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ABSTRACT
Cost pressure is driving vendors of safety-critical systems to
integrate previously distributed systems. One natural ap-
proach we have previous introduced is On-Demand Redun-
dancy (ODR), which allows safety-critical and non-critical
tasks, traditionally isolated to limit interference, to exe-
cute on shared resources. Our prior work has shown that
relaxed dedication (RD), one ODR strategy which allows
non-critical tasks (NCTs) to execute on idle critical task
resources (CTRs), significantly increases NCT throughput.
Unfortunately, there are circumstances under which, in spite
of this opportunity, it is difficult to effectively schedule NCTs.

In this paper, we introduce distributed temporal redun-
dancy (DTR), which allows critical tasks, which tradition-
ally execute in lockstep, to execute asynchronously. In do-
ing so, DTR increases scheduling flexibility, resulting in sys-
tems that achieve much closer to the optimal NCT through-
put than with relaxed dedication alone; in one set of ex-
periments, DTR schedules no less 93% of the theoretical
NCT cycles across a variety of synthetic benchmarks, out-
performing RD by over 11%, on average. Furthermore, by
distributing all redundant tasks across different resources,
triple-modular redundancy, and therefore fault localization,
can be achieved. We demonstrate that this can be accom-
plished with little additional cost and complexity: in prac-
tice, relatively few DTR tasks are in flight simultaneously,
limiting the additional buffering needed to support DTR.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability—Reliabil-
ity, testing, and fault-tolerance; C.3.3 [Computer Sys-
tems Organization]: Special-purpose and Application-based
Systems—Real-time and embedded systems
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1. INTRODUCTION
Manufacturing process scaling has made it possible to em-

ploy computer systems in almost every aspect of our lives;
few devices today operate without the assistance of com-
puters. As a natural consequence, computer systems are
increasingly responsible for the control of safety-critical sys-
tems in a variety of market segments, such as medical equip-
ment and automobiles. Manufacturing scaling, however, has
also brought with it a variety of reliability challenges: the
rate of single-event upsets due to radiation, for example,
is expected to increase exponentially as transistors shrink
[1], exacerbated by the emergence of single-event, multi-bit
upsets [2]. To ensure that no harm comes to human users
when such errors occur, faults must be quickly detected, and
better yet, automatically corrected.

Unfortunately, fast error detection is expensive, and cor-
rection more so. For example, dual-modular redundancy
(DMR) [3], a special case of n-modular redundancy (nMR),
duplicates resources so that divergent architectural state (re-
sulting from a fault) can be quickly detected. In an embed-
ded DMR system, it is typical that pairs of critical tasks
(CTs) execute on dedicated critical task resources (CTRs)
resources, and in lockstep; in this way, DMR systems can,
without interference from non-critical tasks (NCTs), quickly
identify mismatches in the results of safety-critical compu-
tations (e.g., detected at the interface to memories). While
restricting task assignment and scheduling in this way makes
it possible to detect failures quickly, failure localization and
correction is not possible without additional costs, in the
forms of more redundancy or diagnosis.

To reduce the cost of redundancy, we proposed on-demand
redundancy, which improves NCT throughput by relaxing
the requirements that CTs execute (a) on dedicated resources
and (b) in lockstep [4]. One form of ODR is relaxed dedi-
cation (RD), which relaxes assignment restrictions so that
NCTs are allowed to execute on CTR pairs when they are
not performing safety-critical computations. While RD sig-
nificantly increases NCT throughput in many cases, we ob-
served that the scheduling constraint imposed by lockstep



execution prevents systems employing relaxed dedication from
taking full advantage of the theoretical opportunity to sched-
ule NCTs [4].

We observe that if the scheduling restrictions imposed by
lockstep execution are relaxed along with the assignment re-
strictions of resource dedication, then system performance
improves. For this purpose, we have developed a novel appli-
cation of temporal redundancy (TR). When scheduling using
temporal redundancy, two redundant copies of the same task
are often scheduled on the same resource at different times,
e.g., so they execute one after the other. The second ex-
ecution of the task is used to check the result of the first
execution. When there is slack in the schedule for a multi-
processor system, this can often be accomplished with min-
imal impact on schedule length, extending reliability while
minimizing cost increases or performance degradation [5].

We therefore propose another form of ODR, distributed
TR (DTR). DTR relaxes the lockstep scheduling constraint,
allowing redundant tasks to be arbitrarily scheduled, while
constraining assignment such that each of three redundant
tasks are scheduled on different resources. The third copy is
scheduled to begin after the first two tasks have completed,
and is only invoked if there is a mismatch; in this case, the
third task executes, and voting (using values buffered from
the first two executions of the task) is performed to deter-
mine (a) the location of the fault and (b) the correct output
value. When the third task is not needed (the common case),
NCTs can execute during its reservation.

We hypothesize that this approach increases

• scheduling flexibility relative to a system employing
lockstep execution, exposing opportunity to increase
utilization, or reduce cost accordingly; and,
• reliability by using DMR hardware to achieve triple-

modular redundancy (TMR) at little additional cost.

In this paper, we estimate the performance and cost trade-
offs of DTR. To quantify the performance advantages of
DTR, we developed a novel assignment and scheduling ap-
proach for mixes of critical and non-critical tasks, and used
it to compare the performance of DTR with techniques in
the literature. In one set of experiments, we observe that
unlike relaxed dedication, whose behavior depends on the
complexities of the underlying architecture and application,
DTR consistently achieves within 93% of the optimal NCT
performance, outperforming relaxed dedication by 11%.

