

UNDERGRADUATE THESIS PROJECT FINAL REPORT

School of Engineering and Applied Science

University of Virginia

Multithreaded Implementation of

 Leukocyte Identification Algorithm

Submitted by

Donald Clay Carter

Computer Engineering

STS 402

Section 5 (2:00 p.m.)

April 5, 2007

On my honor as a University student, on this assignment I have neither given nor

received unauthorized aid as defined by the Honor Guidelines for Papers in Science,

Technology, and Society Courses.

Signed ___________________________________

Approved ____________________________________ Date _____________

 Technical Advisor – Kevin Skadron

Approved ____________________________________ Date _____________

Science, Technology, and Society Advisor –

Bryan Pfaffenberger

skadron
Text Box

Table of Contents

GLOSSARY OF TECHNICAL TERMS.. ii

ABSTRACT.. iii

I. INTRODUCTION...1

II. SOCIAL AND ETHICAL CONTEXT ..3

III. REVIEW OF TECHNICAL LITERATURE ..7

IV. MATERIALS AND METHODS...11

A. MATERIALS...11

B. METHODS...12

1 - ANALYZE EXISTING LEUKOCYTE DETECTION AND TRACKING SOURCE CODE12

2 - EXECUTE AND PROFILE CODE BASE ON UNIPROCESSOR COMPUTER................................13

3 - CHOOSE GPU ARCHITECTURE AND CREATE SIMPLE PROGRAM ...13

4 - DESIGN PARALLEL DETECTION ALGORITHM FOR GPU ARCHITECTURE.........................14

5 - REDUCTION OF PROJECT SCOPE..16

V. RESULTS ...17

A. ALGORITHM PARALLELIZATION APPROACH..17

B. PRECISION DIFFERENCE..18

C. TIMING DATA...19

VI. INTERPRETATION OF RESULTS ..20

A. PRECISION DIFFERENCE..20

B. TIMING DATA ...20

VII. CONCLUSIONS ...22

A. SUMMARY ...22

B. RECOMMENDATIONS FOR FUTURE RESEARCH...22

VIII. BIBLIOGRAPHY ...24

APPENDIX A – CITED FIGURES..28

APPENDIX B – GPROF ANALYSIS OF DETECTION ALGORITHM ..30

APPENDIX C – FIND_ELLIPSE FUNCTION ..31

APPENDIX D – DILATE_IMAGE FUNCTION..32

ii

Glossary of Technical Terms

algorithm – a set of instructions that when complete will accomplish a specific task

algorithm parallelization – application of parallel programming techniques to an existing

algorithm to create a version that can execute at least partially in parallel

concurrent programming – see parallel programming

microscopy – method of image capture using microscope probes; in this case probes are

inserted into blood vessels of live patients - in vivo (Lach et al, 2006)

multithreaded program – a parallel program implemented as a series of shared memory

execution threads that emanate from a single main traditional process

parallel programming - the process of splitting a problem into several sub problems,

solving the sub problems simultaneously, and combining the solutions of sub problems to

get the solution to the original problem (Xavier and Iyengar, 1998)

throughput – measure of processing capacity in terms of amount of data processed over

an interval of time

uniprocessor computer – standard single processor Von Neumann machine; in this case a

traditional personal computer

iii

Abstract

 Millions of people worldwide suffer from conditions related to deficiency in

inflammatory response. Review of microscopy video allows for analysis of the rolling,

arrest, and adhesion of leukocytes. Studying the motion of leukocytes will assist

researchers in designing new treatments for inflammatory disorders. Toward this end,

researchers have designed leukocyte detection and tracking algorithms that allow

microscopy video to be analyzed by computer and the results to be presented to

physicians. These techniques, while effective, currently operate at a throughput level that

hampers effectiveness due to the processing time involved. To ease this difficulty, it is

proposed that the current detection and tracking algorithms be parallelized. The student

will design a new parallel form of the detection algorithm and implement prototypes of

the new algorithm on a GPU architecture. These efforts resulted in an increase of

throughput by two orders of magnitude and correspondingly allowed for a reduction in

program execution time of two orders of magnitude.

1

I. Introduction

 Understanding of white blood cell behavior is critical to learning more about medical

conditions resulting from malfunction in inflammatory response. Researchers in the

University of Virginia departments of Electrical and Computer Engineering and

Biomedical Engineering have developed algorithms for identifying, counting, and

tracking white blood cells (leukocytes) during in vivo video microscopy (Lach, Acton, &

Skadron, 2006). Currently implemented versions of the algorithm achieve a processing

throughput level that only allows for processing of microscopy imagery after data

collection is complete. This project aimed to increase computational throughput by three

orders of magnitude and allow real-time processing of imagery by designing a

multithreaded implementation of the detection algorithm.

 The student individually accomplished the project as a continuation of research into

detection algorithm throughput increase conducted by members of the departments of

Electrical and Computer Engineering and Computer Science (Wolpert, 2006). The

student’s project was initiated in September 2006 and is currently in progress with

completion anticipated in April 2007. The scope of the project is to implement the most

processing intensive sections of the detection algorithm in a parallel architecture and time

permitting to design an end-to-end application that incorporates these parallelized

sections into the overall detection algorithm.

