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Abstract—This paper uses Wattch and the SPEC 2000 integer and floating-point benchmarks to explore the role of branch predictor

organization in power/energy/performance trade offs for processor design. Even though the direction predictor by itself represents less

than 1 percent of the processor’s total power dissipation, prediction accuracy is nevertheless a powerful lever on processor behavior

and program execution time. A thorough study of branch predictor organizations shows that, as a general rule, to reduce overall energy

consumption in the processor, it is worthwhile to spend more power in the branch predictor if this results in more accurate predictions

that improve running time. This not only improves performance, but can also improve the energy-delay product by up to 20 percent.

Three techniques, however, can reduce power dissipation without harming accuracy. Banking reduces the portion of the branch

predictor that is active at any one time. A new on-chip structure, the prediction probe detector (PPD), uses predecode bits to entirely

eliminate unnecessary predictor and branch target buffer (BTB) accesses. Despite the extra power that must be spent accessing it, the

PPD reduces local predictor power and energy dissipation by about 31 percent and overall processor power and energy dissipation by

3 percent. These savings can be further improved by using profiling to annotate branches, identifying those that are highly biased and

do not require static prediction. Finally, the paper explores the effectiveness of a previously proposed technique, pipeline gating, and

finds that, even with adaptive control based on recent predictor accuracy, pipeline gating yields little or no energy savings.

Index Terms—Low-power design, energy-aware systems, processor architecture, branch prediction, target prediction, power,

banking, highly-biased branches, pipeline gating, speculation control.
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1 INTRODUCTION

THIS paper explores trade offs between power and
performance that stem from the choice of branch-

predictor organization and proposes some new techniques

that reduce the power dissipation related to prediction

without harming performance. Branch prediction has long
been an important area of study for microarchitects because

prediction accuracy is a powerful lever over performance.

Power-aware computing has also been an important area of

study, but, until recently, was mainly of interest in the

domain of mobile, wireless, and embedded devices. Today,

however, power dissipation is of interest in even the

highest-performance processors. Laptop computers now

use high-performance processors, but battery life remains a
concern and heat dissipation has become a design obstacle

as it is difficult to develop cost-effective packages that can

safely dissipate the increasing heat generated by high-

performance processors.
While some recent work has explored the power-

performance trade offs in the processor as a whole and in

the memory hierarchy, we are aware of no prior work that

looks specifically at issues involving branch prediction

except our own [15], [16], [23], [24]. Yet, the branch
predictor, including the BTB, is the size of a small cache
and dissipates a nontrivial amount of power—typically
about 7 percent and as much as 10 percent of the total
processor’s power dissipation, according to our simulations
—and its accuracy controls the amount of misspeculated
execution and therefore has a substantial impact on energy.
For this reason, it is important to develop an understanding
of the interactions and trade offs between branch predictor
organization, processor performance, power spent in the
predictor, and power dissipation in the processor as a
whole. This paper only examines dynamic power; leakage
in branch predictors is discussed in [15] and [16].

Simply trying to reduce thepowerdissipated in thebranch
predictor can actually have harmful overall effects. This
paper shows that if reducing thepower in thepredictor comes
at the expense of prediction accuracy, hence program
performance, this localized reduction may actually increase
the overall energy dissipated by the processor by making
programs run longer. Fortunately, not all the techniques that
reduce localized power in the branch predictor suffer such
problems. For example, breaking the predictor into banks can
reduce power by accessing only one bankper cycle andhence
reduces precharge costs, and banking need not have any
effect on prediction accuracy. Eliminating unnecessary
branch-predictor accesses altogether is an even more direct
way to reduce power.

Overall, there are four main levers for controlling the
power related to branch prediction:

1. Accuracy: For a given predictor size, better prediction
accuracy will not change the power in the predictor,
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but will make the program run faster, hence
reducing total energy.

2. Configuration: Changing the table size(s) can reduce
power within the predictor, but may affect accuracy.

3. Number of Lookups: Reducing the number of lookups
into the predictor is an obvious source of power
savings, but it must come with no performance
penalty.

4. Number of Updates: Reducing the number of pre-
dictor updates is another obvious way to reduce
power, but is less efficient because misspeculated
computation means that there are many more
lookups than updates; because of this aspect, we
do not further consider updates in this paper.

In this work, we also consider modeling issues. Branch
predictors try to determine the direction of conditional
branches based on the outcome of previous branches. This
state must be kept in some sort of on-chip storage. All the
tables used to store information—whether caches, branch
predictors, or BTBs—consist of essentially the same
structure: a memory core of SRAM cells accessed via row
and column decoders. Correctly modeling such array
structures is important for accurate estimations of perfor-
mance and power.

1.1 Contributions

This work uses a modified Wattch 1.02 [3] power/perfor-
mance simulator to:

. Characterize the power/performance characteristics
of different predictor and BTB organizations. As a
general rule, to reduce overall energy consumption,
it is worthwhile to spend more power in the branch
direction predictor if it permits a more accurate
organization that improves running time. This can
yield net energy savings as high as 6 percent.

. Explore the best banked predictor organizations.
Banking improves access time and cuts power
dissipation at no cost in predictor accuracy. Net
savings are less than 1 percent for the direction
predictor, but more can be realized by banking the
branch target buffer.

. Propose a new method to reduce lookups, the
prediction probe detector (PPD). The PPD can use
compiler hints and predecode bits to recognize when
lookups to the BTB and/or direction-predictor can
be avoided. Using a PPD cuts power dissipation in
the branch predictor by 10-50 percent, with a net
energy savings of 3 percent.

. Explore specialized treatment for some branches,
like those that profiling can identify as having a
static bias, in order to minimize the number of
branch-predictor lookups, saving as much as an
additional 2 percent of energy.

. Revisit techniques for speculation control via pipe-
line gating [20]. We show that pipeline gating has
little effect for today’s more sophisticated and
accurate predictors.

