Accelerating Compute-Intensive Applications with GPUs and FPGAs

Shuai Chef, Jie Lit, Jeremy W. Sheaffer, Kevin Skadron'* and John Lach?
{sc5nf, jI3yh, jws9c, skadron, jlach} @virginia.edu
Departments of Electrical and Computer Engineering? and Computer Science!, University of Virginia

Abstract—Accelerators are special purpose processors designed
to speed up compute-intensive sections of applications. Two
extreme endpoints in the spectrum of possible accelerators are
FPGAs and GPUs, which can often achieve better performance
than CPUs on certain workloads. FPGAs are highly customizable,
while GPUs provide massive parallel execution resources and
high memory bandwidth.

Applications typically exhibit vastly different performance
characteristics depending on the accelerator. This is an inherent
problem attributable to architectural design, middleware support
and programming style of the target platform. For the best
application-to-accelerator mapping, factors such as programma-
bility, performance, programming cost and sources of overhead in
the design flows must be all taken into consideration. In general,
FPGAs provide the best expectation of performance, flexibility
and low overhead, while GPUs tend to be easier to program and
require less hardware resources.

We present a performance study of three diverse
applications—Gaussian Elimination, Data Encryption Standard
(DES), and Needleman-Wunsch—on an FPGA, a GPU and a
multicore CPU system. We perform a comparative study of
application behavior on accelerators considering performance
and code complexity. Based on our results, we present an
application characteristic to accelerator platform mapping,
which can aid developers in selecting an appropriate target
architecture for their chosen application.

I. INTRODUCTION

Difficulties in scaling single-thread performance without
undue power dissipation has forced CPU vendors to inte-
grate multiple cores onto a single die. On the other hand,
GPGPU (general purpose computing on graphics processing
units) and FPGA (field-programmable gate array)-based soft-
ware/hardware co-design are becoming increasingly popular
means to assist general purpose processors in performing
complex and intensive computations on accelerator hardware.
GPUs and FPGAs, together with other accelerators such the
vector processors of IBM’s Cell [11], DSPs (digital signal
processors), media processors and network processors, can
process work offloaded by the CPU and send the results
back upon completion. Accelerators range from general pur-
pose processors optimized for throughput over single-thread
performance, through programmable, domain-specific proces-
sors optimized for characteristics of a particular applica-
tion domain, to custom, application specific chips which are
possibly implemented with reconfigurable hardware such as
FPGAs. Accelerators’ vast parallel computing resources and
increasingly friendly programming environments make them
good fits to accelerate compute-intensive—and especially data-
parallel—parts of applications.

* Kevin Skadron is currently on sabbatical with NVIDIA Research

Future computer systems will certainly include some accel-
erators, with the GPU and video processor the most common.
Today, accelerators are primarily available as add-in boards.
In the future they will probably be located on-chip with the
CPU, thus reducing communication overhead.

Different applications place unique and distinct demands on
computing resources, and applications that work well on one
processor will not necessarily map to another; this is even
true for different phases of a single application. Accelerators
that are designed independently by different vendors exhibit
significant differences in hardware architecture, middleware
support and programming models, which causes the processors
designed for the same special task to favor differing subsets of
applications. For example, programming methodologies range
from direct hardware designs for FPGAs, through assembly
and domain specific languages, to high level languages sup-
ported by GPUs [10]. These are widely different technologies
and currently it is unclear which one is best suited to a given
task.

Except for FPGAs—and recently GPUs—there is little
research on how to use special purpose processors as acceler-
ators for general-purpose computations, how accelerators and
tasks map, and—for future heterogeneous multicore chips—
which accelerators warrant on-die circuitry. Also, a challenge
facing developers is to understand application behavior on
different accelerators to determine how to partition the applica-
tions into phases that can execute on available accelerators in
the most efficient and cost-effective way. To understand these
issues first requires an understanding of which application
characteristics map well to which accelerators, and what issues
arise in an acceleration model of computing. As a first step
in advancing our understanding of these issues, this paper
studies several different applications on FPGAs and GPUs and
compares them to single- and multi-core CPUs.

