P A s _
4 k

_ 1
6 k

_ 8

P r e d ic to r s

P
o

w
e

r(
W

a
tt

s
)

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Ov e r a ll P o w e r

2 9

3 1

3 3

3 5

3 7

3 9

4 1

4 3

B im
_ 1

2 8

B im
_ 4

k

B im
_ 8

k

B im
_ 1

6 k

G A s _
1 _

4 k
_ 5

G A s _
1 _

3 2
k _

8

G s h
_ 1

_ 1
6 k

_ 1
2

G s h
_ 1

_ 3
2 k

_ 1
2

H y b
r id

_ 2

H y b
r id

_ 1

H y b
r id

_ 3

H y b
r id

_ 4

P A s _
1 k

_ 2
k _

4

P A s _
4 k

_ 1
6 k

_ 8

P r e d ic to r s

P
o

w
e

r(
W

a
tt

s
)

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty
1 9 7 .p a r s e r 2 5 3 .p e r lb m k 2 5 4 .g a p 2 5 5 .v o r te x
2 5 6 .b z ip 2 3 0 0 .tw o lf A v e r a g e

Figure 4. Power dissipation in (a) the branch predictor and (b) the entire processor for SPECint2000.

6

parser, twolf, and vpr, at the other extreme, have the exact
opposite properties. This merely reinforces the point that al-
most always there would be no rise (and in fact usually a de-
crease) in total energy if we use larger branch predictors to
obtain faster performance! We repeated these experiments
for SPECfp2000. The trends are almost the same, with
two important differences. First, because floating-point pro-
grams tend to be dominated by loops and because branch
frequencies are lower, these programs are less sensitive to
branch predictor organization. Second, because they are
less sensitive to predictor organization, the energy curves
for the processor as a whole are almost flat. Indeed, the
mean across the benchmarks is almost entirely flat. This
is because the performance and hence energy gains from
larger predictors are much smaller and are approximately
offset by the higher energy spent by larger predictors. De-
tailed plots can be found in an extended version of this pa-
per [19].

4. Reducing Power That Stems from Branch
Prediction

The previous section showed that in the absence of other
techniques, smaller predictors that consume less power ac-
tually raise processor-wide energy because the resulting
loss in accuracy increases running time. This section ex-
plores three techniques for reducing processor-wide energy
expenditure without affecting predictor accuracy. All re-
maining experiments use only the integer programs because
they represent a wider mix of program behaviors.We have
chosen a subset of seven integer benchmarks: gzip, vpr, gcc,
crafty, parser, gap and vortex. These were chosen from
our ten original integer benchmarks to reduce overall sim-
ulation times but maintain a representative mix of branch-
prediction behavior.

4.1. Banking
As shown by Jiménez, Keckler, and Lin [13], slower

wires and faster clock rates will require multi-cycle access
times to large on chip structures, such as branch predictors.
The most natural solution to that is banking. We used a
slightly modified version of Cacti [28] to determine the ac-
cess times for a banked branch predictor. We assume that
for any given access only one bank is active at a time; there-
fore banking not only saves us power spent in the branch
predictor but also reduces access time, as shown in Fig-
ure 5. We plot cycle times normalized with respect to the
maximum value, because achievable cycle times are ex-
tremely implementation-dependent and might vary signif-
icantly from the absolute numbers reported by Cacti. Bank-
ing might come at the cost of extra area, (for example due to
extra decoders) but exploring area considerations is beyond
the scope of this paper. The number of banks range from
one in case of smaller predictors of size 2 Kbits or smaller to
four in case of larger predictors of size 32 Kbits or 64 Kbits.
The number of banks for different branch predictor sizes is
given in Table 3.

Figures 6 and 7 show the average reduction in power
and energy for the branch predictor and for the overall pro-

Bp r e d C y c le T im e

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

2 5 6 1 k 2 k 4 k 8 k 1 6 k 3 2 k 6 4 k

Bp r e d S iz e (P H T)

P
o

w
e

r(
W

at
ts

)

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

N
o

rm
a

li
ze

d
 C

y
cl

e
 T

im
e

O ld Bp r e d P o w e r Ba n k e d Bp r e d P o w e r O ld C y c le T im e Ba n k in g C y c le T im e

Figure 5. Cycle time for a banked predictor.