 As of this writing, the project is still in progress with completion anticipated in June

2007. The student has designed multithreaded prototypes of the most computationally

intensive sections of the detection algorithm for the Nvidia GPU. Of the two prototypes

designed by the student, one is fully functional yet produces results that do not fully

2

coincide with the results produced by the uniprocessor algorithm. Preliminary timing

results for this prototypes suggest that GPU processing requires approximately 85 ms.

Comparing this value to the 1.01 s or 1010 ms processing time on the uniprocessor yields

a two order of magnitude decrease in processing time. This prototype will be revised to

generate fully accurate results and the remaining prototype will be implemented and

verified. Further steps to achieve the three order of magnitude processing time reduction

hypothesis require correct results from the prototypes and will be achieved within the

project time period specified above.

 Discussion of the project requires review of relevant technical literature, examination

of the social and ethical context, and in-depth examination of efforts made by the student

to accomplish the project. Full understanding of the need for the project requires

recognition of the crossroads that computer science faces regarding increase in

processing power and the resulting efforts to drive new parallel architectures (Lach,

Acton, & Skadron, 2006). As with any engineering area, the project retains unique social

and ethical context and the student has considered this context while completing the

project to act as a responsible engineer. Finally, continuation of the research performed

by the student necessitates in depth discussion of the student’s efforts in completing the

project and the results achieved. This analysis will allow future research to build upon

the conclusions gathered from this project and further the research accomplished by the

student.

3

II. Social and Ethical Context

 Primary social contributions made by the project are in the area of medical research

regarding inflammatory response. Inflammatory disease is a direct result of leukocytes

rolling along the internal surface lining of small blood vessels known as postcapillary

venules. By gathering data on the number and velocity of these rolling leukocytes it is

possible to greatly increase understanding and treatment options for inflammatory

diseases (Ray, Acton, & Ley, 2002). The rolling and eventual adhesion of the leukocytes

immediately precedes inflammation (Kunkel, Dunne, & Ley, 2001; Ley, 2001).

Researchers can potentially advance their understanding of inflammatory response based

on the results of the project.

 The quality of microscopy imagery leaves much to be desired, particularly the

resolution and depth perception of the produced imagery. Innovative new imagery

technology such as infrared, optical, and microwave imagery techniques is needed

(Johnson, Turnbull, & Fitzsimons, 1999). Increased image resolution and depth

perception will ultimately require more processing time due to the increased size of the

data set to be processed, in this case the image. However, due to the expected three order

of magnitude increase in processing throughput of the parallelized algorithm, this is not

expected to be a problem (Lach et al, 2006). These contributions to inflammatory

research and imagery technology have the potential to benefit society.

 Development of parallel architectures plays an important role in the future of software

development in both a social and economic sense. The project makes a contribution to

research in the field of concurrent programming on next generation hardware that is

beginning to enforce a paradigm shift in software development (Pancake, 1991;

4

Metropolis & Rota, 1993). The idea that processing power will double every 18 months,

known as Moore’s Law, has defined advances in computer architecture for the past 30

years (Twist, 2005). In a 1997 article in Wired magazine, Gordon Moore expressed that

“in about a decade, we're going to see a distinct slowing in the rate at which the doubling

occurs” (Leyden, 1997, p. 1). Moore would find his prediction for the industry accurate

once again.

 As predicted by Gordon Moore, increasingly inadequate heat dissipation has led the

processing throughput of computer chips to a plateau. Moore himself acknowledged the

reality and claimed his law was dead in an interview with Techworld in April 2005

(Dubash, 2005). This new reality impacts both the computer industry and academia. To

counter the stall of processing power increase, more processors are added to continue the

doubling effect. The symbiotic relationship of hardware and software will emerge as

multiprocessor hardware development drives new software practices to utilize the

hardware. In this case, computer scientists knowledgeable in parallelizing algorithms are

needed. Given this need for software developers with new abilities, university programs

of study must include instruction in the art of parallel programming (Kurtz, 1998;

Howland, 2006). Analysis of the results of this project and its effectiveness with the

chosen parallel architecture will provide development insights to the developers of new

parallel multi-processor architectures in terms of what applications are suited for various

parallel architectures. The project also identifies the new wave of parallel computing

requirements and communicates the necessity of learning algorithm parallelization to

computer science students.

5

 Ethical concerns that the project raises are also worthy of examination. Frequently

examined ethical issues regarding testing on live mice apply to the collection of test

microscopy data (UVa Health System, 2003). However, the student only encountered

previously captured microscopy imagery and in no way dealt with any animal testing.

Issues regarding testing with live mice aside, the issue of personal privacy can be raised

when discussing the leukocyte detection and tracking algorithms. Microscopy imagery

analysis provided by the leukocyte detection algorithm can be misused if placed in the

wrong hands. Health care providers and marketing firms can target individuals with

known inflammatory conditions (Regan, 2006). The security of systems that store such

personal information is always in question (Strassberg, 1996). No safety issues are

encountered by the student during the project. The student is fully aware and will comply

with University of Virginia standards regarding recognition of the work of others; the

student is a firm believer in the University honor system and holds firmly to the standards

of conduct outlined therein. In addition to UVa standards, the student will comply with

Association of Computing Machinery guidelines, particularly regarding intellectual

property and contributing to society (Association of Computing Machinery Council,

1992). Aside from the potential privacy concern, the leukocyte detection program does

not present notable ethical concerns.