This work makes the following contributions:

o An understanding of the pros and cons of FPGA hardware
platforms and programming models as they compare to
GPU platforms.

e An analysis of three diverse applications—Gaussian
Elimination, DES, and Needleman-Wunsch—that is not
focused on speedup, but rather on those diverse charac-
teristics of their performance that allow speedup.

¢ Our mapping of application characteristics to a preferred
platform, taking into account various trade-offs of metrics
including programming cost and performance.

II. RELATED WORK

Use of existing accelerators, such FPGAs and GPUs, has
demonstrated the ability to speed up a wide range of applica-
tions. Examples include image processing [6], data mining [2]
and bioinformatics [9] for FPGAs, and linear algebra [12],
database operations [7], K-Means [4], AES encryption [19]
and n-body simulations [15] on GPUs. Other work has com-
pared GPUs with FPGAs for video processing applications [5],
and similarly analyzed the performance characteristics of
applications such as Monte-Carlo simulations and FFT [10].

NVIDIA’s Compute Unified Device Architecture, or CUDA,
and AMD’s Compute Abstraction Layer, or CAL, are new
language APIs and development environments for program-
ming GPUs without the need to map traditional OpenGL and
DirectX APIs to general purpose operations. Domain specific
parallel libraries, such as a recent scan primitives implemen-
tation [18] can be used as building blocks to ease parallel pro-
gramming on the GPU. On the other hand, FPGA applications
are mostly programmed using hardware description languages
such as VHDL and Verilog. Recently there has been a growing
trend to use high level languages such as SystemC and Handel-
C [8] which aim to raise FPGA programming from gate-level
to a high-level, modified C syntax. Calazans et al. provide a
comparison of system design using SystemC and VHDL [3].
But there are still some limitations for these languages. For
example, Handel-C does not support pointers and standard
floating point. In this initial study, we only use VHDL for
the FPGA implementations.

III. FPGA AND GPU COMPARISONS
A. Platforms Overview

GPUs are inexpensive, commodity parallel devices with
huge market penetration. They have already been employed
as powerful coprocessors for a large number of applications
including games and 3-D physics simulation. The main advan-
tages of the GPU as an accelerator stem from its high memory
bandwidth and a large number of programmable cores with
thousands of hardware thread contexts executing programs
in a single program, multiple data (SPMD) fashion. GPUs
are flexible and easy to program using high level languages
and APIs which abstract away hardware details. In addition,
compared with hardware modification in FPGAs, changing
functions is straightforward via rewriting and recompiling
code, but this flexibility comes at a cost.

Compared to the fixed hardware architecture of the GPU,
FPGAs are essentially high density arrays of uncommitted
logic and are very flexible in that developers can directly
steer module-to-module hardware infrastructure and trade-off
resources and performance by selecting the appropriate level
of parallelism to implement an algorithm. In the FPGA co-
processing paradigm, the hardware fabric is used to approx-
imate a custom chip, i.e. an ASIC (application specific inte-
grated circuit). This eliminates the inefficiencies caused by the
traditional von Neumann execution model and the pipelined
implementations of GPUs and CPUs, and can achieve vastly

improved performance and power efficiency. Though vendors
provide IP cores that offer the most common processing
functions, programming in VHDL or Verilog and creating the
entire design from scratch is a costly and labor intensive task.

B. CUDA and the GeForce 8800 GTX GPU

CUDA is an extension of C and an associated API for
programming general purpose applications for all NVIDIA’s
Tesla-architecture GPUs, including their GeForce, Quadro, and
Tesla products. CUDA has the advantage that is does not
require programmers to master domain-specific languages to
program the GPU. In CUDA, the GPU is treated as a co-
processor that executes data-parallel kernels with thousands
of threads. Threads are grouped into thread blocks. Threads
within a block can share data using fast shared-memory
primitives and synchronize using hardware-supported barriers.
Communication among thread blocks is limited to coordi-
nation through much slower global memory. Note that the
programming model for a CUDA kernel is scalar, not vector.
The current Tesla architecture combines 32 scalar threads into
SIMD groups called warps, but the programmer can treat
this as a performance optimization rather than a fundamental
aspect of the programming model, similar to optimizing for
cache line locality.