No. of Banks
128bits 1
4Kbits 2
8Kbits 2
16Kbits 4
32Kbits 4
64Kbits 4

Table 3. Number of banks.

cessor with respect to the base simulation results. It can be
observed that the largest decrease in predictor power comes
for larger predictors. This is exactly as expected, since these
predictors are broken into more banks. The large hybrid
predictors do not show much difference, however, because
they are already broken into three components of smaller
sizes and banking cannot help much. Banking results in
modest power savings in the branch predictor, but only re-
duces overall power and energy by about 1%.

4.2. Reducing Lookups Using a PPD
A substantial portion of power/energy in the predictor is

consumed during lookups, because lookups are performed
every cycle in parallel with the I-cache access. This is un-
fortunate, because we find that the average distance between
control-flow instructions (conditional branches, jumps, etc.)
is 12 instructions. Figure 8 shows that 40% of conditional
branches have distance greater than 10 instructions, and
30% of control flow instructions have distance greater than
10 instructions. Jiménez et al. report similar data [13].
We also compared these results with gcc-compiled Sim-
pleScalar PISA binaries. The results were similar, so these
long inter-branch distances are not due to nops or predica-
tion.

This suggests that we should identify when a cache line
has no conditional branches so that we can avoid a lookup
in the direction predictor, and that we identify when a cache
line has no control-flow instructions at all, so that we can
eliminate the BTB lookup as well. If the I-cache, BTB, and
direction predictor accesses are overlapped, it is not suffi-
cient to store pre-decode bits in the I-cache, because they
only become available at the end of the I-cache access, after
the predictor accesses must begin.

Instead, we propose to store pre-decode bits (and possi-

7

Av e r a g e B p r e d P o w e r

0

2

4

6

8

1 0

1 2

B im
_ 1 2 8

B im
_ 4 k

B im
_ 8 k

B im
_ 1 6

k

G As _ 1 _ 4 k _
5

G As _ 1
_ 3 2 k _ 8

G s h _ 1 _ 1 6
k _ 1 2

G s h _ 1 _ 3 2 k _
1 2

H y b
r id

_ 2

H y b r id
_ 1

H y b r id
_ 3

H y b r id
_ 4

P As _ 1 k _ 2
k _ 4

P As _
4 k _ 1 6 k

_ 8

P r e d ic to r s

P
er

ce
nt

ag
e

Av e r a g e T o ta l P o w e r

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

B im
_ 1 2 8

B im
_ 4 k

B im
_ 8 k

B im
_ 1 6

k

G As _ 1 _ 4 k _
5

G As _ 1
_ 3 2 k _ 8

G s h _ 1 _ 1 6
k _ 1 2

G s h _ 1 _ 3 2 k _
1 2

H y b
r id

_ 2

H y b r id
_ 1

H y b r id
_ 3

H y b r id
_ 4

P As _ 1 k _ 2
k _ 4

P As _
4 k _ 1 6 k

_ 8

P r e d ic to r s

P
er

ce
nt

ag
e

Figure 6. Banking results: percentage reduction in branch-predictor power (left) and overall power
(right).

Av e r a g e B p r e d E n e r g y

0

2

4

6

8

1 0

1 2

B
im

_ 1
2 8

B i
m
_ 4

k

B i
m
_ 8

k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H y
b r
id
_ 2

H y
b r
id
_ 1

H y
b r
id
_ 3

H y
b r
id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e A)

P
e
r
c
e
n

ta
g

e

Av e r a g e T o ta l E n e r g y

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

B
im

_ 1
2 8

B i
m
_ 4

k

B i
m
_ 8

k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H y
b r
id
_ 2

H y
b r
id
_ 1

H y
b r
id
_ 3

H y
b r
id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e B)