 Efforts to complete the project have few potential problems, yet these concerns are of

great magnitude and worthy of examination. Though data on tracking of leukocyte

motion will lead to improved treatment, dependence upon this method of advancing

inflammatory research is risky and not recommended. Analyses of the detection and

tracking algorithms and discussions with the author have led to an intimate understanding

6

of the code and awareness of the need for further development to determine more

concrete characteristics of leukocytes (Cvijetic, 2006). Another important issue of note

regards the uncertain future of parallel architecture development. As mentioned

previously there is and will continue to be a great need for computer scientists trained in

the art of algorithm parallelization. Without efforts such as this project, the push for

parallelization will not gain sufficient strength and the computer industry will suffer. The

members of the academic and industrial areas of computer science must embrace this

paradigm shift for parallel architectures to succeed (Talia, 1997). The student is fully

aware of these potential pitfalls and has proceeded as planned while remaining aware of

the progress made on the issues during the scope of the project.

 Economic and social impacts of new parallel architectures, social contributions in the

area of inflammatory research, ethical privacy concerns, and the potential problems

described above are all directly relevant to this project. In completing this project, the

student has increased his awareness of these external issues and improved his abilities as

a software engineer. Awareness of the underlying issues in technology is crucial to the

student’s continued successful development as an engineer. Careful consideration of all

the effects of the project has allowed the student to complete the project and make a

contribution to society.

7

III. Review of Technical Literature

 This project serves the primary purpose of furthering research on inflammatory

conditions while at the same time demonstrating strengths and weaknesses of cutting

edge parallelization techniques. Millions of Americans suffer from medical conditions

resulting from malfunction in inflammatory response, including rheumatoid arthritis,

asthma, multiple sclerosis, and colitis (Lach, Acton, & Skadron, 2006). Studying the

molecular mechanisms of leukocyte rolling, arrest, and adhesion allows for greater

understanding of the methodology of inflammatory disease (Acton, Wethmar, & Ley,

2002). Early versions of leukocyte tracking software required ten minutes of processing

per video frame; processing an entire 100,000 frame microscopy tape, recorded over an

hour in clinic, would require nearly two years of processing time on a standard personal

computer. The project encompasses three major technical issues, specifically algorithm

parallelization, cutting edge parallel architectures, and image processing techniques used

to detect and track leukocytes in microscopy video. All of these issues are directly

related to the project content and understanding of each is essential to the successful

completion of the project.

 Algorithm parallelization is involved in the design and implementation of a

multithreaded version of the leukocyte detection algorithm. Designing the detection

algorithm implementation for the parallel architectures requires knowledge of the

involved parallel architectures. Determining parallelizable sections of the detection

algorithm and modifying the implementation to a multithreaded version directly involves

using intimate knowledge of the image processing techniques utilized in the algorithm

(Cvijetic, 2006). All of the described activities are critical to the successful completion

8

of the project, and therefore, the knowledge requisite for each activity is equally critical

to the successful completion of the project.

 The first major technical issue critical to the project is algorithm parallelization.

Creation of a parallel algorithm allows for parallel computations to be executed. Xavier

and Iyengar (1998) define parallel computation as, “the process of splitting the problem

into several sub problems, solving the sub problems simultaneously, and combining the

solutions of sub problems to get the solution to the original problem” (p. 3). Programs

that accomplish tasks in this way utilize multiple threads of control; independent threads

with shared memory require certain sections of code, called atomic or critical sections, to

be executed sequentially without interruption. To achieve this synchronization methods

such as semaphores, condition variables, and barriers are used to guarantee that

sequential execution occurs without interruption (Andrews, 2000). Many strategies exist

for designing parallel algorithms, including data, task, and pipeline parallel models.

Particularly applicable to the leukocyte detection algorithm is the data-parallel model, a

type of parallelism that is accomplished by executing the same operation concurrently on

different data items (Grama, Gupta, Karypis, & Kumar, 2003). Identifying other

possibilities for parallelization in the leukocyte detection algorithm can be achieved by

using the profiling tool gprof. Gprof measures the performance of an executing program

and identifies bottlenecks that reduce the overall computational efficiency and increase

runtime of the program (Fenlason & Stallman, 1988). Utilizing these models and

techniques assisted the student in designing the multithreaded implementation of the

leukocyte detection algorithm.

9

 The cutting edge architectures used to execute the multithreaded design are extremely

important to the success of the project. Within the past several years, the Graphics

Processing Unit has emerged as a potent parallel architecture (Atanasov, 2005). The

design of the GPU as a massive arithmetic computational device allows for new uses,

particularly computing large sets of operations found in research (Dokken, Hagen, &

Hjelmervik, 2005). ATI has developed a direct programming interface called CTM that

allows the user to directly utilize the processors contained in the ATI GPU processing

array (ATI, 2006). NVIDIA released the Compute Unified Driver Architecture (CUDA)

in November of 2006 as a software interface for issuing and managing computations on

the GPU; this software is notable particularly for its ability to execute general programs

on NVIDIA GPUs without mapping the program onto a graphics API (NVIDIA, 2006).