The NVIDIA GeForce 8800 GTX GPU is comprised of 16
streaming multiprocessors (SMs). Each SM has 8 streaming
processors (SPs), with each group of 8 SPs sharing 16 kB
of per-block shared memory [13] (a private scratchpad in
each SM). Each SP is deeply multithreaded, supporting 96 co-
resident thread contexts with zero-overhead thread scheduling.

C. VHDL and the Xilinx Virtex-II Pro FPGA

VHDL is one of the most widely used hardware description
languages. It supports the description of circuits at a range of
abstraction levels varying from gate level netlists up to purely
algorithmic behavior [3]. Very efficient hardware can be de-
veloped in VHDL but it requires a great deal of programming
effort.

FPGAs consist of hundreds of thousands of programmable
logic blocks and programmable interconnects that can be
used to create custom logic functions, and many FPGA prod-
ucts also include some hardwired functionality for common
functions. For example, the Xilinx Virtex II Pro FPGA also
integrates up to two 32-bit RISC PowerPC405 cores.

D. Application Domains

A technical report from Berkeley [1] argued that success-
ful parallel platforms should strive to perform well on 13
classes of problems, which they termed dwarves. Each dwarf
represents a set of algorithms with similar data structures
or memory access patterns. By examining applications from
different dwarves, we can find common characteristics of
applications from that dwarf on a specific hardware platform.
We chose three applications from three different dwarves.

Our first application, Gaussian Elimination, comes from the
Dense Linear Algebra dwarf. The applications in this dwarf

use strided memory accesses to access the rows and columns
in a matrix [1]. Gaussian Elimination computes result row-by-
row, solving for all of the variables in a linear system. The
algorithm must synchronize between iterations, but the values
calculated in each iteration can be computed in parallel.

DES is a member of the Combinational Logic dwarf. Ap-
plications in this dwarf are implemented with bit-level logical
functions [1]. DES is a cryptographic algorithm, making heavy
use of bit-wise operations. It encrypts and decrypts data in
groups of 64-bit blocks, using a 64-bit key. For encryption,
groups of 64-bit blocks of plaintext are fed into the algorithm
to produce groups of 64-bit blocks of ciphertext. This appli-
cation exhibits massive bit-level parallelism.

Our third application is the Needleman-Wunsch algorithm,
which is a representative of the Dynamic Programming dwarf.
Needleman-Wunsch is a global optimization method for DNA
sequence alignment. The potential pairs of sequences are
organized in a 2-D matrix. The algorithm fills the matrix
with scores, which represent the value of the maximum
weighted path ending at that cell. A traceback process is
used to find the optimal alignment for the given sequences.
A parallel Needleman-Wunsch implementation processes the
score matrix in diagonal strips from top-left to bottom-right.

In our GPU implementations, we implement the data-
parallel portions of these applications by assigning each thread
the task of processing one data point. These threads are
independent and can execute in parallel. Datapoints in each
iteration of Gaussian Elimination, each permutation of DES,
or each diagonal strip of a score matrix in Needleman-Wunsch
can be all processed simultaneously. Our implementations of
these algorithms on FPGAs and GPUs are similar; we use
the same algorithms, and do not employ any optimizations on
one unless we can also employ it on the other. In Needleman-
Wunsch and Gaussian Elimination, our FPGA implementation
uses IP cores for floating point operations. In those cases,
floating point multiplication requires 6 cycles and division 24
cycles. We will make the codes used in this study available
online at http://lava.cs.virginia.edu/wiki/rodinia.

Our code for the FPGA implementations is in continuing
development. So far, we are not using all the FPGA die area.
This must be taken into consideration when evaluating the
quantitative results in this paper. On the other hand, CUDA
implementations leave large portions of the GPU hardware —
the rendering specific portions — idle.