P
e
r
c
e
n

ta
g

e

Av e r a g e E n e r g y D e la y

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

B
im

_ 1
2 8

B i
m
_ 4

k

B i
m
_ 8

k

B
im

_ 1
6 k

G
A
s _

1 _
4 k

_ 5

G
A
s _

1 _
3 2

k _
8

G
s h

_ 1
_ 1

6 k
_ 1

2

G
s h

_ 1
_ 3

2 k
_ 1

2

H y
b r
id
_ 2

H y
b r
id
_ 1

H y
b r
id
_ 3

H y
b r
id
_ 4

P A
s _

1 k
_ 2

k _
4

P A
s _

4 k
_ 1

6 k
_ 8

P r e d ic to r s (F ig u r e C)

P
e
r
c
e
n

ta
g

e

Figure 7. Banking Results: (a) Percentage reduction in branch-predictor energy, (b) overall energy,
and (c) energy-delay.

Co n d itio n a l B r a n c h D is ta n c e

0

2

4

6

8

1 0

1 2

1 4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

D is ta n c e In In s tr u c tio n

Pe
rc

en
ta

ge
 o

f B
ra

nc
he

s

Dis ta n c e o f C o n tr o l F L o w In s tr u c tio n s

0

2

4

6

8

1 0

1 2

1 4

1 6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

Dis ta n c e In In s tr u c tio n s

P
er

ce
nt

ag
e

O
f B

ra
nc

he
s

Figure 8. (a) Average distance (in terms of instructions) between conditional branches. (b) Average
distance between control-flow instructions (conditional branches plus unconditional jumps).

bly other information) in a structure called the prediction
probe detector (PPD). The PPD is a separate table with
a number of entries exactly corresponding to I-cache en-
tries. The PPD entries themselves are two-bit values; one
bit controls the direction-predictor lookup, while the other
controls the BTB lookup. This makes the PPD 4 Kbits for
our processor organization. The PPD is updated with new
pre-decode bits while the I-cache is refilled after a miss. A

schematic of the PPD’s role in the fetch stage is shown in
Figure 9a.

Because the PPD is an array structure and takes some
time to access, it only helps if the control bits are available
early enough to prevent lookups. A variety of timing as-
sumptions are possible. Exploring fetch timings scenarios
is a paper in its own right, so here we explore two extremes,
shown in Figure 9b.

8

PC

BTB

dir−pred

PPD

PC+4
I−Cache

taken/not−taken

access BTB?

access dirpred?

taken−branch target

(a) (b)

I−Cache

PPD

BTB

dir−pred

I−Cache

PPD

BTB

IF

dir−pred

Figure 9. (a) A schematic of the PPD in the
fetch stage. (b) The two timing scenarios we
evaluate.

� Scenario 1: The PPD is fast enough so that we can ac-
cess the PPD and then the BTB sequentially in one cy-
cle. The BTB access must complete within one cycle;
more flexibility exists for the direction predictor. The
direction predictor is also accessed sequentially after
the PPD; but either this access fits entirely within the
same cycle, or as with the 21264, overlaps into the sec-
ond cycle. The former case is reasonable for smaller
predictors; the latter case applies to large predictors,
as shown in both the 21264 and by Jiménez et al..

� Scenario 2: We consider the other extreme also. Here
the assumption is that the BTB and the direction pre-
dictor need to be accessed every cycle and these ac-
cesses take too long to place after the PPD access.
Instead, we assume that the PPD access completes in
time to stop the BTB/direction-predictor accesses after
the bitlines (before column multiplexor). The savings
here are clearly less, but the PPD is still able to save
the power in the multiplexor and the sense-amps.

Now, instead of accessing the BTB and direction predic-
tor every cycle, we must access the PPD every cycle. This
means we must model the overhead in terms of extra power
required for the PPD. If the PPD does not prevent enough
BTB/predictor lookups, then introducing a PPD actually in-
creases power dissipation. Fortunately, there are indeed a
sufficient number of cache lines that need no BTB/predictor
lookups that the PPD is substantially effective.