Researchers can use CUDA to execute existing scientific programs on the GPU without

reformulating them as traditional graphics problems and easily utilize the significant

parallel processing abilities of the GPU (NVIDIA, 2006). IBM has also released a

parallel architecture known as the Cell Broadband Engine that utilizes a controller

processor and a series of slave data processors (IBM, 2006). The Cell chip, as it is

commonly known, implements an innovative master-slave relationship between

processors and demonstrates significant potential towards task level parallelism

(Gschwind, 2006). A considerable understanding of the abilities and potential of these

architectures has been fundamental to the success of the student’s multithreaded

leukocyte detection implementation.

 The final essential area of study is the specific techniques applied in the current

implementations, including the image processing functions. The key functionality of the

10

leukocyte detection algorithm is the construction of ellipses that signify potential

leukocytes in the microscopy imagery. The ellipses are evaluated by comparison against

the gradient inverse coefficient of variation, or GICOV, explained by Lach as “the ratio

of mean derivative in image intensity in the normal direction (with respect to the contour)

over the standard deviation” (Lach et al, 2006). The leukocyte tracking algorithm is

significantly more complex, with the key component being the calculation of a motion

gradient vector field, or MGVF, based on the apparent contours of the blood vessel in

which the imagery takes place (Ray, Acton, & Ley, 2002). The MGVF biases the

expected motion of the leukocytes in the direction of blood flow (Lach et al, 2006). An

illustration of this process is found in Figure 1, Appendix A. Two external libraries are

utilized in the leukocyte detection uniprocessor implementation. The Meschach library

of matrix functions is utilized to compute various matrix values such as determinants

(Stewart & Leyk, 1994). Also used by the detection algorithm is avilib, a library

containing AVI video file manipulation functions such as reading, writing, and otherwise

manipulating files (Johanni, 2001). Complete understanding and the ability to modify or

replace these techniques with those deemed more optimal has been necessary for the

student to complete the project.

11

IV. Materials and Methods

 Discussion of the efforts made to complete the project requires specific delineation of

the resources used by the student in project efforts as well as a detailed description of

those efforts. The student utilized resources provided by the University of Virginia

Department of Computer Science and purchased by Assistant Professor Kevin Skadron’s

research group as well as knowledge and techniques taught by a variety of Computer

Science faculty. Efforts to complete the project were accomplished in according to the

revised gantt chart constructed by the student (see Appendix A, Figure 3).

A. Materials

 Completion of the project requires a significant amount of highly specialized

resources. The student has been provided with access to computing resources such as a

Linux environment and web space by the UVa Department of Computer Science. These

resources were utilized to analyze and execute code on the uniprocessor computer and

provided the student with a project website for storing a variety of data. Most important

to the project are the new Dell Pentium D multi-processor personal computers with

cutting edge NVIDIA GeForce 8800 graphics cards purchased by Kevin Skadron’s

research group. These machines provided an environment to execute any developed

GPU code. As of this writing, the student has conducted all development in a Linux

environment. Early Linux drivers available for the GeForce 8800 cards were unstable

and prompted the student to investigate transitioning to the Windows environment. The

development of new Linux drivers requires additional evaluation by the student to

determine the optimum development environment moving forward with the project. This

12

determination will be primarily made by considering the ease of use of the environment

given its consistent successful operation with the GeForce 8800 graphics cards. In

addition the student has drawn upon experiences gained in CS414, Operating Systems, to

facilitate the multithreaded development. Use of these resources has enabled the student

to progress towards completing the project.

B. Methods

 The time required to accomplish each objective is noted in Appendix A Figure 3,

 Revised Gantt Chart, reflecting changes from the student’s expectations regarding time

required to accomplish project objectives as seen in Figure 2.

1 - Analyze existing leukocyte detection and tracking source code

 The student acquired current C source code and conducted algorithm analysis using

this version. This version was developed and managed by Leo Wolpert, a graduate

student in the University of Virginia Department of Computer Science. The most recent

version of the detection and tracking source code is under the management of Marija

Cvijetic, a graduate student in the University of Virginia Department of Electrical and

Computer Engineering; meetings with Marija were held to discuss her insights into

development of the algorithms. No intellectual property issues exist regarding this

project; the algorithms are the property of Scott Acton and the implementations

accomplished by students are the property of their advisor and respective departments.

The student furthered his understanding of the source by diagramming the control flow of

the algorithms in flow chart form. Analysis of the algorithms in this way allowed for

visual representation and eased the study of program control flow.

13

2 - Execute and profile code base on uniprocessor computer

 In completing this objective the student generated valid, executable object code for the

provided source code and executed it on a standard single processor (uniprocessor)

personal computer. The student has compiled and executed the source on a test

microscopy video file. The student next utilized the profiling tool gprof to analyze

potential bottlenecks in the execution flow of the algorithm implementation. Gprof

analyzed the source execution and pinpointed locations in the code that required the most

time or resources to execute (Fenlason & Stallman, 1988). These identified

computationally intensive sections of the detection algorithm were chosen for execution

on the GPU. Specifically identified by gprof were the individual functions find_ellipse

and dilate_image. Within find_ellipse, potential leukocytes are identified and

corresponding gradient inverse coefficients of variation are identified for later use in

narrowing the potential leukocytes (see Appendix C – Find_ellipse Function).