Although a wealth of dynamic branch predictors have
been proposed, we focus our analysis on a representative
sample of the most widely used predictor types: bimodal

[29], GAs1/gshare [21], [36], PAs [36], and hybrid [21]. We
focus mostly on the branch direction predictor that predicts
directions of conditional branches. Please note that data for
the “predictor power” includes power for both the direction
predictor and the BTB, as techniques like the PPD affect
both. For a typical branch predictor configuration—a
32 K-entry GAs predictor, for example—80.5 percent of
the power dissipation comes from the BTB, 14 percent from
the direction predictor, and 5.5 percent from the return-
address stack. Despite the small amount of power dis-
sipated in the direction predictor—less than 0.6 W—this
paper shows that the choice of direction predictor has a
much larger impact on power dissipation and energy
efficiency in the rest of the processor than might be
suggested by the small share of power dissipated within
the predictor. For SPECint, the best direction predictor we
examined reduces the processor’s overall energy consump-
tion by 10 percent compared to the worst predictor and, due
to improved prediction accuracy, improves the processor’s
energy-delay product by over 20 percent.

Our goal is to understand how the different branch-
prediction design options interact at both the performance
and power level, the different trade offs that are available,
and how these design options affect the overall processor’s
power/performance characteristics. Our hope is that these
results will provide a road-map to help researchers and
designers better find branch predictor organizations that
meet various power and performance design goals.

1.2 Related Work

Some prior research has characterized power in other parts
of the processor. This paper extends our earlier work [23]
with more accurate power modeling, a more accurate and
thorough analysis of the PPD, data for integer and floating-
point programs instead of just integer programs, a study of
BTB configuration, and more analysis of the effects of
pipeline gating. Pipeline gating was presented by Manne
et al. [20] as an efficient technique to prevent misspeculated
instructions from entering the pipeline and wasting energy
while imposing only a negligible performance loss. Albo-
nesi [1] explored disabling a subset of the ways in a set
associative cache during periods of modest cache activity to
reduce cache energy dissipation. By exploring the perfor-
mance and energy implications he showed that a small
performance degradation can produce significant reduction
in cache energy. Ghose and Kamble [12] looked at
subbanking and other organizational techniques for redu-
cing energy in the cache. Zhu and Zhang [37] describe a
low-power associative cache mode that performs tag match
and data access sequentially and described a way to predict
when to use the sequential and parallel modes. Our PPD
performs a somewhat analogous predictive function for
branch prediction, although the predictor is not associative
and the PPD controls whether the predictor is used at all.
Kin et al. [19] and Tang et al. [32] described filter caches and
predictive caches, which utilized a small “L0” cache to
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letter indicates whether the PHT is logically a single table (“g”) or in sets
(“s”).



reduce accesses and energy in subsequent levels. Our PPD
performs a somewhat analogous filtering function,
although it is not itself a branch predictor. Ghiasi et al.
[11] reasoned that reducing power at the expense of
performance is not always correct. They proposed that
software, including a combination of the operating system
and user applications, should use a performance mechan-
ism to indicate a desired level of performance and allow the
micro-architecture to then choose between the extant
alternative methods that achieve the specified performance
while reducing power. Finally, Bahar and Manne [2]
proposed an architectural energy-efficiency technique that
dynamically adpats to instruction-throughput require-
ments. The technique, called pipeline balancing, dynamically
tunes the resources of a general purpose processor to the
needs of the application by monitoring performance within
each application, but their work did not directly treat
branch prediction.

The rest of this paper is organized as follows: The next
section describes our simulation technique and our exten-
sions to the Wattch power model. Section 3 then explores
trade offs between predictor accuracy and power/energy
characteristics and Section 4 explores changes to the branch
predictor that save energy without affecting performance.
Finally, Section 5 summarizes the paper.

2 SIMULATION TECHNIQUE AND METRICS

Before delving into power/performance trade offs, we
describe our simulation technique, our benchmarks, the
different types of branch predictors we studied, and the
ways in which we improved Wattch’s power model for
branch prediction.

2.1 Simulator

For the baseline simulation, we use a slightly modified
version of the Wattch [3] version 1.02 power-performance
simulator. Wattch augments the SimpleScalar [4] cycle-
accurate simulator (sim-outorder) with cycle-by-cycle track-
ing of power dissipation by estimating unit capacitances
and activity factors. Because most processors today have
pipelines longer than five stages to account for renaming
and enqueuing costs like those in the Alpha 21264 [18],
Wattch simulations extend the pipeline by adding three
additional stages between decode and issue. In addition to
adding these extra stages to sim-outorder’s timing model,
we have made minor extensions to Wattch and sim-
outorder by modeling speculative update and repair for
branch history and for the return-address stack [26], [27]
and by changing the fetch engine to recognize cache-line
boundaries. A more important change to the fetch engine is
that we now charge a predictor and BTB lookup for each
cycle in which the fetch engine is active. This accounts for
the fact that instructions are fetched in blocks and that—in
order to make a prediction by the end of the fetch
stage—the branch predictor structures must be accessed
before any information is available about the contents of the
fetched instructions. This is true because the instruction
cache, direction predictor, and BTB typically must be all
accessed in parallel. Thus, even if the I-cache contains
predecode bits, their contents are typically not available in

time. This is the most straightforward fetch-engine arrange-

ment; a variety of other more sophisticated arrangements

are possible, some of which are explored in Section 4.
Unless stated otherwise, this paper uses the baseline

configuration shown in Table 1, which resembles, as much

as possible, the configuration of an Alpha 21264 [18]. The

most important difference for this paper is that, in the

21264, there is no separate BTB, because the I-cache has an

integrated next-line predictor [6]. As most processors

currently do use a separate BTB, our work models a

separate, 2-way associative, 2 K-entry BTB that is accessed

in parallel with the I-cache and direction predictor.
To keep in line with contemporary processors, we use

the process parameters for a 0:18�m process at Vdd 2.0V and

1.2 GHz. All the results use Wattch’s nonideal aggressive

clock-gating style (“cc3”). In this clock-gating model, power

is scaled linearly with port or unit usage and inactive units

still dissipate 10 percent of the maximum power.

2.2 Benchmarks

As benchmarks we evaluate the programs from the

SPECcpu2000 [31] suite. Basic branch characteristics are

presented in Table 2. Branch mispredictions also induce

other negative consequences, like cache misses due to

misspeculated instructions, but we do not attempt to

quantify or solve those second-order effects here. All

benchmarks are compiled using the Compaq Alpha

compiler with the SPEC peak settings and the statically

linked binaries include all library code. Unless stated

otherwise, we always use the provided reference inputs.