A further consideration that must be taken into account is
whether the predictor is banked. If the predictor is banked,
the PPD saves less power and energy (because some banks
are already not being accessed), but the combination of
techniques still provides significant savings.

Figures 10–11 show the effect of a PPD on a 32 K-entry
GAs predictor. We chose this configuration in order to be
able to include the effects of banking. Figure 10 shows the
average reduction in power for the branch predictor and in
the overall processor power. We observe a similar trend
in Figure 11 for the energy metrics. The PPD is small
enough and effective enough that spending this extra power
on the small PPD brings us larger benefits overall. Since the
PPD simply permits or prevents lookups, savings will be
proportional for other predictor organizations. It can also
be observed that the greater the average distance between
branches for a benchmark, the more the savings we get from
the PPD. For Scenario 2, the power savings are closely tied
to our timing assumptions, and further work is required to
understand the potential savings in other precharge and tim-
ing scenarios.

4.3. Pipeline Gating and Branch Prediction
Finally, we briefly explore the power savings that can be

obtained using speculation control or “pipeline gating” orig-
inally proposed by Manne et al. [16]. The goal of pipeline
gating is to prevent wasting energy on mis-speculated con-
tribution. Pipeline gating is relevant because it is natural to
expect that the more accurate the branch predictor, the less
gating helps save energy: there is less mis-speculation to
prevent. Indeed, even with a very poor predictor, we find
that the the energy savings are quite small—smaller than
previous work using the metric of “extra work” would sug-
gest. Furthermore, under certain conditions, pipeline gating
can even harm performance and increase energy.

Figure 12 shows the operation of pipeline gating. It uses
a confidence estimator [12] to assess the quality of each
branch prediction. A high-confidence estimate means the
prediction of this branch is likely to be correct. A low-
confidence estimate means the prediction of this branch
is likely to be a misprediction and subsequent computa-
tion will be mis-speculated. These confidence estimates are
used to decide when the processor is likely to be execut-
ing instruction that may not commit. The number of low-
confidence predictions permitted,

�
, before gating is en-

gaged is a design parameter. Once the number of in-flight
low confidence branches, � , reaches the threshold

�
, we

gate the pipeline, stalling the fetch stage.
We modified Wattch to model pipeline gating and did

an analysis of power vs. performance. We used the “both
strong” estimation method [16] which marks a branch as
high confidence only when both of predictors of the hybrid
predictor have the same direction (taken or not taken). The
“both strong” uses the existing counters of the branch pre-
dictor and thus has no additional hardware requirements.
The drawback is that it only works for the hybrid predictor.

We simulated five different hybrid predictor configura-
tions, adding a new, very small and very poor hybrid pre-
dictor: hybrid 0, which has a 256-entry selector, a 256-
entry gshare component, and a 256-entry bimodal compo-
nent. Hybrid 0 of course yields an artificially bad prediction
accuracy, but we only include it to see the effect on pipeline
gating in the extreme case of poor prediction. The results

9

Pe r c e n ta g e R e d u c tio n in B p r e d Po w e r

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty 1 9 7 .p a r s e r 2 5 4 .g a p 2 5 5 .v o r te x

B e n c h m a r k s

Pe
rc

en
ta

ge

PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 2

Pe rc e n ta g e R e d u c tio n in O v e r a ll Po w e r

0

1

2

3

4

5

6

7

8

9

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty 1 9 7 .p a r s e r 2 5 4 .g a p 2 5 5 .v o r te x

B e n c h m a r k s

Pe
rc

en
ta

ge

PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 2

Figure 10. Net savings with a PPD for a 32 K-entry GAs predictor in terms of (a) power in the branch
predictor and (b) overall processor power with a PPD. Scenarios 1 and 2 refer to two timing scenarios
we model.