E. Methodology and Experiment Setup

Our experiments are performed on representative commer-
cial products from both of the GPU and FPGA markets.
The GPU is an NVIDIA GeForce 8800 GTX (128 stream
processors clocked at 575 MHz with 768 MB of GPU device
memory and a 16 kB per-block shared memory per SM) with
NVIDIA driver version 6.14.11.6921 and CUDA 1.1. The
FPGA is a Xilinx Virtex-II Pro, which is based on a 130
nm process, clocked at 100 MHz. We also compare with a
multicore CPU based system with an Intel Xeon processor (3.2

GHz with two hyperthreaded dual-cores, 4 GB main memory
and 2 MB L2).

We developed our GPU code using NVIDIA’'s CUDA APIL.
Our FPGA code was developed in VHDL under Xilinx ISE
9.2i, and our multithreaded CPU code was compiled with the
Intel C compiler, ICC, version 9.1 and uses OpenMP. In all
cases, we made no specific effort to tune our implementations
to reduce cycle-counts. All the results are compared in terms
of cycle counts, eliminating scaling and frequency issues. Note
that we are not comparing the theoretical program cycles, but
values returned by performance counters via library functions
(such as the clock () entry point provided by the CUDA
API). We measure the total cycle counts from the beginning to
the end of program execution on the accelerators, thus offload
overhead is not included.

We use cycle count as a metric to examine what application
characteristics map well to FPGAs or GPUs. However, in
reality, we must take clock frequency into account when
choosing accelerators, because they generally run under differ-
ent frequencies which will determine how fast an application
runs. For example, the Xilinx Virtex-II Pro FPGAs can run at a
frequency of 100MHz, the NVIDIA Geforce 8800 GTX GPU
has a system clock frequency of 575MHz (the SMs process
instructions at 1.35GHz) and the Intel Xenon CPU we used
is running at 3.2GHz. The Virtex-II FPGA is not as state-of-
the-art as the other processors. Given these clock frequencies,
the GPU is generally fastest on our computations, followed by
the CPU, with the FPGA being slowest. However, we focus on
clock cycles to understand organizational tradeoffs, to reduce
sensitivity to timing closure on the FPGA, and because at the
time of this preliminary study, we only had a Virtex-II FPGA
fabric available.

IV. PARALLEL PROGRAMMABILITY
A. Parallel Execution

The powerful compute capabilities of FPGAs and GPUs
stem from their vast available parallelism. Of course, program-
ming gates is quite different from programming micropro-
cessors, domain-specific or otherwise. In CUDA, developers
write programs with a C-like language. CUDA is currently
best suited for a SPMD programming style in which threads
execute the same kernel but may communicate and follow
divergent paths through that kernel.

On the other hand, the dataflow of an application is ex-
ploited in FPGAs through parallelism and pipelining. Design-
ers have the flexibility to trade-off performance for resources.
For example, in massively parallel algorithms, hardware pro-
grammers might duplicate the same functional units many
times, with only the die area limiting the level of parallelism.

B. Synchronization

Placing barriers in CUDA is quite different from using
similar such synchronization mechanisms in FPGA hardware.
CUDA’s runtime library provides programmers with a specific
barrier statement, syncthreads (), but the limitation of
this function is that it can only synchronize all the threads

within a thread block. To achieve global barrier functionality,
the programmer must allow the current kernel to complete
and start a new kernel. This is currently fairly expensive,
thus rewarding algorithms which keep communication and
synchronization localized within thread blocks as long as
possible.

In the case of the FPGA, it is flexible enough to implement
different types of barriers—including counter- and tree-based
varieties—directly in hardware. Fine-grained synchronization
is also feasible so that execution units need only be synchro-
nized with a select set of threads. Additionally, programmers
can apply multiple clock sources with different frequencies;
however, this imposes a heavy programming burden on devel-
opers.