We use Alpha EIO traces and the EIO trace facility provided

by SimpleScalar for all our experiments. This ensures

reproducible results for each benchmark across multiple

simulations. 252.eon and 181.mcf, from SPECint2000, and

178.galgel and 200.sixtrack, from SPECfp2000, were not

simulated due to problems with our EIO traces. All

benchmarks were fast-forwarded past the first two billion
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Simulated Processor Configuration which Matches

an Alpha 21264 as Much as Possible



instructions and then full-detail simulation was performed
for 200 million instructions.

2.3 Metrics

The following metrics are used to evaluate and understand
the results.

. Average Instantaneous Power: Power dissipation aver-
aged on a per-cycle basis.

. Energy: The product of average power and total
execution time. This metric translates directly to
battery life.

. Energy-Delay Product: The product of energy and
execution time. This metric [13] captures the trade
off between energy efficiency and performance.

. Performance: We use the common metric of instruc-
tions per cycle (IPC).

2.4 Branch Predictors Studied

The bimodal predictor [29] consists of a simple pattern
history table (PHT) of saturating two-bit counters, indexed
by branch PC. This means that all dynamic executions of a
particular branch site (a “static” branch) will map to the
same PHT entry. This paper models 128-entry through
16 K-entry bimodal predictors. The 128-entry predictor is
the same size as that in the Motorola ColdFire v4 [33]; four
K-entries are the same size as that in the Alpha 21064 [9]
and is at the point of diminishing returns for bimodal
predictors, although the 21164 used an 8 K-entry predictor
[10]. The gshare predictor [21], shown in Fig. 1a, is a
variation on the two-level GAg/GAs global-history pre-
dictor [22], [36]. The advantage of global history is that it
can detect and predict sequences of correlated branches. In
a conventional global-history predictor (GAs), a history (the
global branch history register or GBHR) of the outcomes of
the hmost recent branches is concatenated with some bits of

the branch PC to index the PHT. Combining history and
address bits provides some degree of anti-aliasing to
prevent destructive conflicts in the PHT. In gshare, the
history and the branch address are XOR’d. This permits the
use of a longer history string since the two strings do not
need to be concatenated to fit into the desired index width.
This paper models a 4 K-entry GAs predictor with 5 bits of
history [28]; a 16 K-entry gshare predictor in which 12 bits
of history are XOR’d with 14 bits of branch address (this is
the configuration that appears in the Sun UltraSPARC-III
[30], the shorter global history string giving good anti-
aliasing); a 32 K-entry gshare predictor, also with 12 bits of
history; and a 32 K-entry GAs predictor with 8 bits of
history [28].

Instead of using global history, a two-level predictor can
track history on a per-branch basis; Fig. 1b shows a PAs
predictor. In this case, the first-level structure is a table of
per-branch history registers—the branch history table or BHT
—rather than a single GBHR shared by all branches. The
history pattern is then combined with some number of bits
from the branch PC to form the index into the PHT. Local-
history prediction cannot detect correlation because—
except for unintentional aliasing—each branch maps to a
different entry in the BHT. Local history, however, is
effective at exposing patterns in the behavior of individual
branches. The Intel P6 architecture is widely believed to use
a local-history predictor, although its exact configuration is
unknown. This paper examines two PAs configurations: the
first one has a 1 K-entry, 4-bit wide BHT, and a 2 K-entry
PHT; the second one has a 4 K-entry, 8-bit wide BHT, and a
16 K-entry PHT. Both are based on the configurations
suggested by Skadron et al. [28].

Because most programs have some branches that perform
better with global history and others that perform better with
local history, a hybrid predictor [8], [21] combines the two as
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shown in Fig. 1c. It operates two independent branch
predictor components in parallel and uses a third predic-
tor—the selectoror chooser—to learn, for eachbranch,which of
the components is more accurate and chooses its prediction.
Using a local-history predictor and a global-history predictor
as the components is particularly effective because this
accommodates branches regardless of whether they prefer
local or global history. This paper considers four hybrid
predictors, the first one being similar to the one in the Alpha
21264 [18], the other three being based on configurations
found to perform well by Skadron et al. [28]:

1. Hybrid_1: A hybrid predictor with a 4K-entry
selector that only uses 12 bits of global history to
index its PHT, a global-history component predictor
of the same configuration, and a local history
predictor with a 1 K-entry, 10-bit wide BHT and a
1 K-entry PHT. This configuration appears in the
Alpha 21264 [18] and is depicted in Fig. 1c. It
contains 28 Kbits of information.

2. Hybrid_2: A hybrid predictor with a 1 K-entry
selector that uses 3 bits of global history to index
its PHT, a global-history component predictor of
2K entries that uses 4 bits of global history, and a
local history predictor with a 512 entry, 2-bit wide
BHT and a 512 entry PHT. It contains 8 Kbits.

3. Hybrid_3: A hybrid predictor with an 8 K-entry
selector that uses 10 bits of global history to index its
PHT, a global-history component predictor of
16K entries that uses 7 bits of global history, and a
local history predictor with a 1 K-entry, 8-bit wide
BHT, and a 4 K-entry PHT. It contains 64 Kbits.

4. Hybrid_4: A hybrid predictor with an 8 K-entry
selector that uses 6 bits of global history to index its
PHT, a global-history component predictor of
16K entries that uses 7 bits of global history, and a
local history predictor with a 1 K-entry, 8-bit wide
BHT and a 4 K-entry PHT. It also contains 64 Kbits.

A brief summary of all the branch predictors studied is
given in Table 3.

2.5 Modeling Power in the Branch Predictor

All the tables used to store information—whether caches,
branch predictors, or BTBs—typically consist of essentially
the same structure: a memory core of SRAM cells accessed
via row and column decoders. Each SRAM cell stores a bit
and is placed in a matrix-like structure where a row
represents the wordline and a column the bitline, as shown
in Fig. 2. The address contains the information that is
necessary to access the desired bits in this structure. The
address feeds the row and column decoders that are
responsible for driving the correct wordline and selecting
the correct bitlines, respectively. As a result, the selected bit
values are pulled from the bitlines to the sense amps and
into the bus (through the pass-gate transistors of the column
multiplexor).

PHT and/or BHT tables are used in different ways
according to the actual branch predictor that is implemen-
ted. When considering different branch predictors for low
power or energy-delay optimization, it is necessary to be
able to model their power consumption.