Dilate_image is a narrowing step accomplished on the source image to remove outlier

values within the image; this allows more accurate distinction between actual leukocytes

and false positives (see Appendix D – Dilate_image Function). A copy of the gprof

analysis is provided in Appendix B.

3 - Choose GPU architecture and create simple program

 Both the ATI and NVIDIA GPU architecture interfaces provide the ability for users to

run standard computations on the GPU hardware without requiring that the operations be

simulated as a type of standard GPU computation such as ray tracing. The student

selected the GPU architecture to be used in this project based on comparisons of

programming manuals from both vendors. Immediately apparent from study of the ATI

14

CTM interface manual was the difficulty presented in managing the GPU memory; ATI

interface programming strongly resembles assembly programming and requires the

programmer to directly manage GPU memory (ATI, 2006). The NVIDIA CUDA

programming guide revealed that CUDA manages GPU memory internally and does not

require programmer involvement; the CUDA compiler allows programmers to write code

for CUDA in the C language and compile them into instructions for the GPU (NVIDIA,

2006). The advantages of CUDA over ATI CTM with regard to programming syntax and

memory management allow the student to focus on developing the multithreaded

prototypes rather than struggling with understanding difficult syntax and memory

management issues. These advantages led the student to select the NVIDIA CUDA

architecture for this project. After selecting the architecture, the student examined

provided sample programs in CUDA and gained insight into their construction. The

nature of the NVIDIA GPU architecture requires computations to be uploaded to the

GPU, executed, and then the results of the execution downloaded from the GPU (ATI,

2006).

4 - Design parallel detection algorithm for GPU architecture

 Utilizing the understanding of the source gained in the previous objectives, the student

designed and implemented multithreaded prototypes of the computation intensive

functions described above in the NVIDIA GPU architecture. As of this writing, the

prototype for find_ellipse has been designed and implemented, yet requires additional

refinement to provide comparable results to the base uniprocessor version. Due to

difficulties involved with implementing find_ellipse, the prototype for dilate_image has

been designed and only partially implemented. To design the prototypes, the student

15

identified sections of the functions that could be parallelized and determined which

sections must be executed sequentially. Required sequential sections are known as the

critical sections of the algorithm. The discovered parallelizable sections each received

their own thread. These efforts essentially provided data level parallelism; data sets were

processed using the same computations in parallel to reduce processing time.

 As mentioned above, substantial problems were encountered in implementation and

testing of the find_ellipse prototype. The student was able to pattern the prototype design

after a provided CUDA example program that executed matrix multiplications; errors

made by the student in providing input data contributed to erroneous output from the

prototype. After many iterative revisions of the prototype the student was able to

reproduce the base uniprocessor output within CUDA using a single threaded execution

model. Translating this to a multithreaded execution model has to this point led to one-

third of produced GICOV values matching to the baseline GICOV values generated by

the uniprocessor code. Significant findings from these efforts include design difficulties

encountered, a precision difference, and timing data from executing the prototype. These

findings are discussed in detail in the discussion of results chapter. Next steps in

completing the project include revision of the multithreaded model of find_ellipse to

reproduce the base results, full implementation of the dilate_image prototype, and

verification of the dilate_image prototype through reproduction of base results. Another

significant factor involves the development environment; as stated in the materials

section, the student has accomplished all development in the Linux environment to this

point and is in the process of evaluating the merit of continuing in Linux or switching to

16

Windows. Accomplishing these objectives has led the project to this point and will lead

to the completion of the project.

5 - Reduction of project scope

 Initial declaration of project scope included several components of the project that

have since been removed. The student intended to rewrite the leukocyte tracking code,

changing the language used from Matlab to C and preparing it for processing on the

GPU. This objective was removed after discussions with Marija Cvijetic indicated that

the tracking algorithm was significantly dated and the effort to rewrite the code to C and

for the GPU was deemed too costly given the time available. Plans were also made for

the student to utilize the multithreaded detection algorithm design to create a

multithreaded implementation of the algorithm in an alternate parallel architecture. This

objective will be attempted if sufficient time in the academic year remains after

completing the previous objectives; given the time required to create the prototype for

find_ellipse and remaining work on dilate_image, it is unlikely that this objective can be

completed. This reduction of the project scope has allowed the student to concentrate on

generating a quality implementation of the multithreaded prototypes and potentially make

efforts to publish the research in an academic peer reviewed journal.

17

V. Results

 This chapter presents the project results obtained thus far. The primary focus of the

project was in designing and implementing the multithreaded prototypes. Timing data

was acquired through execution of the find_ellipse multithreaded prototype and a

precision difference between the uniprocessor and multithreaded output was encountered.

The results are summarized in a table in Figure 4, Appendix A.

A. Algorithm Parallelization Approach

 The design experience of the student can provide insight to future researchers of the

necessary time investment to complete such a project. The approach taken by the student

in analyzing the code identified bottlenecks in the detection algorithm and allowed the

student to take steps to remove them. As described in the methods chapter, executing

code on the GPU requires a section of parallelized code for the GPU written using the

CUDA API and uploaded to the GPU by a calling program (NVIDIA, 2006). The

uploaded section of code is known as a kernel and is executed by several threads

simultaneously on the GPU on separate data, a textbook example of data level

parallelism. Following execution on the GPU, the results of the kernel execution are

downloaded from the GPU and returned to the calling program (NVIDIA, 2006).