C. Reduction

Most parallel algorithms involve reduction steps, which
condense partial results produced by individual threads. For
example, in calculating a running sum serially, a multiply-
accumulate operation loops over the data, but a reduction
can be done in parallel. In a fast and aggressive FPGA
implementation, as Figure 1 illustrates, this operation is built
with a cascade of adders of depth of log(N). Figure 1 shows
that the number of working threads reduces in half in each
iteration of a GPU implementation of a reduce which requires
log(N) iterations. Unlike the traditional, sequential way of
programming, on both of these platforms programmers have
to deal with complex parallel reductions to best utilize the
available parallel computing resources.

Reducticn

H—wlyl/yi/
B B HEEENENE
TR

SUM

Fig. 1. Reduction on an FPGA and a GPU

V. HARDWARE CONSTRAINTS
A. Communication Overhead

Some accelerators work in separate memory spaces from
their control processors, with data communication achieved
via copy operations. This is different from OpenMP’s shared
memory programming model, in which programmers are not
required to deal with data movement explicitly. For instance,
GPUs have their own off-chip device memory, and data must
be transferred from main memory to device memory via the

PCI-Express bus. The data-copy latency increases linearly
with the size of the transferred data, which has the potential
to adversely impact overall performance. Our measurements
show that an 8 MB data transfer costs about 5ms. How-
ever, using CUDA’s streaming interface, programmers can
batch kernels that run back to back, and increase program
execution efficiency by overlapping computations with data
communication. FPGAs have similar issues. In addition, the
reconfiguration overhead for FPGAs also needs to be taken
into account. The reconfiguration (or initialization) process
generally takes on the order of seconds for our applications
on the FPGA boards. To reduce the impact of this overhead,
developers can potentially overlap reconfiguration with other
non-conflicting tasks. Furthermore, users may not need to
reconfigure after initialization, in which case the configuration
is represented by a small, one time cost. GPUs do not have
this issue.

B. Control Flow

In GPUs, control flow instructions can significantly impact
the performance of a program by causing threads of the same
32-thread SIMD warp to diverge. Since the different execution
paths must be serialized, this increases the total number of
instructions executed [14]. For example, in a DES sequential
program, the programmer can use if statements to specify
permutations, but directly using the similar implementation on
the GPU performs poorly. Figure 2 demonstrates the compar-
isons of permutation performance on three typical data sizes
in DES. The figure compare if statements, lookup tables,
and no permutations. For 64-bit data, using i f statements can
degrade performance about 5.5x when compared with lookup
tables. This is clearly a case where SIMD behavior within
warps is important.

Control Flow Overhead

15000 — T
—©— permutation(if)

—%— permutation(lookup table)
— ¥ — no permutation

10000 -

(%]
o
o
>
o
5000 - i
o ——— i — *m—m i m = *
Vo------- V-------- - v
0 . . ‘
32 48 64
Input Size
Fig. 2. Overhead of control flow in our CUDA implementation of DES.

C. Bit-wise Operations

Although it is usually easier to data-parallel algorithms on
the GPU, FPGAs can sometimes be very useful, and provide

efficient methods to implement some specific functions, such
as bit-wise operations, which are not well supported on GPU
hardware. Bit-wise operations dominate the DES algorithm,
which includes a lot of bit permutations and shifting. GPU im-
plementations of these operations become very complex, since
they must be built using high-level language constructs and
fine-grained control flow that tend to cause SIMD divergence.
In VHDL, bit-wise operation is very straightforward and the
bit permutation for any width data can be done in parallel and
finished in one cycle! Note that there is nothing preventing
GPUs from extending their instruction sets to support bit-wise
operations, assuming that general-purpose applications or new
graphics algorithms can justify the datapath costs.