Although one may be accustomed to thinking of array
structures according to their logical dimensions, in reality
their physical implementation may be quite different as it is
optimized for delay and energy considerations. The
physical dimensions are typically chosen such that the
layout is as square as possible and the bitline and wordline
lengths are minimized. The data that is logically referred to
is physically accessed by feeding the column and row
decoders with the appropriate index bits. The word line is
activated using the row decoder and the bit lines are then
selected by the column decoder that controls a multiplexor.
The column decoder is not in the critical path because it can
work in parallel with the driving of the wordline.

In Wattch, the row decoder is implemented with a
predecoder made of 3-input NAND gates followed by NOR
gates. This implementation is rather basic, yet is commonly
used in practice and is the one adopted for our model.
Wattch 1.02 does not model the column decoder, so we
added it for all the array structures. Modeling the column
decoder adds an offset of about 10 percent to the predictor
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Fig. 1. (a) Gshare global-history branch predictor like that in the Sun UltraSPARC-III. (b) PAs local-history predictor. (c) Hybrid predictor like that in

the Alpha 21264.



power values calculated by the original Wattch model and

this offset increases slightly as predictor sizes get larger (see

[24] for details).
A fairly accurate and complete model is important

because one approach might yield a wider structure than

other approaches. For example, banking causes some

overhead in multiplexing and disabling the banks and,

without a correct implementation of the column decoders,

comparators, and drivers, one would miss that part of the
power dissipation, biasing the analysis. Indeed, we did find
that the behavior and order of several benchmarks changed
when we added the column decoders to the model and that
the Hybrid_2 predictor got much less benefit from banking
than would be found if the column decoders were not
included (see [24]).

In our model, each column of the PHT is actually made
of two bits and the column decoder driver drives two sets of
pass-gate transistors. The same implementation is used for
the BHT, with the difference that bits are taken in groups of
h (h being the history length) as specified by the specific
configuration of the branch predictor. The power model of
the branch target buffer (BTB) includes components such as
the comparator, the tag bit drivers, and the multiplexor
drivers. The size and associativity of the BTB are parameters
of the model and all capacity contributions are included.

Finally, it is important to note that the logical dimensions
of the predictor structures must fit into a physical
organization that is as square as possible, so Wattch must
find the best “squarified” organization. In Wattch, this
“squarification” is done automatically so that the physical
number of rows in the branch prediction structure becomes
as equal as possible to the number of columns. When these
two dimensions cannot be equal, however, it may be that
one organization (e.g., more rows than columns) has
slightly better power characteristics, while another (e.g.,
more columns than rows) has better delay characteristics.
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This happens, for example, with the 8 K-entry and 32
K-entry predictors (see [24] for more details).

3 PERFORMANCE-POWER TRADE OFFS RELATED

TO BRANCH PREDICTION

We now examine the interaction between predictor config-
uration, performance, and power/energy characteristics for
integer and floating-point benchmarks. Most of this section
is dedicated to the impact of direction-predictor design, but
we also briefly explore the role of BTB design. In our
discussion below, the term “average,” wherever it occurs,
means the arithmetic mean for that metric across all the
benchmarks simulated.

3.1 Base Simulations for Integer Benchmarks

Fig. 3a presents the average branch predictor direction
accuracy for integer benchmarks and Fig. 3b presents the
corresponding IPC. For each predictor type (bimodal, GAs,
gshare, hybrid, and PAs), the predictors are arranged in
order of increasing size and the arithmetic mean is super-
imposed on each graph as a set of bars. The trends are

exactly as we would expect: Larger predictors get better
accuracy and higher IPC, but, eventually, diminishing
returns set in. This is most clear for the bimodal predictor,
for which there is little benefit to sizes above 4K entries. For
the global-history predictors, diminishing returns set in at
around 16K-32K entries. Among different organizations,
gshare slightly outperforms GAs, and hybrid predictors are
the most effective at a given size. For example, compare the
32 K-entry global predictors, hybrid_3 and 4, and the
second PAs configuration: They all have 64 Kbits total area,
but the hybrid configurations are slightly better on average
and also for almost every benchmark.

Fig. 4 gives the energy and energy-delay characteristics.
Together, Fig. 4aandFig. 4b showthatprocessor-wide energy
is primarily a function of predictor accuracy and not of the
energy expended in the predictor. For example, although the
energy spent locally in hybrid_3 and hybrid_4 is larger than
for a gshare predictor of 16 K-entry, the chip-wide energy is
almost the same. And the small or otherwise poor predictors,
although consuming less energy locally in the predictor,
actually cause substantially more energy consumption chip-
wide. The hybrid_4 predictor, for example, consumes about
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Fig. 3. (a) Direction-prediction accuracy and (b) IPC for SPECint2000 for various predictor organizations. For each predictor type, the predictors are

arranged in order of increasing size along the X-axis. The arithmetic mean is shown by the bars in each of the graphs.

Fig. 4. Energy in (a) the branch predictor, (b) the entire processor, and (c) energy-delay for the entire processor for SPECint2000.



6 percent less chip-wide energy than bimodal-128 despite
consuming 9 percent more energy locally in the predictor.
This suggests that “low-power” processors (which, despite
their name, are often more interested in long battery life)
might be better off using large and aggressive predictors if the
diebudgetandcoolingbudgetcanafford it.Thebestpredictor
from an energy standpoint is actually hybrid_1, the 21264’s
predictor, which attains a slightly lower IPCbutmakes up for
the longer running time with a predictor of less than half the
size. Although hybrid_1 is superior from an energy stand-
point, it shows less advantage on energy-delay; the 64 Kbit
hybrid predictors (hybrid_3 and hybrid_4) seem to offer the
best balance of energy and performance characteristics.

The power data in Fig. 5 shows that power dissipation in
the predictor itself is mostly a function of predictor size and
that, unlike energy, power in the processor as a whole
tracks predictor size, not predictor accuracy. This is because
power is an instantaneous measure and, hence, is largely
unaffected by program running time. Yet, average activity
outside the branch predictor is not independent of predictor
accuracy. This means that, even though predictor size
becomes the primary lever on overall power, the changes in
chip-wide power dissipation (Fig. 5b) are larger than the
small changes of less than 1W that are observed locally in
the predictor. Fig. 5 also shows that if power dissipation or
power density is more important than energy, GAs_1_4K,
gshare_16K, or one of the smaller hybrid predictors is the
best balance of power and performance.

An important point to note is that the branch-predictor
power data reported here differ from that in our earlier
work [23] because our previous work mistakenly double-
counted the branch predictor power. Qualitative trends,
however, remain the same.