 The find_ellipse prototype consists of two major components, a driver program and

the kernel. The driver program reads in the input file data generated from the

uniprocessor implementation, prepares the graphics card for execution, and retrieves the

execution results from the graphics card. Input data generated by the uniprocessor

detection implementation includes two dimensional image gradient and angular data used

18

to calculate a gradient score for each pixel. This gradient score per pixel is used to

generate the GICOV scores per pixel. After reading in this input data from the input file,

the driver program prepares the GPU for execution. The driver program allocates

memory on the GPU for each input and copies the inputs to the allocated memory. At

this point the kernel is executed on the GPU. Within the kernel each loop iteration is

assigned a separate thread in a classic demonstration of data parallelism; the find_ellipse

code found in Appendix C illustrates the loop described above. The results of the kernel

execution are downloaded by the driver program from the GPU to main memory.

Finally, the kernel GICOV results are compared to the GICOV results of the uniprocessor

implementation to determine if the kernel generates accurate GICOV scores.

 CUDA is uniquely suited to the detection algorithm and similar algorithms containing

sections of parallelizable code that can be offloaded onto a GPU and processed. The

student designed both prototypes for find_ellipse and dilate_image with minimal

difficulty; however, achieving results on the GPU that matched those generated by the

base uniprocessor code proved extremely challenging due to unfamiliarity with the

CUDA development environment and an unsuspected precision difference discussed

below.

B. Precision Difference

 While examining data sets produced by the base uniprocessor algorithm and the

student-designed CUDA uniprocessor algorithm, a precision difference was discovered

between the two data sets. During lengthy attempts by the student to generate data from

find_ellipse within CUDA as a single threaded model to match data from the base

uniprocessor code, the student constructed a comparison program that compared data sets

19

between the two programs and tallied the data points that did not match. A chance

inspection of the data revealed that data from the two sources differed by values ranging

from 0.001 to 0.000001; these differences are negligible when considering that the data

typically ranged between 3.0 and 5.0 and can be discarded. When a factor accounting for

small variation was incorporated into the comparison program the data sets were found to

match up within 0.01%.

C. Timing Data

 Timing data acquired through execution of the find_ellipse prototype did not

supported the student’s hypothesis of a three order of magnitude decrease in processing

time and a corresponding increase in throughput. As mentioned in the introduction,

preliminary timing results from the find_ellipse multithreaded prototype reflect an

approximately 85 ms execution time. Previous execution of the find_ellipse function on

the same platform on the uniprocessor resulted in an approximately 1.01 s or 1010 ms

execution time. This reflected a two order of magnitude decrease in processing time.

20

VI. Interpretation of Results

 This chapter discusses the significance of the results described in the previous chapter

and their relevance to the research area in general. The results interpreted here include

the precision difference and timing data discussed in the results chapter.

A. Precision Difference

 The existence of varying results is mentioned by the CUDA programming guide. For

this reason, comparison computations are written into sample CUDA programs to

account for variations between uniprocessor and multithreaded computations. The

detection algorithm provides a real-world example of computation that encounters this

precision difference (NVIDIA, 2006). The variations experienced between uniprocessor

and multithreaded versions are found to be within 0.01%. The variations do not in this

instance affect the outcome of the detection algorithm but are notable for their possible

affect in other highly precise applications. Programs that require extremely precise

calculation to within 0.01% could generate erroneous output in the CUDA environment.

B. Timing Data

 Comparing the uniprocessor and multithreaded execution times, it is clear that

execution time was reduced by two orders of magnitude. The multithreaded timing data

also reflects the time required to upload and download data to the GPU; these operations

are the most time intensive required by GPU processing and contribute greatly to the

execution time (NVIDIA, 2006). The speedup experienced by the multithreaded

prototype does not reach the goal of a three order of magnitude reduction in processing

time. However, the two order of magnitude decrease accordingly increases the amount of

21

data that can be processed over time. Techniques remain that can be used to attempt to

generate further speedup in execution time, such as varying the number of execution

threads and unrolling loops to generate additional parallelism.

22

VII. Conclusions

 This chapter summarizes the design experience, precision difference, and timing data

conclusions obtained to this point. The chapter also discusses remaining in the project

and recommendations to for future research.

A. Summary

 The design experience of the student, precision difference encountered, and resultant

timing data define the results of the project. The design experience reveals the

difficulties inherent in a multithreaded design project and the knowledge gained will

assist the student in future endeavors. Precision differences measured between

uniprocessor and multithreaded implementations of the algorithm provide a concrete real-

world example of CUDA precision problems; precision applications requiring

computation within 0.01% accuracy could encounter difficulties in the CUDA

architecture. Finally, timing data measured supports expectations of application speedup

greater than a single order of magnitude. Measured timing reveals a two order of

magnitude decrease in processing time for this algorithm with potential for additional

decreases.