D. Floating Point Operations

One of the most important considerations, especially for
scientific computing, is the accelerator’s ability to support
floating point operations. This is a clear-cut issue for GPUs,
as G80 GPUs implement IEEE-754 single-precision [14] (with
double-precision coming in the next generation), and AMD’s
FireStream 9710 GPUs already support double-precision. FP-
GAs, on the other hand, usually have no native support for
floating point arithmetic and many applications use fixed point
implementations for ease of development. FPGA developers
must use on-chip programmable resources to implement float-
ing point logic for higher precisions [17], but these implemen-
tations consume significant die-area and tend to require deep
pipelining to get acceptable performance; double precision
adders and multipliers typically have 10-20 pipeline stages,
and square root requires 30—40 stages [16]. Of course, there
is no intrinsic reason that FPGAs cannot support floating-
point operations, just as FPGAs already provide some other
dedicated arithmetic units.

VI. PERFORMANCE

Our results for our first application, Gaussian Elimination,
are illustrated in Figure 3. For all input sizes, both FPGAs
and GPUs show their advantages over CPUs, leveraging their
parallel computing capabilities. Specifically, for a 64 x 64 input
size, 2.62 x 10° cycles are needed by the FPGA compared
to 7.46 x 105 cycles for the GPU. The single-threaded CPU
version required 3.15 x 10° cycles, with the four-threaded
OpenMP version requiring 9.45 x 105 cycles, differences of
about an order of magnitude. The four-threaded version out-
performs single-threaded version when the data size becomes
large. The major overhead of GPUs and CPUs comes from
executing instructions which rely on memory accesses (300-
400 cycles), while the FPGA can take advantage of dataflow
streaming, which saves many of the memory accesses. The
drawback of the FPGA, of course, is the complexity of
programming using VHDL. A controller is implemented in
VHDL to take care of the controlling signals for all the
computation processes. This involves a much higher level of
complexity than the CUDA implementation.

The DES encryption results are even more interesting. To
process a single, 64-bit block on our FPGA requires only

Gaussian Elimination
8.5

—e— GPU *

8t —%— CPU(single thread) SRE
— ¥V — CPU(4 thread) - v
75F-| % FPGA s
7 L
2
o 65F
>
L
=]
o 6r
o
551
51
451
4 X i i i i
16 32 64 128 256
Input Size
Fig. 3. Execution cycles of the four versions of Gaussian Elimination. The

z-axis represents the dimensions of the computation grid. Note that the y-axis
is a log scale.

83 cycles, while the same operation executed on the GPU
requires 5.80 x 10° cycles. While the GPU does not support
some important operations for this application, the main reason
for this disparity is that the GPU requires full utilization
to take advantage of the hardware’s latency hiding design,
and this example far underutilized the processor, while the
FPGA implementation has no such requirement. As discussed
in Section V-C, FPGAs can finish bit-wise calculations in
one cycle, and the 64 bit data size is small enough that all
intermediate data can be saved in flip-flops, but the GPU
involves significant overhead, including memory access times
of 300-400 cycles—the permutation lookup tables are all
loaded from GPU device memory—and synchronization.

Our CUDA DES implementation is comprised of several
small kernels. Inside a CUDA kernel, we can use fast on-chip
shared memory for data sharing, but there is no consistent state
in the shared memory, so between two kernels, state flushes
are required, then data must be read back for the next pass.
The performance gap between the GPU and FPGA will be
much smaller when we try larger data sizes which require the
FPGA to accesses external memory, but due to the complexity
of the implementation, we have not completed it yet. We plan
to extend it in our future work. We do still expect the gap to
be significant, however, since the FPGA does have access to
fast bit-wise operations.

The third application is the Needleman-Wunsch algorithm.
This is a memory intensive application, but not all of the
data in the computational domain are involved in the parallel
computation. This algorithm processes data in a strip-wise,
in-order fashion, and in each iteration, only a single strip
of diagonal elements can be processed in parallel. Figure 4
shows that our FPGA implementation again has the lowest
overhead. One observation is that when data size is small, both
the four-threaded OpenMP version and the GPU version take
more cycles than the single-threaded version, but as the data

Needleman—Wunsch
9 T T T T T T

—e—GPU %
—%— CPU(single thread) P
8l -| — ¥ — CPU(4 thread) X T
% FPGA v
- ’/‘V
7+ - e A i A 4