Finally, Figs. 3, 4, and 5 also show data for individual
benchmarks. It is clear that gap and vortex, with their high
prediction rates, have high IPCs and correspondingly low
overall energy and energy-delay despite higher predictor
and total instantaneous power. Crafty and gzip do not have
the highest prediction rates, but still have high IPCs and,
hence, exhibit similarly low energy and energy-delay
characteristics. Parser and twolf, at the other extreme, have

the exact opposite properties. This merely reinforces the
point that, almost always, there is no rise (and, in fact,
usually a decrease) in total energy if one uses larger branch
predictors to obtain faster performance!

3.2 Base Simulations for Floating-Point
Benchmarks

Figs. 6, 7, and 8 repeat these experiments for SPECfp2000.
The trends are almost the same, with two important
differences. First, because floating-point programs tend to
be dominated by loops and because branch frequencies are
lower, these programs are less sensitive to branch predictor
organization. Second, because they are less sensitive to
predictor organization, the energy curves for the processor
as a whole are almost flat. Indeed, the mean across the
benchmarks is almost entirely flat. This is because the
performance and, hence, energy gains from larger pre-
dictors are much smaller and are approximately offset by
the higher energy spent in the predictors.

3.3 Trade Offs for Branch-Target Buffers

So far, our results have focused on the impact of
organization for the branch direction predictor. In fact, the
bulk of the energy during branch prediction comes from the
BTB (about 7

8). We have explored the impact of BTB size and
associativity on power-performance trade offs and, as
expected, found that its size has a major impact on power
and energy. The smallest configuration we explored—a
128-entry, 1-way BTB—dissipates 75 percent less power
than the largest configuration—a 2,048-entry, 2-way BTB.
Average power and energy dissipation for various config-
urations are presented in Fig. 9.

The correct choice of BTB configuration that balances
power and performance considerations is difficult to make
with the benchmarks available to academia: Most such
benchmarks have small branch footprints that barely stress
even a 128-entry BTB, while many commercial applications
have footprints that stress even a large, 2,048-entry BTB. For
these reasons, we found that IPC changed by only 2 percent
on average when moving from a 128-entry to a 2,048-entry
BTB and the largest IPC change among our integer
benchmarks was only 5.7 percent for crafty. These small
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Fig. 5. Power dissipation in (a) the branch predictor and (b) the entire processor for SPECint2000.



performance effects mean that the power, energy, and
energy-delay trends we observed are similar and simply
follow the configuration.

Based on these results, the most energy-efficient config-
uration for SPEC benchmarks is a direct-mapped, 128-entry
BTB. This reduces the total power dissipated by branch
prediction from almost 3 W to about 0.75 W and the

possible energy savings by a corresponding amount.

However, because so many commercial applications of

performance require much larger BTBs and many existing

processors employ large BTBs, we follow the advice of our

industry contacts and use a 2,048-entry BTB for all our other

experiments.
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Fig. 7. Energy in (a) the branch predictor, (b) the entire processor, (c) energy-delay for the entire processor for SPECfp2000.

Fig. 6. (a) Direction-prediction accuracy and (b) IPC for SPECfp2000.

Fig. 8. Power dissipated in (a) the predictor and (b) the entire processor for SPECfp2000.



3.4 Potential Gains from Improved Accuracy

Just to illustrate how much leverage branch-prediction
accuracy has on both performance and energy, Fig. 10
shows the effect of using an idealized, omniscient direction
predictor and BTB that never mispredict. In the interests of
space, we chose a random sample of seven integer bench-
marks. Because a comparison against a control of no
prediction would be meaningless, the comparison is done
against a known good predictor, a GAs predictor with
32 K-entries and 8 bits of global history. Perfect prediction
improves performance for the seven benchmarks by
20 percent and energy by 16 percent, on average. Issue
width was held fixed here; since better prediction exposes
more instruction-level parallelism, even greater gains could
be realized. These results further illustrate just how much
leverage prediction accuracy and its impact on execution
time translate into energy savings.

4 REDUCING POWER THAT STEMS FROM BRANCH

PREDICTION

The previous section showed that, in the absence of other
techniques, smaller predictors that consume less power

actually raise processor-wide energy because the resulting
loss in accuracy increases running time. This section

explores four techniques for reducing processor-wide
energy expenditure without affecting predictor accuracy:

banking, a “prediction probe detector” to identify when
direction and target prediction can be avoided, identifica-
tion of highly biased branches to avoid even more

predictions, and pipeline gating.
All remaining experiments use only integer programs

because they represent a wider mix of program behaviors.

We have chosen a random subset of seven integer bench-
marks: gzip, vpr, gcc, crafty, parser, gap, and vortex. These
were chosen from the 10 original integer benchmarks to

reduce overall simulation times while maintaining a
representative mix of branch-prediction behavior.

4.1 Banking

As shown by Jiménez et al. [17], slower wires and faster clock

rates will require multicycle access times to large on chip
structures, such as branch predictors. The most natural

solution to that is banking. We use our modified Cacti [35]
model (part of Wattch) to determine the access times for a
banked branch predictor. We assume that, for any given
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Fig. 9. (a) IPC and power dissipation in the predictor and (b) energy and energy-delay as a function of BTB organization.

Fig. 10. (a) Performance improvement from perfect prediction and (b) percentage reduction in overall energy using perfect prediction compared to a

32k-entry global-history (GAs) predictor.



access, onlyonebank is active at a time; therefore, bankingnot

only reduces access times but also saves power spent in the

branch predictor, as shown in Fig. 11. We plot cycle times

normalized with respect to the maximum value because
achievable cycle times are extremely implementation-depen-
dent andmight vary significantly from the absolute numbers
reported by Cacti. Banking might come at the cost of extra
area (for example, due to extra decoders), but exploring area
considerations is beyond the scope of this paper. The number
of banks range from 1 in the case of smaller predictors of size
2 Kbits or smaller to 4 in the case of larger predictors of size
32Kbits or 64Kbits. The number of banks for different branch
predictor sizes is given in Table 4.

Figs. 12 and 13 show the difference between the base
simulations and the banked configurations. It can be
observed that the largest decrease in predictor power
comes for larger predictors. This is exactly as expected
since these predictors are broken into more banks. The large
hybrid predictors do not show much difference, however,
because they are already broken into three components of
smaller sizes and banking cannot help much. Banking
results in modest power savings in the branch predictor and
only reduces overall power and energy by about
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Fig. 11. Cycle time for a banked predictor.