Pe r c e n ta g e D e c r e a s e in B p r e d E n e r g y

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty 1 9 7 .p a r s e r 2 5 4 .g a p 2 5 5 .v o r te x

B e n c h m a r k s

P
e
rc

e
n

ta
g

e

PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 2

Pe rc e n ta g e R e d u c tio n in O v e r a ll E n e r g y

0

1

2

3

4

5

6

7

8

9

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty 1 9 7 .p a r s e r 2 5 4 .g a p 2 5 5 .v o r te x

B e n c h m a r k s

P
e
rc

e
n

ta
g

e

PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 1 B a n k e d PPD S c e n a r io 2

Pe rc e n ta g e R e d u c tio n in O v e r a ll E n e r g y D e la y

0

1

2

3

4

5

6

7

8

9

1 6 4 .g z ip 1 7 5 .v p r 1 7 6 .g c c 1 8 6 .c r a fty 1 9 7 .p a r s e r 2 5 4 .g a p 2 5 5 .v o r te x

B e n c h m a r k s

P
e
rc

e
n

ta
g

e

PPD S c e n a r io 1 B a n k e d PPD S c e n a r io B a n k e d PPD S c e n a r io 2

Figure 11. Net savings with a PPD for a 32 K-entry GAs predictor in terms of (a) energy expended in
the branch predictor, (b) total energy, and (c) energy-delay.

of hybrid 1,hybrid 2,hybrid 3 and hybrid 4 are quite close.
We therefore just show results of the smallest one, hybrid 0,
and the largest one, hybrid 3 in Figure 13. For each metric,
results are normalized to the baseline case with no gating.

Fetch Decode Issue Write Back Commit

IF
M>N

Low Confidence
Branch Counter

If low confience branch fetched.
Increment the counter

If low confidence branch
resolved.Decrement the

counterstall fetch

Figure 12. Schematic showing the operation
of pipeline gating.

The results show that only the most aggressive pipeline
gating, ����� , has substantial effect. For the more relaxed
thresholds, the reduction in IPC is small but so is the energy
savings.

At threshold ����� , for hybrid 0, the average number of
the executed instructions is reduced by 8%; the total energy
is reduced by 3.5%, and the IPC is reduced by 6.6%. There
are two reasons why the reduction in energy is less than the
reduction in instructions would suggest. One reason is that
these reduced “wrong path” instructions will be squashed
immediately when the processor detects the misprediction.
Some mis-speculated instructions therefore spend little en-
ergy traversing the pipeline, so preventing these instruc-
tions’ fetch saves little energy. A second reason is that er-
rors in confidence prediction sometimes cause pipeline gat-
ing to stall the pipeline when the branch was in fact cor-
rectly predicted. This slows the program’s execution and
increases energy consumption.

For hybrid 3 and ����� , the average number of total
executed instructions is reduced by 6%; the total energy is
reduced by 2.6%, and the IPC is reduced by 3.4%. This sug-
gests that better branch prediction does indeed reduce the
benefits of pipeline gating: fewer branches are marked as
low confidence and pipeline gating occurs less frequently.

It may be that the impact of predictor accuracy on
pipeline gating would be stronger for other confidence esti-

10

Hybrid_0

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Total energy Total inst. IPC

N=0 N=1 N=2

Hybrid_3

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Total energy Total inst. IPC

N=0 N=1 N=2

Figure 13. Pipeline gating: overall results of (a) hybrid 0 and (b) hybrid 3.

mators. While easy and inexpensive to implement, the ac-
curacy of “both strong” confidence estimation is a function
of the predictor organization. This is less true for other con-
fidence estimators [12] that are separate from the predictor.
This warrants further study.

Although not shown separately, the behavior of the
benchmark vortex is especially interesting, because for

���
�

the total energy with pipeline gating is larger than without
pipeline gating. Prediction accuracy is quite high for vortex
(97%), so pipeline gating is likely to provide little benefit.
Instead, confidence estimation is especially poor for vor-
tex, causing many unnecessary pipeline-gating events. IPC
drops 14%, slowing execution time and increasing energy
expenditure.

Overall, our results show that pipeline gating can be
modestly helpful in reducing energy but that (1) energy sav-
ings are substantially less than the previous metric of “ex-
tra work” suggests, and that (2) for benchmarks with al-
ready high prediction accuracies, pipeline gating may sub-
stantially reduce performance and increase energy.