- s

v--V *

log10(Cycles)
[o2]

* X
4+ 1
R X
gl x i i i i i i i
16 32 64 128 256 512 1024 2048

Input Size

Fig. 4. Execution cycles of the four versions of Needleman-Wunsch. Note
that the y-axis is a log scale.

becomes large, both of them outperform the single-threaded
CPU version. For a 64 x 64 input size, the GPU takes 3.0 x 10°
cycles while the FPGA takes only 2.0 x 10% cycles, but as the
input size increases, the ratio of the GPU execution cycles over
FPGA execution cycles becomes smaller, probably attributable
to better GPU utilization.

VII. DEVELOPMENT COST

In general, programming in a high level language on a GPU
is much easier than dealing with hardware directly with an
FPGA. Thus in addition to performance, development time is
increasingly recognized as a significant component of overall
effort to solution from the software engineering perspective.

We measure programming effort as one aspect in the ex-
amination programming models. Because it is difficult to get
accurate development-time statistics for coding applications
and also to measure the quality of code, we use Lines-of-Code
(LOC) as our metric to estimate programming effort. Table I
shows LOC for the four applications written in CUDA on the
GPU platform and written in VHDL on the FPGA platform.
CUDA programs consistently require fewer LOC than the
VHDL versions (and in the case of DES, the VHDL version
is incomplete). This suggests that for a given application it
probably requires more control specification to design hard-
ware VHDL than to program equivalently functional software.
This implies that GPU application development has better
programmability in general, and can be very time-efficient
compared with FPGA development. However, high-level lan-
guages, like Handel-C, and data-flow languages also exist for
programming FPGAs. This is a limitation of our work and an
important area of study for future work. Also note that VHDL
is more verbose than Verilog and the LOC result should be
interpreted in this light.

VIII. MAPPING APPLICATIONS TO ACCELERATORS

In this work, we developed three applications, Gaussian
Elimination, DES, and Needleman-Wunsch on both an FPGA

1 Application\Domain— || VHDL | CUDA |

Gaussian Elimination 450 160

DES 1400 1100

Needleman-Wunsch 650 320
TABLE I

DEVELOPMENT COST MEASURED BY LENGTH OF THE CODE.

and a GPU. We compared these two platforms as well as a
multicore CPU using several metrics. Based on our results,
we present a rough categorization to propose suggestions as to
which platform—GPU or FPGA—to which an application best
maps. When composing this list (Figure 5), we have tried to
consider as many factors as possible, including programming
cost, performance, and hardware constraints.

Good Fit

GPU FPGA

No inter-dependences in the data Computation involves a lot of detailed
flow and the computation can be low-level hardware control operations
done in parallel (Gaussian Elimi- which can not be efficiently imple-
nation). mented in a high-Hevel languages (DES).
Applications contain a lot of par- A certain degree of complexity is
allelism, but involve computa- required, and the implementation can
tions which cannot be efficiently

implemented on the GPU (DES).

take advantage of data streaming and
pipelining (Neediman-Wunsch).

Applications have a lot of Applications that require a lot of com-
memory accesses and have lim- plexity in the logic and data flow design
ited parallelism (Needleman

“Wunsch).

(Gaussian Elimination).

Bad Fit

Fig. 5. Application Characteristic Fitness Categorization.

IX. CONCLUSIONS AND FUTURE WORK

In this work, taking FPGAs and GPUs as case studies,
we have developed three applications on each platform—
as well as single- and multi-core CPU implementations—in
an attempt to gain insights into how well applications will
map onto various accelerators. We consider many factors,
including overall hardware features, application performance,
programmability and overhead, and more importantly how to
trade off among these factors, and we evaluate the pros and
cons of FPGAs and GPUs.