The additional consistency and performance of DTR also
comes at very low cost. We quantify the cost of DTR by ex-
amining its buffering requirements, and find that even when
DTR is näıvely applied (i.e., scheduling does not consider
cost as a constraint), buffering for four in-flight tasks is suf-
ficient to cover 92% of execution on average for a system
with one CTR pair and two NCTRs. Buffering for six in-
flight tasks increases this coverage to 98%. This suggests
that it may be possible to perform cost-constrained schedul-
ing to reduce the maximum required buffering (from eight
tasks) without significantly compromising the resulting per-
formance.

2. RELATED WORK
The reader is referred to the literature for surveys of the

fundamental structures of fault-tolerant computing [6, 7, 8]
and transient errors and architectures to mitigate them [9].

As multicore architectures have emerged, a number of
fault-tolerance techniques have emerged to reduce the per-
formance impact of such systems. TRUSS introduces a dis-
tributed shared memory architecture with no single point of
failure [10]. To avoid common-mode failure, redundant op-
erations are carried out by cores on different chips; however,
this leads to performance losses due to long delays wait-
ing for data to be checked. Another proposal, which filters
checks from the critical path when possible and decouples
checking from coherence, addresses these challenges [11].
Subramanyan, et al. reduce throughput losses in a CMP
when a redundant thread lags the leading thread by for-
warding loaded values and branch outcomes [12]. DDMR
uses fingerprinting to support a technique which dynami-
cally forms pairs of redundant processors. Sloan and Ku-
mar developed a framework which distributes voting logic
to support efficient, dynamic nMR group formation in chip
multiprocessors (CMPs) [13]. Fingerprinting hashes state
changes to reduce the quantity of state that is compared dur-
ing checking to a single 16-bit word [14]. While our research
also focuses on multi-core systems, we focus on safety-critical
systems where critical tasks have hard deadlines.

A variety of techniques have been developed to address
the cost of hardware redundancy. Baleani, et al. have inves-
tigated the trade-offs of lockstep and more loosely coupled
redundant execution [3]. When cost limits redundancy to
duplicated hardware or less, reliability can be categorized
by their recovery mechanism: limited hardware or software
replication [15, 5], re-execution [16], checkpointing [17], or
some combination [18]. These efforts all reclaim or reduce
the cost of explicit hardware redundancy, either working
with it or replacing it; unlike any of these efforts, our re-
search specifically focuses on the interaction of critical and
non-critical tasks, reducing the overhead of redundancy by
increasing NCT execution.

Several reliability techniques use sets of static schedules to
dynamically respond to failure [4, 16, 19, 20]. Another ap-
proach adjusts a static schedule at runtime to enhance relia-
bility, allowing tasks to re-execute by moving the execution
of other tasks [21]. More recent research has investigated
employing dynamic voltage and frequency scaling to improve
energy efficiency in the average case when task re-execution
is not necessary [22]. Other research statically schedules
retry slots so tasks can re-execute as needed without affect-
ing the execution of other tasks in the system [20]. We use
static schedules, but aggressively schedule non-critical tasks
during critical task retry reservations, pre-empting NCTs in
the rare event that a failure occurs [4].

Our work is not the first to consider systems executing
a mix of critical and non-critical tasks. Izosimov, et al.
presents a fault-tolerant scheduling technique that enforces
hard deadlines and selectively enforces soft deadlines in the
presence of failures on a single processing node [23]. Our
research is focused on the relationships between task assign-
ment and scheduling restrictions and performance in fault-
tolerant multi-core systems.

3. BACKGROUND
Traditional DMR architectures achieve reliability at great

cost. When a DMR system executes a mix of critical and
non-critical tasks, critical task resources are not only dupli-
cated, but also isolated from non-critical task resources. In
this case, the load and store addresses and store data can be
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Figure 1: When tightly coupled cores execute in lockstep,
each load/store address and store datum can be compared
before it is passed to the memory system to be fulfilled.

compared prior to being passed on to the memory system to
be fulfilled, as illustrated in Figure 1. Operations executed
by CTRs c0 and c1 are assumed to be error free provided
that (a) all duplicated signals entering the sphere of repli-
cation are equal, and (b) all duplicated signals leaving the
sphere of replication are also equal.

An example schedule for such a system is illustrated in
Figure 2(a). All tasks assigned to the c0 and c1 are ei-
ther critical tasks (filled red boxes) or retry reservations (red
dashed boxes). In the baseline, NCTs (white boxes) are only
assigned to NCTR nc0. nc0 is not pictured in Figure 1 since
the critical and non-critical subsystems have been logically
isolated to prevent interference.

If retry reservations are statically scheduled immediately
following critical tasks, when a mismatch is detected (e.g.,
due to a single event upset), tasks can be immediately re-
executed [4, 16, 20, 22]. For example, if there is a failure
in either copy of t1,1, the retry pair rt1,1 immediately re-
execute. Ensuring that re-execution completes before the
original task’s deadline is a simple matter of enforcing this
constraint at scheduling time.

Waste results in this case when the assignment restrictions
that isolate tasks result in poor resource utilization. In fact,
when CTRs reserve time to retry in the event of a failure,
dedicated CTRs are always underutilized. In our example,
while the NCTR nc0 is able to execute one set of NCTs, a
lot of idle time remains on CTRs c0 and c1.