Fig. 13. Banking results: (a) Percentage reduction in branch-predictor energy, (b) overall energy, and (c) energy-delay.

Fig. 12. Banking results: (a) Percentage reduction in branch-predictor power and (b) overall power.

TABLE 4
Number of Banks for Various Array Sizes



0.3-0.5 percent. Of course, we did not look at banking’s
effect on the BTB, where larger savings would presumably
be achieved.

4.2 Reducing Lookups Using a PPD

A substantial portion of power/energy in the predictor is
consumed during lookups because lookups are performed
every cycle in parallel with the I-cache access. This is
unfortunate because we find that the average distance
between control-flow instructions (conditional branches,
jumps, etc.) is approximately 12 instructions. Figs. 14 and 15
show that about 40 percent of conditional branches have
distance greater than 10 instructions and about 30 percent of
control flow instructions have distance greater than 10 in-
structions. Jiménez et al. report similar data [17]. We also
compared these results with gcc-compiled SimpleScalar
PISA binaries. The results were similar, so these long
interbranch distances are not due to nops or predication. It
could be that other programs outside the SPEC suite might
have lower distance between branches. In this case, the PPD
technique proposed here might not perform as well.

The fact that many cache lines have no control flow
instructions suggests that we try to identify dynamically
when a cache line has no conditional branches and thus
avoid a lookup in the direction predictor and that we
identify when a cache line has no control-flow instructions
at all and thus eliminate the BTB lookup as well.

If the I-cache, BTB, and direction predictor accesses are
overlapped, it is not sufficient to store predecode bits in the
I-cache because they only become available at the end of the
I-cache access, after the predictor access has already begun.
Instead, we propose storing predecode bits (and, possibly,
other information) in a structure called the prediction probe

detector (PPD). The PPD is a separate table with a number of
entries exactly corresponding to I-cache entries. The PPD
entries themselves are two-bit values; one bit controls the
direction-predictor lookup, while the other controls the BTB
lookup. This makes the PPD 4 Kbits for our processor
organization. The PPD is updated with new predecode bits
while the I-cache is refilled after a miss. The PPD is similar
to the Instruction Type Prediction Table (ITPT) proposed in
[5]. The main difference is that the ITPT only relies on the
program address and its prediction can be wrong. The
notion that, in a superscalar fetch prediction, knowing what
type of instructions are in a block/I-cache line is the most
critical piece of information was also pointed out in [34].
They use a Block Instruction Table (BIT) to store informa-
tion about each instruction in the cache line in order to do
multiple branch prediction. A schematic of the PPD’s role in
the fetch stage is shown in Fig. 16a. There is a design issue
with the PPD for set-associative instruction caches. In
traditional implementation of caches, one does not know
which way of the set is going to be selected until the I-cache
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Fig. 14. (a) Average distance (in terms of instructions) between conditional branches. (b) Average distance between control-flow instructions

(conditional branches plus unconditional jumps).

Fig. 15. (a) Average distance (in terms of instructions) between conditional branches for different benchmarks. (b) Average distance between

control-flow instructions (conditional branches plus unconditional jumps) for different benchmarks.



access is complete. The only safe solution is to make the

PPD “conservative.” So, the PPD bits of all the ways of the

set are OR’d to guarantee that if a branch is present in any

way, then branch prediction is initiated. This scheme is

conservative because, many times, the way that matches

and is fetched might not have a branch. Note that our prior

work [23] overlooked this issue and, hence, slightly

overstated the benefits of the PPD.
Because the PPD is an array structure and takes some

time to access, it only helps if the control bits are available

early enough to prevent lookups. A variety of timing

assumptions are possible. Exploring fetch-timing scenarios

is beyond the scope of this paper, so here we explore two

extremes, shown in Fig. 16b.

. Scenario 1: The PPD is fast enough so that we can
access the PPD and then the BTB sequentially in one
cycle. The BTB access must complete within one
cycle; more flexibility exists for the direction
predictor. The direction predictor is also accessed
sequentially after the PPD, but either this access fits
entirely within the same cycle or, as with the 21264,
overlaps into the second cycle. The former case is
reasonable for smaller predictors; the latter case
applies to large predictors, as shown in both the
21264 and by Jiménez et al. [17]. Due to the small size
of PPD (4 Kbits), it can be seen from Fig. 11 that the
time to access the PPD is less than a quarter of the
time to access a predictor of size 64 K bits.

. Scenario 2: We also consider the other extreme. Here,
the assumption is that the BTB and the direction
predictor need to be accessed every cycle and these
accesses take too long to be placed after the PPD
access. Instead, we assume that the PPD access
completes in time to stop the BTB/direction-pre-
dictor accesses after the bitlines (before the column
multiplexor). The savings in this case are clearly less,

but the PPD is still able to save the power in the
multiplexor and the sense-amps.

Now, instead of accessing the BTB and direction
predictor every cycle, we must access only the PPD every
cycle. This means we must model the overhead in terms of
extra power required for the PPD access and update (about
2 percent of the total predictor power). Note that we omit
the power associated with calculating the appropriate
predecode bits to update the PPD, assuming that this is a
negligible cost if predecode hardware already exists.

If the PPD does not prevent enough BTB/predictor
lookups, then introducing a PPD may actually increase
power dissipation. Fortunately, there are indeed a sufficient
number of cache lines that need no BTB/predictor lookups
that the PPD is indeed effective. As explained earlier, due to
the “conservative” nature of the PPD, our scheme works
best in the case of direct mapped caches. A further
consideration that must be taken into account is whether
the predictor is banked. If the predictor is banked, the PPD
saves less power and energy (because some banks are
already not being accessed), but the combination of
techniques still provides significant savings.

Figs. 17 and 18 show the net effect of a PPD on a banked
32 K-entry GAs predictor for a direct mapped cache of the
same size. Fig. 17 shows the average reduction in power for
the branch predictor—31 percent on average for Scenario 1
and 13 percent for Scenario 2—and in the overall processor
power—3.1 percent and 1.2 percent, respectively. We
observe a similar trend in Fig. 18 for the energy metrics
(energy and energy-delay metrics are almost identical):
3 percent chip-wide improvement for Scenario 1 and
1.2 percent for Scenario 2. The PPD is small enough and
effective enough that spending this extra power on the
small PPD brings us larger benefits overall. Since the PPD
simply permits or prevents lookups (reducing lookups by
32 percent on average for a direct-mapped cache), the
percentage savings will be similar for other predictor
organizations besides GAs. It can also be observed that
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Fig. 16. (a) A schematic of the PPD in the fetch stage. (b) The two timing scenarios we evaluate.



the greater the average distance between branches for a

benchmark, the greater the savings one gets from the PPD.