The current comparison is primarily qualitative, due to a
limited set of benchmarks for comparison. A methodology for
a quantitative comparison, especially one that distinguishes be-
tween fundamental organizational limits versus easily changed
features, is an important area for further research. A more
direct comparison might be between CUDA and a high level
language for FPGAs. We plan to extend this work to examine
more applications on more accelerators, including DSPs and

network processors. In this paper, we discuss the problem from
a performance point of view. We also plan to include new
metrics which take into account power consumption and chip
area, that potentially determine the best choice of platform.
Also, both FPGAs and GPUs are likely to migrate closer to
the main CPU in future architectures. Issues related to this
migration are another interesting areas for future work.

ACKNOWLEDGEMENTS

This work has been supported in part by NSF grant nos.
IIS-0612049 and CNS-0615277, and grants from Intel
MTL and NVIDIA Research. We would like to thank David
Tarjan for his helpful advice, and the anonymous reviewers
for their excellent suggestions on how to improve the paper.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The landscape of parallel computing research: A
view from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2] Z. K. Baker and V. K. Prasanna. Efficient hardware data mining
with the Apriori algorithm on FPGAs. In Proceedings of the 13th
IEEE Symposium on Field-Programmable Custom Computing Machines,
pages 3—-12, 2005.

[3] N. Calazans, E. Moreno, F. Hessel, V. Rosa, F. Moraes, and E. Carara.
From VHDL register transfer level to SystemC transaction level model-
ing: A comparative case study. In Proceedings of the 16th Symposium
on Integrated Circuits and Systems Design, page 355, 2003.

[4] S. Che, J. Meng, J. W. Sheaffer, and K. Skadron. A performance study of
general purpose applications on graphics processors. In First Workshop
on General Purpose Processing on Graphics Processing Units, 2007.

[5] B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt. Have GPUs made
FPGAs redundant in the field of video processing? In Proceedings
of the 2005 IEEE International Conference on Field-Programmable
Technology, pages 111-118, 2005.

[6] B. de Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, and E. Hendriks.
FPGA accelerator for real-time skin segmentation. In Proceedings of
the 2006 IEEE/ACM/IFIP Workshop on Embedded Systems for Real
Time Multimedia, pages 93-97, 2006.

[71 N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha.
Fast computation of database operations using graphics processors. In
Proceedings of the 2004 International Conference on Management of
Data, pages 215-226, 2004.

[8] Handel-C. Web resource: http://www.celoxica.com/.

[9] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Cham-

berlain. A banded Smith-Waterman FPGA accelerator for Mercury

BLASTP. In Proceedings of the 2007 International Conference on Field

Programmable Logic and Applications, pages 765-769, 2007.

L. W. Howes, P. Price, O. Mencer, O. Beckmann, and O. Pell. Compar-

ing FPGAs to graphics accelerators and the Playstation 2 using a unified

source description. In Proceedings of the 2006 International Conference

on Field Programmable Logic and Applications, pages 1-6, 2006.

J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy. In-

troduction to the Cell multiprocessor. IBM J. Res. Dev.,49(4/5):589C604,

2005.

J. Kriiger and R. Westermann. Linear algebra operators for GPU im-

plementation of numerical algorithms. ACM Transactions on Graphics,

22(3):908-916, 2003.

E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:

A unified graphics and computing architecture. /EEE Micro, 28(2):39—

55, 2008.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel

programming with CUDA. ACM Queue, 6(2):40-53, 2008.

L. Nyland, M. Harris, and J. Prins. Fast N-Body simulation with CUDA.

GPU Gems 3, 2007.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

R. Scrofano, G. Govindu, and V. K. Prasanna. A library of parameteri-
zable floating-point cores for FPGAs and their application to scientific
computing. In Proceedings of the 2005 International Conference on
Engineering of Reconfigurable Systems and Algorithms, pages 137148,
2005.

R. Scrofano and V. K. Prasanna. A hierarchical performance model for
reconfigurable computers. Handbook of Parallel Computing: Models,
Algorithms and Applications, 2008.

S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives
for GPU computing. In Proceedings of the Graphics Hardware 2007,
pages 97-106, 2007.

T. Yamanouchi. AES encryption and decryption on the GPU. GPU
Gems 3, July 2007.