We have previously proposed relaxed dedication, which re-
laxes the requirement that critical task resources be used
only to execute critical tasks, and shown that this optimiza-
tion can substantially improve NCT throughput [4]. The
schedule for such a system is illustrated in Figure 2(b). Crit-
ical tasks and retry reservations are scheduled first, to en-
sure that lockstep execution is preserved (as each task in
each pair must execute at the same time). By scheduling
NCTs (white and light gray boxes) during (a) idle time and
(b) retry reservations on c0 and c1, significant opportunity
to increase NCT execution is exposed. In the event a failure
does occur (even with increased vulnerability due to scaling,
failures are expected to be rare relative to the time scales
of a single hyperperiod), NCTs that either completely or
partially overlap with retry reservations (e.g., rt1,1 and rt2,
respectively) are preempted to allow the retry to execute.

In our example, this system is able to execute two (equiv-
alent) sets of NCTs when relaxed dedication is applied, dou-
bling the NCT throughput. However, when CT utilization
is high and NCTs are long, relative to CTs, relaxed dedica-
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other set of NCTs, through co-scheduling.

Figure 2: NCT throughput is increased over (a) the baseline
by relaxing CT (b) resource dedication, and (c) lockstep.

tion is restrictive, making it difficult to schedule NCT tasks;
in these cases, waste dominates once more.

4. DISTRIBUTED TEMPORAL REDUNDAN-
CY (DTR)

We have developed a new technique, distributed tempo-
ral redundancy (DTR), which cost-effectively addresses this
problem and substantially improves the consistency with
which and extent to which NCT cycles can be utilized. DTR
relaxes both (a) the assumption that CTs execute in lock-
step, and that (b) CTs execute on CTRs.

DTR has two important results for system performance
and reliability. First, when CTs need not execute in lock-
step, they can be easily co-scheduled with NCTs. The re-
sulting scheduling flexibility means that a greater fraction
of available cycles can be easily utilized to execute NCTs.

Second, when a third task is executed on a third resource
(e.g., dedicated to non-critical tasks in the baseline), TMR
is achieved without additional resources. This makes it pos-
sible to determine the origin of incorrect calculations and
identify components that may be wearing out when failures
recur; without TMR or complex self-test mechanisms, it is
not possible to distinguish transient errors due to external
events (which occur randomly in time and space) and inter-
mittent failures due to manufacturing variability or wear-out
(which recur deterministically).
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dresses are accumulated in a single CRC fingerprint ; finger-
print comparison has a high probability of detecting failures
independent of the number of accumulated changes.

4.1 Performance via Flexibility
An example of the sort of schedule that can result for such

a system is illustrated in Figure 2(c). Like the baseline and
relaxed dedication scenarios, a pair of critical tasks always
execute on c0 and c1 (e.g., t1,1). Unlike the previous cases,
these tasks need not execute in lockstep (e.g., t1,2).

Relaxing the scheduling requirement that critical tasks ex-
ecute in lockstep makes it possible to jointly optimize CT
and NCT schedules, producing efficiencies. When CTs and
NCTs are co-scheduled, it becomes possible to accommodate
larger NCTs that would not otherwise not fit in the gaps be-
tween CTs, which are scheduled before NCTs under relaxed
dedication. In our example, this system is able to execute
three (equivalent) sets of NCTs, tripling the NCT through-
put of the baseline, and improving upon relaxed dedication
by 50%. We present results in this paper exploring the ex-
tent to which DTR improves upon relaxed dedication for a
variety of synthetic benchmarks.

New architectural structures are needed to expose this
increased flexibility. Since redundant critical tasks do not
necessarily execute at the same time, the results of calcu-
lations must be buffered until all copies of a critical tasks
have completed. In our example, at one point two sets of
critical tasks are in-flight: results for t1,2 and t2 must be si-
multaneously buffered while the second (and possibly, third)
copy of each task finishes. We present results in this paper
exploring the amount of buffering required by DTR.

4.2 DTR using Fingerprinting
While DTR is not dependent on any particular under-

lying implementation for result buffering and comparison,
fingerprinting is one particularly promising method for low-
overhead comparison [14]. Fingerprinting uses a cyclic re-
dundancy check (CRC) to compress (a) changes to archi-
tectural registers, (b) new memory values, and (c) effective
load and store addresses, over the course of a number of
instruction executions. For example, a 16-bit CRC has a
1 − 2−16 = 0.99998 probability of detecting an error; the
length of instruction sequence or number of updates to the
CRC have no effect on the probability of error detection.
When greater confidence is needed, a 24- or 32-bit CRC can
be employed to achieve detection probabilities of seven nines
and nine nines respectively. Not all changes to state need to
be accumulated in the CRC fingerprint, as any errors that
that would eventually propagate to state outside of the core
must do so through registers or memory accesses. While er-
ror detection latency increases under fingerprinting, this is

mitigated by scheduling redundant tasks so they complete
before the original tasks’ deadline.

We assume a fingerprinting implementation of DTR that
collects fingerprints from the two main critical task resources
in a buffer, as illustrated in Figure 3. The buffer stores the
fingerprints of completed copies of a critical task until each
copy completes, at which point the fingerprints for each are
compared. If the fingerprints match, one copy of changes
to external state (e.g., buffered in a store buffer or cache,
not pictured) can be released; the other copy can be dis-
carded. Otherwise, the execution of a third task is triggered
on a third resource (not pictured), pre-empting any NCTs
that have been aggressively scheduled. Once the third task
completes, buffered data stored by either c0 or c1 can be re-
leased, depending on which fingerprint matches that of the
third redundant task. Though the buffers added to support
DTR are themselves vulnerable to transient upset, we antic-
ipate that (a) only a limited number of DTR tasks will ever
be in-flight simultaneously, and (b) what buffering is needed
could be protected using ECC.