5. Summary and Future Work
The branch predictor structures, which are the size of a

small cache, dissipate a non-trivial amount of power—over
10% of the total processor-wide power—and their accuracy
controls how long the program runs and therefore has a sub-
stantial impact on energy. This paper explores the effects
of branch predictor organization on power and energy ex-
pended both locally within the branch predictor and glob-
ally in the chip as a whole.

In Section 2, we pointed out that array structures (in-
cluding caches) should model not only the row but also the
column decoders. Although the column decoders are not
on the critical timing path, they do dissipate a non-trivial
amount of power. We also pointed that the choice of how to
square-ify a predictor has little effect on its power dissipa-
tion .

Section 3 then showed that for all the predictor organi-
zations we studied, total energy consumed by the chip is
affected much more strongly by predictor accuracy rather
than energy consumed locally by the predictor, because
more accurate predictors reduce the running time. We found
that for integer programs, large but accurate predictors ac-
tually reduce total energy. For example, a large hybrid pre-

dictor uses 13% more energy than a bimodal predictor but
actually yields a 7% savings in total, chip-wide energy. For
floating-point programs, the energy curves are flat across
the range of predictor organizations, but this means that
choosing a large predictor to help integer programs should
not cause harm when executing floating-point programs.
This suggests that if the die budget can afford it, proces-
sors for embedded systems that must conserve battery life
might actually be better off with large, aggressive branch
predictors rather than lower-power but less accurate predic-
tors.

Section 4 showed that there are some branch-prediction-
related techniques that do save energy without affecting per-
formance. Banking both reduces access time and saves
power by accessing only a portion of the total predictor
structure. A prediction probe detector (PPD) uses pre-
decode bits to prevent BTB and predictor lookups, saving as
much as 40–60% in energy expended in the predictor and 5–
7% of total energy. Finally, we revisited pipeline gating and
showed that it does offer modest energy savings on average,
but at the risk of actually increasing energy consumption.

Overall, we hope that the data presented here will serve
as a useful guide to help chip designers and other re-
searchers better understand the interactions between branch
behavior and power and energy characteristics, and help
identify the important issues in balancing performance and
energy when choosing a branch predictor design.

There are a wide range of avenues for future work.
This paper has not considered optimizations specific to the
BTB’s organization, and this is worth further investigation.
The tradeoff reported here between larger but more power-
hungry structures and improved performance and energy
dissipation are likely to apply to other on-chip structures
like the caches and TLBs, and this tradeoff is important to
understand. Finally, this paper only considered a few spe-
cific timing and precharge scenarios for the structures in the
fetch stage. A more thorough characterization of this de-
sign space is needed to understand the range of benefits that
a PPD might provide.

Acknowledgments
This material is based upon work supported in part by

the National Science Foundation under grants nos. CCR-
0082671 and CCR-0105626, NSF CAREER MIP-9703440,

11

a grant from Intel MRL, and by an exploratory grant from
the University of Virginia Fund for Excellence in Science
and Technology. We would also like to thank John Kala-
matianos for helpful discussions regarding branch-predictor
design; Margaret Martonosi and David brooks for their as-
sistance with Wattch and for helpful discussions on various
power issues; Zhigang Hu for help with the EIO traces; and
the anonymous reviewers for many helpful suggestions on
how to improve the paper.

References
[1] D. H. Albonesi. Selective cache ways: On-demand cache

resource allocation. In Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 248–59, Nov. 1999.

[2] R. I. Bahar and Srilatha Manne. Power and energy reduction
via pipeline balancing. In Proceedings of the 28th Annual
International Symposium on Computer Architecture, June
2001.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, pages 83–94, June 2000.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Computer Architecture News, 25(3):13–25, June
1997.

[5] B. Calder and D. Grunwald. Next cache line and set pre-
diction. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 287–96, June
1995.

[6] P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative implemen-
tations of hybrid branch predictors. In Proceedings of the
28th Annual International Symposium on Microarchitecture,
pages 252–57, Dec. 1995.