For Scenario 2, the power savings are closely tied to the

timing assumptions and further work is required to

understand the potential savings in other precharge and

timing scenarios.
As mentioned, the increasing likelihood that a branch

exists in any way of an I-cache set means that the

conservative behavior of the PPD (OR’ing bits for each

way) reduces its effectiveness for higher associativities.

Fig. 19a shows how the average power and energy savings

decreases as a function of I-cache associativity (same cache

size, 64 KB). For an eight-way I-cache, there is practically no

benefit at all—in fact, the energy and energy-delay results

are slightly negative. In a similar way, the increasing

likelihood that a branch exists somewhere within a fetch

block means that storing PPD information on a per-block

basis reduces its effectiveness for larger block sizes. Fig. 19b
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Fig. 17. Net savings with a PPD for a banked, 32 K-entry GAs predictor and direct mapped cache in terms of (a) power in the branch predictor and

(b) overall processor power with a PPD. Scenarios 1 and 2 refer to two timing scenarios we model.

Fig. 18. Net savings with a PPD for a 32 K-entry GAs predictor and direct mapped cache in terms of (a) energy expended in the branch predictor,

(b) total energy, and (c) energy-delay.

Fig. 19. Net savings with a scenario-1 PPD for different (a) I-cache associativities and (b) different I-cache block sizes.



shows how the average power and energy savings decreases
as a function of I-cache block size. Note that the effectiveness
of the PPD is independent of fetch width as long as the fetch
width is less than or equal to an I-cache line.

If the PPD could somehow determine in advance which
way to access, the predecode bits for each way would not
need to be OR’d and higher-associativity caches could
realize the same savings as the direct-mapped cache. Way
prediction [6], [7] could be one way to accomplish this, but
we were unable to find a way-prediction implementation
that outperformed our conservative PPD. The cost of way
prediction is in itself significant, but the main reason we did
not find an effective way predictor is that way mispredic-
tions are very costly, like a branch misprediction, which
requires flushing the pipeline and a concomitant increase in
execution time and energy. Our conservative PPD, on the
other hand, never makes mistakes.

4.3 Highly Biased Branches

The PPD was also extended to recognize “unchanging”
branches (which are always takenor alwaysnot taken) [25] by
reflecting this property in the bits it stores: A never-taken
branch is treated the same as the absence of a branch and an
always-taken branch requires an extra bit in the PPD.
Mistakes are simply a new source of branch mispredictions.
An actual implementation would entail compiler analysis or
feedback-directed optimization in which the binary is
annotated to convey this information as a bit in each branch
instruction. For this study, we modified SimpleScalar’s
sim-bpred to identify different types of branches.Our analyzer
goes through a programand stores a 2-tuple {branch address,
branch type} value in a file.Wattch then reads this profile and
calculates power for each type of branch.

For correlation of power versus branch type, four
representative integer benchmarks were characterized. For
this experiment, we used training inputs for the profiling
and reference inputs for the actual power calculations. This
implies that some of the highly biased branches identified
in the training input could change in the reference input.
This is not a problem as any incorrect hints will be just a
misprediction and detected in the later stages of pipeline
(i.e., for these biased-branch hints, the PPD can now
introduce some mispredictions). The plots presented take
all these effects into account. From Fig. 20a, it can be

observed that the “unchanging” branches category of
branches make up more than half of all the static branches
in the binary. The energy consumed by these branches,
however, is not in the above proportion, as seen in Fig. 20b.
The reason is that “changing” branches are executed more
often than “unchanging” branches. The percentage of
energy consumed by unchanging branches can range from
trivial (gzip and crafty) to substantial (vpr and gap). From the
figures, it can be seen that unchanging branches consume
from less than 1 percent to close to 20 percent of branch-
prediction energy. Please note that this is the energy that
can be saved on top of the savings provided by the PPD
described previously, in other words, up to an extra
2 percent or so in total energy savings. This observation
makes us conclude that if branch prediction hints were
provided for unchanging branches, by profiling or static
analysis, then it would lead to a substantial reduction in the
power spent in the branch-prediction hardware. Further
savings can likely be realized if the profiling is less strict
and, instead of being confined to branches that never
change direction, it also recognizes branches that change
direction rarely enough to minimize the cost of the
mispredictions incurred upon a change in direction.

4.4 Pipeline Gating and Branch Prediction

Finally, we briefly explore the power savings that can be
obtained using speculation control or “pipeline gating,”
originally proposed by Manne et al. [20]. The stated goal of
pipeline gating is to prevent wasting energy on misspecu-
lated contribution. Pipeline gating is explored here because
it is natural to expect that the more accurate the branch
predictor, the less gating will help save energy since there is
less misspeculation to prevent. In fact, even with a very
poor predictor, we find that the energy savings are quite
small—smaller than previous work using the metric of
“extra work” (i.e., extra instructions) [20] would suggest.
Furthermore, under certain conditions, pipeline gating can
even harm performance and increase energy.

Fig. 21 shows the operation of pipeline gating. It uses a
confidence estimator [14] to assess the quality of each
branch prediction. A high-confidence estimate means the
prediction of this branch is likely to be correct. A low-
confidence estimate means the prediction of this branch is
likely to be a misprediction and subsequent computation
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Fig. 20. (a) Static profile (not dynamic execution) of branches and (b) percentage of branch predictor energy consumed by “unchanging” branches.



will be misspeculated. These confidence estimates are used
to decide when the processor is likely to be executing
instructions that may not commit. The number of low-
confidence predictions permitted before gating is engaged,
N , is a design parameter. Once the number of in-flight low
confidence branches, M, reaches the threshold N , the
pipeline is gated, stalling the fetch stage.

We modified Wattch to model pipeline gating and did an
analysis of power versus performance. We used the “both
strong” estimation method [20], which marks a branch as
high confidence only when both of the predictors of the
hybrid predictor have the same direction (taken or not
taken). The “both strong” method uses the existing counters
of the branch predictor and thus has no additional
hardware requirements. The drawback is that it only works
for the hybrid predictor.