When NCTs execute on CTRs, fingerprints are not gen-
erated or compared. CT/NCT interference (e.g., in the
form of an NCT modifying data relating to a CT) can be
prevented using standard memory protection mechanisms;
static scheduling prevents timing interference.

5. PERFORMANCE ESTIMATION
In order to determine the relative costs and benefits of dis-

tributed temporal redundancy compared to (a) traditional
dual-modular redundancy, (b) mission-monitor pairs [24],
and (c) implementations of (a) and (b) using relaxed dedica-
tion, we developed a novel static scheduling technique to de-
termine the extent to which each of these redundancy tech-
niques may take advantage of opportunity to execute non-
critical tasks. To estimate the number of NCT cycles that
can be scheduled, we have developed a framework that (a)
uses simulated annealing to iteratively permute NCT assign-
ment and (b) subsequently performs iterative list scheduling
to schedule as many NCTs as possible. As our purpose is
performance estimation, the assignment/scheduling process
is optimized for generating schedules with the highest uti-
lization possible while respecting task timing constraints.
Unlike traditional scheduling, in which the input task set
is fixed, we schedule using a task pool which is effectively
infinite; whatever technique results in the system that sched-
ules the most NCTs while respecting the deadlines of critical
tasks and NCTs alike, achieves the best performance.

5.1 Problem Definition
We assume as input

• an architecture, with M CTR pairs and N NCTRs,
• a finite set of periodic critical tasks cts = {ct1, ct2, . . . , ctn}

with hyperperiod hp,
• an infinite set of periodic non-critical tasks ncts =
{nct1, nct2, . . . , ncti, ncti+1, . . . },
• a set of restrictions on what constitutes a legal assign-

ment of tasks cts ∪ ncts to processors r (e.g., “non-
critical tasks only to non-critical task resources”), and
• a set of restrictions on what constitutes a legal schedule

(e.g., “critical task pairs in lockstep”).

Each periodic task t ∈ cts ∪ ncts has a period p, and is
itself composed of task instances, t = {t1, . . . , to}, o = hp/p.
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Figure 4: Complete assignment tree for three tasks,
{t1, t2, t3}, and two processors {r1, r2}. Complete assign-
ments only appear in the last level of the tree.

The activation time for task ti is i · p; the deadline for task
ti is i · p + p. Each copy of each instance of each periodic
task t ∈ cts ∪ ncts must begin after its activation time and
complete prior to its deadline. The retry reservations for
each CT instance must be scheduled after the CT instance
finishes, and finish prior to the deadline of that CT instance.
We also assume that the assignment of CT instances, their
redundant pair, and their corresponding retry reservations
or temporally redundant triple, are fixed (as defined by the
above assignment restrictions).

In this context, our goal is to find the assignment of task
instances ti,j ∈ ncts to processors in r such that the number
of NCTs s that are schedulable is maximized, where s =
|nctss|, nctsi = {nct1, nct2, . . . , ncti}. Since ncti ⊂ ncti+1,
incremental increases in the set of scheduled NCTs (and thus
s) represent incremental increases in scheduled NCT cycles;
whichever architecture maximizes s therefore maximizes the
number of scheduled NCT cycles.

5.2 Assignment Annealing
We have developed an assignment technique that performs

simulated annealing on a growing set of NCTs in order to
maximize the number of successfully scheduled NCT tasks.

While optimal task assignment is in general NP-hard,
significant progress has been made in the development of
heuristics, such as branch-and-bound, which constrain the
search space sufficiently to produce good results. Branch-
and-bound (BNB) approaches search an assignment tree,
illustrated in Figure 4. The root (node 1 at L0 in Fig-
ure 4) represents an empty assignment. At level i, task
ti ∈ {t1, . . . , tn} is assigned to a processor from the proces-
sor set r = {r1, . . . , rm}. Any assignment at level i < n is
a partial assignment; leaf nodes (at level n) represent com-
plete assignments. BNB techniques reduce the complexity
of assignment search by aggressively pruning branches of the
assignment tree by estimating (bounding) the cost of an in-
complete assignment; any incomplete assignment which can
be shown to produce only invalid schedules or be sub-optimal
(e.g., in terms of schedule length) need not be further pur-
sued. In this way, assignment and scheduling effort is limited
to those paths likely to produce good—or in some cases, even
optimal—results, and very few leaf nodes are evaluated [25].

In our assignment tree, however, there are no leaves; any
downward search only terminates at level i when, given a
particular assignment of tasks to processors, list scheduling
fails to produce a valid schedule (i.e., there exists some task
instance which cannot be scheduled such that its activation
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Figure 5: Performance estimation assignment tree for two
resources. Unlike typical assignment trees, there are no leaf
nodes; search halts when an assignment is not schedulable.

time and deadline are respected). Instead of attempting to
limit the depth to which any particular path is explored, our
technique focuses exploration on pushing forward the bound-
ary of terminal assignments in search of an optimal terminal
assignment, as illustrated in Figure 5. The children of a ter-
minal assignment are all unschedulable; the assignment of
any additional task results in the violation of at least one
performance constraint. The level i of an optimal terminal
assignment is greater than or equal to the level of all other
terminal assignments, ensuring it has scheduled at least as
many NCT cycles as any other terminal assignment.