[7] Digital Semiconductor. DECchip 21064/21064A Alpha AXP
Microprocessors: Hardware Reference Manual, June 1994.

[8] Digital Semiconductor. Alpha 21164 Microprocessor: Hard-
ware Reference Manual, Apr. 1995.

[9] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC vari-
ation in workload with externally specified rates to reduce
power consumption. In Proceedings of the Workshop on
Complexity-Effective Design, June 2000.

[10] K. Ghose and M. Kamble. Reducing power in superscalar
processor caches using subbanking, multiple line buffers and
bit-line segmentation. In Proceedings of the 1999 Interna-
tional Symposium on Low Power Electronics and Design,
pages 70–75, Aug. 1999.

[11] R. Gonzalez and M. Horowitz. Energy dissipation in gen-
eral purpose microprocessors. IEEE Journal of Solid-State
Circuits, 31(9), Sep. 1996.

[12] D. Grunwald, A. Klauser, S Manne, and A. Pleszkun. Con-
fidence estimation for speculation control. In Proceedings
of the 25th Annual International Symposium on Computer
Architecture, pages 122–31, June 1998.

[13] D. A. Jiménez, S. W. Keckler, and C. Lin. The impact of
delay on the design of branch predictors. In Proceedings
of the 33rd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 67–77, Dec. 2000.

[14] R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha
21264 microprocessor architecture. In Proceedings of the
1998 International Conference on Computer Design, pages
90–95, Oct. 1998.

[15] J. Kin, M. Gupta, and W. Mangione-Smith. The filter cache:
An energy-efficient memory structure. In Proceedings of the
30th Annual International Symposium on Microarchitecture,
pages 184–93, Dec. 1997.

[16] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:
speculation control for energy reduction. In Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, pages 132–41, June 1998.

[17] S. McFarling. Combining branch predictors. Tech. Note TN-
36, DEC WRL, June 1993.

[18] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accuracy
of dynamic branch prediction using branch correlation. In
Proceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, pages 76–84, Oct. 1992.

[19] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. R.
Stan. Power issues related to branch prediction. Techni-
cal Report CS-2001-25, University of Virginia Department
of Computer Science, Nov. 2001.

[20] K. Skadron, P. S. Ahuja, M. Martonosi, and D. W. Clark. Im-
proving prediction for procedure returns with return-address-
stack repair mechanisms. In Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture,
pages 259–71, Dec. 1998.

[21] K. Skadron, D. W. Clark, and M. Martonosi. Speculative
updates of local and global branch history: A quantitative
analysis. Journal of Instruction-Level Parallelism, Jan. 2000.
(http://www.jilp.org/vol2).

[22] K. Skadron, M. Martonosi, and D. W. Clark. A taxonomy
of branch mispredictions, and alloyed prediction as a robust
solution to wrong-history mispredictions. In Proceedings of
the 2000 International Conference on Parallel Architectures
and Compilation Techniques, pages 199–206, Oct. 2000.

[23] J. E. Smith. A study of branch prediction strategies. In
Proceedings of the 8th Annual International Symposium on
Computer Architecture, pages 135–48, May 1981.

[24] P. Song. UltraSparc-3 aims at MP servers. Microprocessor
Report, pages 29–34, Oct. 27 1997.

[25] Standard Performance Evaluation Corporation. SPEC
CPU2000 Benchmarks.
http://www.specbench.org/osg/cpu2000.

[26] W. Tang, R. Gupta, and A. Nicolau. Design of a predictive
filter cache for energy savings in high performance proces-
sor architectures. In Proceedings of the 2001 International
Conference on Computer Design, pages 68–73, Sept. 2001.

[27] J. Turley. ColdFire doubles performance with v4. Micropro-
cessor Report, Oct. 26 1998.

[28] S. J. E. Wilton and N. P. Jouppi. Cacti: An enhanced cache
access and cycle time model. IEEE Journal of Solid-State
Circuits, 31(5):677–88, May. 1996.

[29] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch
prediction. In Proceedings of the 24th Annual International
Symposium on Microarchitecture, pages 51–61, November
1991.

12