B. Recommendations for Future Research

 As of this writing, the project has returned encouraging results; the project is not yet

complete and is expected to reinforce previously returned results along with additional

valuable design insights upon completion. The student will complete the project by fully

verifying data from the find_ellipse prototype and implementing and verifying the

dilate_image prototype. The student will accomplish these objectives by the end of the

23

project timeline in June 2007. Due to the necessary scope reduction brought about by the

student, further research is necessary into alternate parallel architectures to determine if

another architecture can produce more promising results than the NVIDIA GPU. Also

needed is the translation of the Matlab tracking code into C or C++ and the parallelization

of the tracking algorithm once it is translated. Other possibilities for algorithm

refinement exist that range from modifying how variance is calculated to the data

structures utilized in the algorithms. The student encourages prospective researchers to

consider multithreaded design projects, particularly on the NVIDIA GPU, given the

emerging trend from uniprocessor computers to new multicore platforms. Ultimately,

multithreaded design is the wave of the future and upcoming computer scientists must

ride the wave and face the challenges in development accordingly to meet the computing

needs of the future.

24

VIII. Bibliography

Association of Computing Machinery Council. (1992). ACM Code of Ethics and

Professional Conduct. ACM Computing and Public Policy Website. Retrieved on

May 8, 2007, from http://www.acm.org/constitution/code.html

Acton, S. T., Wethmar, K., & Ley, K. (2002). Automatic tracking of rolling leukocytes in

vivo. Microvascular Research, 63, 139.

Andrews, G. R. (2000). Foundations of multithreaded, parallel, and distributed

programming. Reading, MA: Addison-Wesley.

Atanasov, D. (2005). General purpose GPU programming. Proceedings of the

International Conference on Computer Systems and Technologies and Workshop for

PhD Students in Computing, 11, 1.

ATI. (2006). ATI CTM Guide Technical Reference Manual. Markham, Ontario, Canada:

ATI Technologies, Inc.

Cvijetic, M. Leukocyte Detection in Matlab Source. University of Virginia:

Charlottesville, VA.

Dokken, T., Hagen, T. R., & Hjelmervik, J. M. (2005). The GPU as a high performance

computational resource. Proceedings of the 21st Spring Conference on Computer

Graphics, 21, 21.

25

Dubash, M. (2005, April). Moore's law is dead, says Gordon Moore. Retrieved

September 24, 2006, from http://www.techworld.com/opsys/news/

index.cfm?NewsID=3477

Fenlason, J., & Stallman, R. (1988). GNU gprof. Boston, MA: Free Software

Foundation, Inc.

Grama, A., Gupta, A., Karypis, G., & Kumar, V. (2003). Introduction to parallel

computing (2nd ed.). Essex, England: Benjamin/Cummings Publishing Company,

Inc.

Gschwind, M. (2006). Chip multiprocessing and the cell broadband engine. Proceedings

of the 3rd Conference on Computing Frontiers, 3, 1.

Howland, J. E. (2006). Parallelism across the curriculum. Journal of Computing Sciences

in Colleges, 21(4), 134.

IBM. (2006). Cell broadband engine programming handbook (1st ed.). United States of

America: IBM.

Johnson, G., Turnbull, D., & Fitzsimons, E. In vivo microscopy: Technologies and

applications. (1999). Gaithersburg, MD: National Institute of Health.

Kunkel, Eric J., Dunne, Jessica L., Ley, Klaus. (2001). Leukocyte Arrest During

Cytokine-Dependent Inflammation In Vivo. The Journal of Immunology. Bethesda,

MD: The American Association of Immunologists.

26

Kurtz, B. L., Kim, C., & Alsabbagh, J. (1998). Parallel computing in the undergraduate

curriculum. Proceedings of the Twenty-Ninth SIGCSE Technical Symposium on

Computer Science Education (pp. 21-216). Atlanta, GA: ACM Press.

Lach, J., Acton, S. T., & Skadron, K. (2006). SEI: Hierarchical Dependency Graphs for

Col-Space Design with Application to Leukocyte Detection and Tracking.

Charlottesville, VA: University of Virginia.

Ley, K. (2001). Leukocyte recruitment as seen by intravital microscopy. In K. Ley (Ed.),

Physiology of inflammation (pp. 303). New York: Oxford University Press.

Leyden, P. (1997, Moore's law repealed, sort of. Wired, 1997(5.05)

Metropolis, N., & Rota, G. (1993). A new era in computation. Cambridge and London:

MIT Press.

NVIDIA. (2006). NVIDIA CUDA Programming Guide. Santa Clara, CA: NVIDIA

Corporation.

Ostreich, T. avilib.c. Free Software Foundation: Cambridge, MA.

Pancake, C. M. (1991). Where are we headed? Communications of the ACM, 34(11), 52.

Ray, N., Acton, S. T., & Ley, K. (2002). Tracking leukocytes in vivo with shape and size

constrained active contours. IEEE Transactions on Medical Imaging, 21(10), 1222.

Regan, P. (2006). Preserving privacy. Issues in Science and Technology. Dallas:

University of Texas at Dallas.

27

Segal, M., & Peercy, M. (2006). A performance-oriented data parallel virtual machine

for GPUs. Markham, Ontario, Canada: ATI Technologies, Inc.

Stewart, D. E., & Leyk, Z. Meschach Library. School of Mathematical Sciences,

Australian National University: Canberra, Australia.