We employ simulated annealing to permute the assign-
ment of NCTs to processors, using a cooling schedule from
the literature [26]. Because the set of NCTs is larger than
what can be scheduled, annealer effort focuses on the (chang-
ing) interface in ncts between successfully scheduled tasks
(nctsi, tasks at levels i and lower) and that just beyond
(nctsi+1 \ nctsi, the task at level i + 1). For each candidate
task assignment, we perform iterative scheduling to deter-
mine how many of the assigned tasks can be scheduled [4].

5.2.1 Initialization
Our annealing process begins by initializing the assign-

ment of all critical and non-critical tasks. First, all CTs are
deterministically assigned; these assignments are not sub-
ject to permutation during annealing. Restrictions on CT
assignment vary from technique to technique, and are de-
tailed in subsequent subsections.

Second, all NCTs are randomly assigned. In practice,
|ncts| is not infinite; in our experiments, ncts is only large
enough such that it is never completely scheduled. During
initialization, all tasks in ncts are assigned, though many
tasks in ncts are never successfully scheduled. Restrictions
on NCT assignment also vary from technique to technique;
specific details follow in subsequent sections.

5.2.2 Permutation
After initialization, our annealer repeatedly permutes and

evaluates the assignment of NCTs to processors, probabilis-
tically accepting permutations that increase assignment cost
(by reducing the number of schedulable tasks).

As our approach is designed to maximize the size of the set
of schedulable NCTs, s = |nctss|, our permutations focus on



exploring the interaction of currently schedulable tasks nctsi
and the first task currently not schedulable nctsi+1 \ nctsi.
Each instance of an NCT must be schedulable for the task
to be schedulable; nctsi+1 \ nctsi may therefore contain a
number of tasks whose assignment can be changed. Half
of all permutations change the assignment of an instance
of a schedulable task in the hope of making room for an
unschedulable NCT. The other half change the assignment
of an instance of the unschedable NCT.

5.2.3 Evaluation
To evaluate each candidate assignment, we employed an

iterative scheduling technique we previously developed [4].
Given an assignment of tasks to processors, a binary search
is performed for i = |nctsi|, such that the set {nctsi+1} is
not schedulable. This is accomplished with repeatedly list
scheduling [27], using a binary search on i, 0 ≤ i < |ncts|,
to quickly identify the largest schedulable set of NCTs. i is
sole variable in the objective function.

5.2.4 Cooling Schedule
Our annealer adopts the cooling schedule and related pa-

rameters proposed by Huang et al. [26]. This approach first
performs a number of permutations to estimate the stan-
dard deviation of the objective function, which is in turn
used to identify a starting temperature (in simulated an-
nealing, the temperature determines the likelihood that a
permutation that increases cost is accepted). At each tem-
perature, the annealer performs permutations until “equi-
librium” is achieved: if a minimum number of moves have
been accepted, and a certain fraction of those fall within an
interval around the average cost, then equilibrium has been
achieved and the system can be cooled.

The annealer adaptively cools based on the standard de-
viation of the system cost during the prior iteration; the
smaller the standard deviation, the faster the annealer cools.
Annealing terminates after n iterations without significant
change in the cost function; n = 10 in our experiments.

5.3 Baseline Systems
We consider two baseline systems. The first employs dual-

modular redundancy (DMR). In DMR systems, if ti,j ∈ t ∈
cts is assigned to resource r, ti,j ’s redundant pair is assigned
to r’s redundant pair rDMR, and a pair of retry reservations
are assigned to r and rDMR as well. Task scheduling is also
restricted: ti,j and its redundant pair must begin execution
on r and rDMR at the same time; and, the corresponding two
retry reservations must also begin at the same time. Retry
reservations are scheduled such that they begin immediately
after the original redundant tasks ends.

The second baseline is a system employing mission-monitor
(MM) pairs [24]. The mission core executes the critical task,
while a tightly-coupled monitor core replicates just enough
of the execution of the mission core to ensure that failures
are detected. The principal advantage of MM pairs is that
system cost is reduced by replicating in the monitor core
only that functionality which is needed to ensure the safe
operation of the mission core. Toshiba reports that in its im-
plementation, the monitor core is 58% smaller than the mis-
sion core [24]. The disadvantage of MM is that the tightly
coupled monitor core cannot be used to execute NCTs.

In MM systems, there are no pairs of redundant tasks or
retry reservations; a single CT instance ti,j is scheduled on

the mission core r, and a single retry reservation is assigned
to the same processor. We assume that each MM system, by
virtue of achieving redundancy more cost-effectively than an
equivalent DMR system, benefits from having an additional
half-performance, half-area NCTR [4].

For the baseline systems, CTs and their retry reservations
are scheduled first on CTRs (using list scheduling), in or-
der to ensure that scheduling restrictions related to lockstep
execution can be satisfied. Each time a CT is scheduled, a
retry reservations is scheduled to immediately follow it on
the same resource. CT list scheduling is performed in a sin-
gle pass. Since all CTs must be schedulable for the schedule
to be legal, iterative list scheduling is unnecessary.

NCTs are scheduled on NCTRs in a subsequent step. For
each attempted assignment, iterative list scheduling deter-
mines the maximum number of NCTs that can be scheduled.

5.4 Relaxed Dedication
When evaluating systems with relaxed dedication, assign-

ment restrictions are relaxed: while CTs and retry reserva-
tions remain assigned to CTRs, NCTs can be assigned to
any resource (except the monitor in MM).