We simulated five different hybrid predictor configura-
tions for the same integer benchmarks used elsewhere in
this section and added a new, very small, and very poor
hybrid predictor, hybrid_0, which has a 256-entry selector, a
256-entry gshare component, and a 256-entry bimodal
component. Hybrid_0, of course, yields an artificially bad
prediction accuracy, so we include it to see the effect on
pipeline gating in the extreme case of poor prediction. The
results of hybrid_1, hybrid_2, hybrid_3, and hybrid_4 are
quite close. We therefore just show results of the smallest
one, hybrid_0, and the largest and best one, hybrid_3, in
Fig. 22. For each metric, results are normalized to the
baseline case with no gating.

The results show that only the most aggressive pipeline
gating, N ¼ 0, has a substantial effect on power. For more

relaxed thresholds, the reduction in IPC is small, but so are
the energy savings.

At threshold N ¼ 0, for hybrid_0, the average number of
executed instructions is reduced by 8 percent, the total
energy is reduced by 3.5 percent, and the IPC is reduced by
6.6 percent. There are two reasons why the reduction in
energy is less than the reduction in instructions would
suggest. One reason is that these reduced “wrong path”
instructions are squashed immediately when the processor
detects the misprediction. Some misspeculated instructions
therefore spend little energy traversing the pipeline, hence
preventing these instructions fetching saves little energy. A
second reason is that errors in confidence prediction
sometimes cause pipeline gating to stall the pipeline when
the branch was in fact correctly predicted. This slows the
program’s execution and increases the overall energy
consumption.

For hybrid_3 and N ¼ 0, the average number of total
executed instructions is reduced by 6 percent, the total
energy is reduced by 2.6 percent, and the IPC is reduced by
3.4 percent. This suggests that better branch prediction does
indeed reduce the benefits of pipeline gating: Fewer
branches are marked as low confidence and pipeline gating
occurs less frequently.

It may be that the impact of predictor accuracy on
pipeline gating would be stronger for other confidence
estimators. While easy and inexpensive to implement, the
accuracy of “both strong” confidence estimation is a
function of the predictor organization. This is less true for
other confidence estimators [14] that are separate from the
predictor. This warrants further study.

The behavior of the benchmark vortex—see Fig. 23—is
especially interesting because, for N ¼ 0, the total energy
with pipeline gating is larger than without pipeline gating.
Prediction accuracy is quite high for vortex (97 percent), so
pipeline gating is likely to provide little benefit. Instead,
confidence estimation is especially poor for vortex, causing
many unnecessary pipeline-gating events. IPC drops by
14 percent, slowing execution time and increasing energy
consumption.

The preceding results are for an 8-stage pipeline. As
pipelines become deeper, pipeline gating might have more
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Fig. 21. Schematic showing the operation of pipeline gating.

Fig. 22. Pipeline gating: overall results of (a) hybrid_0 and (b) hybrid_3.



effect, so we explored the sensitivity of our results to

pipeline depth, with results shown in Fig. 24. All the extra

stages were added at the front end of the pipeline as extra

stages of decoding/renaming/enqueuing. Although this is

not exactly representative of how current pipeline stages are

allocated as pipelines grow deeper, it avoids artifacts from

specific choices of how to allocate stages in other parts of

the pipeline.
As the pipeline grows deeper, the number of possible in-

flight branches grows and the reduction in total instructions

executed grows as well. Unfortunately, any erroneous

pipeline gating incurs larger misprediction penalties, so

performance suffers too. This means that, as the pipeline

gets deeper, energy and energy-delay savings remain

disappointing. In fact, energy delay grows considerably

for the N ¼ 0 case.
Overall, our results show that pipeline gating can be

modestly helpful in reducing energy but that 1) energy

savings are substantially less than the previous metric of

“extra work” suggests and that 2) for benchmarks with

already high prediction accuracies, pipeline gating may

substantially reduce performance and increase energy.

5 CONCLUSIONS

The branch predictor structures, which are the size of a
small cache, dissipate a nontrivial amount of power—about
7 percent of the total processor-wide power—and their
accuracy controls how long the program runs and therefore
has a substantial impact on energy. This paper explores the
effects of branch predictor organization on power and
energy expended both locally within the branch predictor
and globally in the chip as a whole.

Section 3 showed that, for all the predictor organizations
we studied, total energy consumed by the chip is affected
more strongly by predictor accuracy than by the local
energy consumed by the predictor because more accurate
predictors reduce the overall running time. We found that,
for integer programs, large but accurate predictors actually
reduce total energy. For example, a large hybrid predictor
uses 9 percent more energy than a bimodal predictor, but
actually yields a 6 percent savings in total, chip-wide
energy. For floating-point programs, the energy curves are
flat across the range of predictor organizations, which
means that choosing a large predictor to help integer
programs should not cause harm when executing floating-
point programs. This suggests that if the die and cooling
budgets can afford it, processors for embedded systems that
must conserve battery life might actually be better off with
large, aggressive branch predictors rather than lower-power
but less-accurate predictors.

Section 4 showed that there are some branch-prediction-
related techniques that do save energy without affecting
performance. Banking reduces both access time and power
consumptionbyaccessingonly aportionof the total predictor
structure.A prediction probe detector (PPD)usespredecodebits
to prevent BTB and predictor lookups, saving as much as
30 percent in energy expended in the predictor and 3 percent
of total energy. These savings can be extended by annotating
binaries to convey which branches are likely to be highly
biased, providing further opportunities to prevent predictor
lookups. On the other hand, larger I-cache blocks, wide fetch
widths, and higher associativities reduce the benefits of the
PPD. Finally, we revisited pipeline gating and showed that,
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Fig. 23. Pipeline Gating: Results for vortex.

Fig. 24. Pipeline Gating: Performance and energy results as a function of pipeline depth. All results are normalized to the values obtained with no

gating. (a) hybrid_0, (b) hybrid_3.



for a variety of pipeline depths, it offers little energy saving

and can actually increase energy consumption due to slower

execution.
Overall, we hope that the data presented herewill serve as

a useful guide to help chip designers and other researchers

better understand the interactions between branch behavior

and power and energy characteristics and help identify the

important issues in balancing performance and energywhen

choosing a branch predictor design.
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