Strassberg, D. (1996). Data security: Key issue in an age of pervasive computing. EDN,

41(8), 48-55.

Talia, D. (1997). Parallel computation still not ready for the mainstream.

Communications of the ACM, 40(7), 98.

Twist, J. (2005, April 18, 2005). Law that has driven digital life. BBC News. Retrieved

September 24, 2006, from http://news.bbc.co.uk/1/hi/sci/tech/4449711.stm

University of Virginia Health System. (2003). Ethical Considerations in the Use of

Laboratory Animals for Research and Testing at the University of Virginia.

University of Virginia Health System Website. Retrieved May 8, 2007, from

http://www.healthsystem.virginia.edu/internet/ccm/ETHICS/ethics.cfm

Wolpert, L. Leukocyte Detection in C Source. University of Virginia: Charlottesville,

VA.

Xavier, C., & Iyengar, S. S. (1998). Introduction to parallel algorithms. United States of

America: John Wiley & Sons, Inc.

28

Appendix A – Cited Figures

Figure 1. An example of leukocyte detection. (a) An example image in the video

sequence showing leukocytes and stationary structures. (b) Result of ellipse matching (in

white) on (a). (c) Final result of detection by GICOV thresholding after using B-spline

contour. Modified from Lach, Acton, & Skadron, 2006.

29

Figure 2. Original Gantt chart. This gantt chart specifies the expected timetable in which

the student expected to complete project objectives. Created by student, 2006.

Figure 3. Revised Gantt chart. This gantt chart specifies the final timetable in which the

student will complete project objectives. Created by student, 2007.

 Uniprocessor Code find_ellipse prototype

Precision Difference baseline ~0.01% difference

Timing Data 1010 ms 85 ms

Figure 4. Summarized Results. This table details the find_ellipse results as compared to

the baseline uniprocessor results. Created by student, 2007.

30

Appendix B – Gprof Analysis of Detection Algorithm

The following are portions of the output provided by gprof analysis of the leukocyte

detection C source code:

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 57.21 3.65 3.65 1 3.65 3.65 ellipsematching
 40.75 6.25 2.60 1 2.60 2.60 dilate_f
 0.63 6.29 0.04 internal_mcount
 0.31 6.31 0.02 244460 0.00 0.00 double_eq
 0.31 6.33 0.02 720 0.00 0.00
splineenergyform01
 0.16 6.34 0.01 1512 0.00 0.00 getfdriv
 0.16 6.35 0.01 1512 0.00 0.00 getsampling
 0.16 6.36 0.01 1 0.01 0.01 gradient_x
 0.16 6.37 0.01 1 0.01 0.01 gradient_y
 0.16 6.38 0.01 1 0.01 6.34 main

Definitions of column headings:

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
 seconds for by this function and those listed above it.

 self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
 listing.

calls the number of times this function was invoked, if
 this function is profiled, else blank.

 self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank.

 total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
 function is profiled, else blank.

name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is
 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed.

31

Appendix C – Find_ellipse Function

//Scan from left to right, top to bottom, getting GICOV values
for(i = MaxR; i < width-MaxR; i++)
{
 for(j = MaxR; j < height - MaxR; j++)
 {
 sGicov = 0;

 for(k = 0; k < ncircle; k++)
 {
 for(n = 0; n< npoints; n++)
 {
 y = j + tY[k][n];
 x = i + tX[k][n];

 Grad[n] = m_get_val(grad_x, y, x) *
cos_angle[n] + m_get_val(grad_y, y, x) * sin_angle[n];
 }
 sum = 0.0;
 ep = 0.0;

 for(iIndex = 0; iIndex < npoints; iIndex++)
 sum+=Grad[iIndex];

 ave = sum/(double)npoints;
 var = 0.0;

 for(iIndex = 0; iIndex < npoints; iIndex++)
 {
 sum = Grad[iIndex] - ave;
 var += sum*sum;
 ep+=sum;
 }

 var = (var - ep*ep/(double)npoints) /
(double)(npoints-1);

 if(ave*ave/var > sGicov)
 {
 m_set_val(gicov, j, i, ave/sqrt(var));
 sGicov = ave*ave/var;
 }
 }
 }
}

32

Appendix D – Dilate_image Function

//Perform grayscale dilation on img_in using the provided sturcturing
element
MAT * dilate_f(MAT * img_in, MAT * strel)
{
 int i, j, el_i, el_j, x, y, el_center_i = strel->m/2;
 int el_center_j = strel->n/2;
 double max, temp;
 MAT * dilated = m_get(img_in->m, img_in->n);

 for(i = 0; i < img_in->m; i++)
 {
 for(j = 0; j < img_in->n; j++)
 {
 max = 0.0;
 for(el_i = 0; el_i < strel->m; el_i++)
 {
 for(el_j = 0; el_j < strel->n; el_j++)
 {
 y = i - el_center_i + el_i;
 x = j - el_center_j + el_j;
 if(y >=0 && x >= 0 && y < img_in->m && x
< img_in->n && m_get_val(strel, el_i, el_j)!=0)
 {
 temp = m_get_val(img_in, y, x);
 if(temp > max) max = temp;
 }
 }
 }
 m_set_val(dilated, i, j, max);
 }
 }

 return dilated;
}