For systems with relaxed dedication, CTs and their retry
reservations are still scheduled first, and in the same way
as for the baseline systems. When NCTs are subsequently
scheduled, they can assigned to CTRs and can be scheduled
either during (a) idle time, or (b) retry reservations.

5.5 Distributed Temporal Redundancy
When evaluating systems with distributed temporal redun-

dancy, assignment restrictions are changed relative to the
baselines: CTs remain assigned to CTRs; for each CT, a
single retry reservation (rather than a pair) is made on a
single NCTR. This assignment is deterministic: the same
NCTR is used for all retries for a given pair of CTRs. This
reduces the cost of DTR by limiting the number of resources
which require the result buffering and fingerprint generation
logic described in Section 4.2. By assigning each redundant
copy of a task to a different resource, majority voting can
isolate the source of the failure.

For DTR systems, CTs, their retry reservations, and NCTs
are scheduled simultaneously in a single, iterative list schedul-
ing step. The assignment annealer can only change the as-
signment of NCTs (all other assignments are fixed). For each
assignment, list scheduling attempts to co-schedule all tasks:
CT pairs may not be scheduled to start at the same time,
and there may be gaps between the end of CT tasks and the
beginning of the retry reservation. NCTs can be scheduled
at any time. Co-scheduling CTs, retry reservations, and
NCTs significantly increases scheduling complexity, while
exposing opportunity to improve schedule efficiency.

6. EXPERIMENTAL SETUP
We conducted experiments to compare the performance of

distributed temporal redundancy, approaches from the liter-
ature [24], and our prior work [4]. We employ the assignment
and static scheduling approach in Section 5 to both (a) es-
timate the relative performance of each technique under a
variety of usage scenarios, and (b) estimate the cost of DTR
by measuring the number of in-flight DTR tasks.

In our experiments, we assume a fixed system of four core
equivalents, where M = 1 (the number of CTR pairs), and
N = 2 (the number of NCTRs). Experimenting with het-



erogenous systems is the subject of future work. We select
a mission-monitor implementation as the baseline (MM),
and compare traditional dual-modular redundancy (DMR),
DMR with relaxed dedication (DMR+RD), and MM with
relaxed dedication (MM+RD), and our proposed approach,
distributed temporal redundancy (DTR).

We randomly generated a number of benchmarks using
Task Graphs for Free (TGFF) [28] in order to determine how
ctf and ctrl influence the relative performance of DTR and
comparison approaches. In our experiments, we varied the
fraction of CTR execution dedicated to critical tasks (crit-
ical task fraction), ctf ∈ [0.1, 0.48]. We also experimented
with two ratios of average CT length to average NCT length
(critical task length ratio), ctlr ∈ {0.4, 1}. Experimenting
with real applications is the subject of on-going research.

6.1 Critical Task Sets
The cycles theoretically available to relaxed dedication to

execute NCTs changes as a function of (a) redundancy type
(DMR vs. MM) and (b) ctf . In our prior work, DMR with
relaxed dedication performed better for low ctf , with MM
achieving parity for high ctf . To explore the relative per-
formance of DTR under variable ctf , we generated 10,000
sets of critical tasks, from which we selected 20 such that
ctf ∈ {0.1, 0.12, . . . , 0.48}. These different sets of tasks cap-
ture a range of reasonable applications, from those domi-
nated by NCTs where safety is periodically monitored (e.g.,
a tire-pressure monitoring system), to those dominated by
safety-critical tasks (e.g., an anti-lock braking system). Each
set of CTs is composed of 8 tasks, with a task length of
20 ± 10 (uniformly distributed), and period multipliers in
{1, 2, 5, 10, 20}. The CT benchmarks are composed of from
19 to 95 task instances, 47.8 on average.

6.2 Non-critical Task Sets
The cycles practically utilizable by RD changes as a func-

tion of (a) redundancy type (DMR vs. MM) and (b) ctrl.
In our prior work, DMR with relaxed dedication performed
better for high ctrl (CTs longer than NCTs), with MM per-
forming substantially better for low ctrl (CTs shorter than
NCTs). DTR is expected to perform well independent of
ctrl, since CTs and NCTs can be simultaneously scheduled.

To explore the relative performance of DTR under vari-
able ctrl, we considered two scenarios, ctrl = 1 (CTs are as
long on average as NCTs) and ctrl = 0.4 (CTs are 40% as
long on average as NCTs). Period multipliers are selected
from the same set as for CTs. In our experiments, NCTs are
independent of the CTs, under the assumption that making
a CT dependent on an NCT would pose a safety risk.

When ctrl = 0.4, the task length of an NCT is 50 ± 10
(uniformly distributed); in this case, NCTs are always too
long to be scheduled in retry reservations alone, allowing us
to explore the relative advantages of DTR in a case when
relaxed dedication is expected to perform poorly.

6.3 CT-NCT Benchmarks
In order to account for the interaction of individual sets of

CTs and NCTs (where one ill-sized NCT can prevent further
NCTs from being scheduled during our iterative approach),
we match each CT set with n randomly generated sets of
NCTs from each pool, n ∈ [33, 132]. Each NCT set from the
same pool has the same parameters, but different sets can
result in significantly different assignment and scheduling

Table 1: Theoretical NCT cycles

General Eqn. Normalized Eqn.
M = 1, N = 2

WDMR = Nft = 4/5

WMM = Mft
2

+ Nft = 1
WDMR+RD = 2Mft(1− c) + WDMR = 8/5− 4c/5
WMM+RD = Mft(1− c) + WMM = 7/5− 2c/5
WDTR = WDMR+RD = 8/5− 4c/5

outcomes. The performance of a system for a given value of
ctf is derived by averaging the number of cycles utilized by
NCTs across each of the n samples. Larger n is used when
95% confidence intervals are large, and n = 33 is insufficient
to distinguish the approaches statistically.

7. RESULTS
The results of our two scheduling scenarios are illustrated

in Figures 6 and 7. In the compilation of these results, we
completed over 10,000 individual trials. Depending on the
number of tasks scheduled, a single trial executed for any-
where from less than an hour to a few days (on an AMD
OpteronTM 242 with 3 GB RAM); as task count increases,
both assignment and scheduling complexity increase. When
ctf = 1, the baseline and relaxed dedication approaches
scheduled from 319 to 491 NCT instances on average, and
up to 512 and 982 respectively. Because DTR co-schedules
(a) NCTs with (b) each redundant copy of each CT, it sched-
uled more task instances: 694 on average, and up to 1092.

Figure 6(a) plots the normalized scheduled NCT cycles,
across a variety of ctf values, when ctrl = 1 (CTs and NCTs
are the same length, on average). Each value is normalized
to the theoretical number of cycles available to MM. The
error bars in Figure 6(b) indicate the theoretical maximum
NCT cycles that could be exposed.

The theoretical maximums for work W (cycles) done by
each technique are summarized in Table 1 [4]. The general
equations are functions of the number of CTR pairs M , the
number of NCTRs N , the (homogeneous) clock frequency of
each resource f , the hyperperiod length t, and critical task
fraction c (cft elsewhere). While DTR has the same theoret-
ical maximum as DMR+RD, we will observe that relaxing
scheduling constraints makes it easier for DTR to take ad-
vantage of opportunity to schedule NCTs. As in Figure 6(a),
the normalized equations are normalized to MM.

The absolute number of NCT cycles is plotted in Figure
6(b). Different sets of columns have different magnitudes
(e.g., ctf = 0.3 and ctf = 0.32) because the hyperperiods
of the CT sets are different. In this figure, the error bars
correspond to the 95% confidence interval.

Figures 7(a) and (b) plot the normalized and absolute
cycles respectively, when ctrl = 0.4 (CTs are 40% as long as
NCTs on average).

7.1 Baseline Performance
We first observe that the baselines (DMR, MM) experi-

ence consistent, if consistently lower, NCT performance than
the other techniques. All NCT cycles are scheduled on dedi-
cated resources, significantly simplifying the assignment and
scheduling process. DMR and MM capture 96% and 94% of
the opportunity respectively, when ctrl = 1 (Figure 6). In
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(a) NCT cycles normalized to those theoretically achievable by a baseline mission-monitor system. The error bar corre-
sponds to the NCT cycles theoretically available [4].
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(b) Absolute NCT cycles scheduled. Fewer cycles are scheduled for some ctf values as a result of shorter hyperperiods.
Error bars correspond to the 95% confidence interval.

Figure 6: ctrl = 1, CTs and NCTs are the same length on average. Distributed temporal redundancy outperforms the
alternative approaches across all considered mixes of critical and non-critical tasks, consistently exposing a greater share of
the potential NCT cycles than the alternatives.

this case, the relative cost advantage of MM translates into
higher NCT performance, 22% on average. When ctrl = 0.4
(Figure 7), it is harder to fully utilize resources dedicated to
NCTs: longer tasks are more difficult to pack effectively. In
this case, DMR captures 82% of the opportunity, while MM
captures 81%; MM’s advantage grows slightly to 26%.

Next, we observe that when DMR and MM are extended
with relaxed dedication, significantly more cycles are avail-
able for NCT execution, confirming what we have previously
observed [4]. When ctrl = 1, DMR+RD is able to schedule
56% more NCT cycles than DMR on average; MM+RD is
able to schedule 25% more NCT cycles than MM. Compared
across all possible values of ctf , DMR+RD and MM+RD
are approximately equivalent on average, with DMR+RD
having an advantage for smaller ctf (because of greater the-
oretical opportunity) and MM+RD having an advantage for
smaller ctf (because of scheduling challenges): DMR+RD
performs 8% better on average than MM+RD for ctf < 0.3
and 7% worse for ctf ≥ 0.3.

As the fraction of time devoted to critical tasks grows,
both approaches struggle to schedule NCT tasks in some
cases. DMR+RD performs notably poorly when ctf = 0.44,
scheduling fewer NCT cycles than even DMR. This illus-
trates that while there may be more scheduling opportu-

nity when ctf is large, it is difficult enough to find a good
schedule that the added scheduling flexibility actually be-
comes a liability. MM+RD likewise performs poorly when
ctf = 0.46; though the average for MM+RD is higher in
this case for MM, the confidence interval around MM+RD
includes the average for MM (Figure 6(b)).

DMR+RD and MM+RD perform even worse when ctrl =
0.4: DMR+RD schedules just 6% more than DMR on aver-
age; MM+RD schedules 4% more than MM on average. As
was the case when ctrl = 1 and ctf = 0.44, it is often diffi-
cult for DMR+RD and MM+RD to take advantage of the
opportunity to schedule NCTs. When ctf ≥ 0.3, DMR+RD
schedules 49% more NCTs on average than DMR; however,
when ctf < 0.3, DMR+RD schedules 37% less on average.
MM+RD faces a similar challenge, with a 21% advantage
over MM when ctf ≥ 0.3, and a 13% penalty otherwise.

Unlike when ctrl = 1, DMR+RD and MM+RD are not
equivalent on average, and for essentially the same reason.
DMR+RD schedules 1% fewer NCT cycles when ctf < 0.3,
and 46% less when ctf ≥ 0.3, on average. Because NCTs
cannot be scheduled during retry reservations (on account of
being too long), it is more difficult to schedule NCTs (a) in
general, (b) under relaxed dedication, and (c) under DMR
with relaxed dedication in particular.
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(a) NCT cycles normalized to those theoretically achievable by a baseline mission-monitor system. The error bar corre-
sponds to the NCT cycles theoretically available [4].
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(b) Absolute NCT cycles scheduled. Fewer cycles are scheduled for some ctf values as a result of shorter hyperperiods.
Error bars correspond to the 95% confidence interval.

Figure 7: ctrl = 0.4, CTs are 40% the length of NCTs on average. Even when NCTs are large relative to CTs, DTR performs
well, outperforming the alternative approaches across almost all considered mixes of CTs and NCTs.

7.2 DTR Performance
Unlike the approaches employing just relaxed dedication,

DTR performs consistently no matter the fraction of time
dedicated to critical tasks. When ctrl = 1, DTR schedules
NCTs in 95% of the available cycles on average, compared
with 87% and 92% for DMR+RD and MM+RD respectively.
Notably, DTR never takes advantage of less than 93% of the
available cycles, compared with 54% and 80% for DMR+RD
and MM+RD respectively. This advantage in consistency
translates to an advantage in NCT scheduling of 12% and
11% compared with DMR+RD and MM+RD respectively.

When ctrl = 0.4, DTR schedules NCTs in 82% of the
available cycles on average, compared with 49% and 65%
for DMR+RD and MM+RD respectively. In this case, DTR
schedules 1.38× more NCT cycles than DMR+RD, and 39%
more than MM+RD. It is interesting to note that DTR’s
advantage over the baseline approaches is comparable; DTR
schedules 72% more NCTs than DMR, and 53% more than
MM. In one case, when ctf = 0.46, DTR actually performs
slightly (11%) worse than MM; this is the one observed case
when DTR fails to outperform all comparison approaches.

7.3 DTR Cost
Though DTR is not free, even when näıvely applied its

hardware cost is low. At present, our performance estima-
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Figure 8: In the worst-case, buffering is needed for eight
DTR tasks, though the majority of time four suffice.

tion technique does not constrain the number of DTR tasks
that may be in flight at any given time. In practice, schedul-
ing must be performed under such a constraint, since buffer-
ing and comparison logic must be implemented in hardware
for the sake of efficiency. We estimate the cost of DTR here
by measuring the number of buffers required to support in-



flight CTs, under the assumption that DTR area overhead
will scale approximately linearly with the number of buffers;
a detailed micro architectural evaluation, while beyond the
scope of this paper, is the subject of future work.

In our experiments, there were at most seven or eight DTR
tasks in flight at once. On average, however, far less buffer-
ing is needed. Across all values of ctf and ctrl, the average
number of tasks in flight varied from 1.17 to 2.9, with an
overall average of 2.25. Figure 8 illustrates, averaged across
all values of ctf and ctrl, the maximum, average, and mini-
mum hyperperiod coverage afforded by different amounts of
buffering. For example, on average (Avg), buffering for four
sets of tasks is sufficient for 92% of all execution time. Even
in the worst case (Min), buffering for six sets of tasks covers
98% of execution. The results charted in Figure 8 imply that
there could be significant opportunity to constrain the cost
of DTR buffering without dramatically reducing the bene-
fits of DTR. Investigating this, by adding constraints to the
scheduling process, is also the subject of future work.

8. CONCLUSIONS
We introduced distributed temporal redundancy, a form

of on-demand redundancy. To goal of ODR is to increase
NCT throughput in safety-critical systems by relaxing the
traditional assumptions of (a) resource dedication and (b)
lockstep execution, which restrict task assignment and crit-
ical task scheduling. Like relaxed dedication, DTR relaxes
assignment restrictions to make use of unutilized cycles on
critical task resources for executing NCTs. DTR, however,
makes two important improvements over RD. First, by re-
laxing scheduling restrictions such that critical tasks can ex-
ecute out of lockstep, DTR achieves greater scheduling flex-
ibility, making it practical to schedule a greater fraction of
the theoretically available NCT cycles. Second, by allowing
retry reservations to execute on non-critical task resources,
it is to determine the difference between transient and in-
termittent or permanent failures, but without the costs of
triple-modular redundancy or sophisticated self-check logic.

Our experiments demonstrate that not only does DTR
offer significant performance advantages over RD and other
approaches, it does so with relatively small increases in cost
and complexity. In one case, DTR schedules no less 93%
of the theoretical NCT cycles across a variety of synthetic
benchmarks, outperforming an approach that only relaxes
assignment restrictions by over 11% across a variety of usage
scenarios. While the use of fingerprints already substantially
reduces the burden of redundancy checking, the fingerprint
buffering required by DTR is also not significant. In the
worst-case, when cost restrictions are not imposed during
scheduling, we observed that buffering is required for up to
eight in-flight critical tasks. However, on average far less
buffering is required, with 92% of execution time covered
by buffering for four tasks, on average. This suggests that
even when the number of in-flight critical tasks is restricted
to meet hardware constraints, significant opportunity to im-
prove performance remains.
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