

M. Guo et al. (Eds.): ISPA 2006, LNCS 4330, pp. 63–74, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Novel Software Solution for Localized Thermal
Problems

Sung Woo Chung1,* and Kevin Skadron2

1 Division of Computer and Communication Engineering,
Korea University, Seoul 136-713, Korea

swchung@korea.ac.kr
2 Department of Computer Science,

University of Virginia, Charlottesville 22904, USA
skadron@cs.virginia.edu

Abstract. In this paper, we propose a temperature-aware DFS (Dynamic Fre-
quency Scaling) technique using the performance counters that is already em-
bedded in the commercial microprocessors. By using performance counters and
simple regression analysis, we can predict the localized temperature and effi-
ciently schedule the tasks considering the temperature. The proposed technique
is especially beneficial to potential localized thermal problems that are inevita-
ble due to limited number of costly CMOS thermal sensors. When localized
thermal problems that were not detected by thermal sensors are found after fab-
rication, the thermal problems can be avoided by the proposed software solution
without re-fabrication costs. The evaluation results show that the proposed
technique is comparable to the DFS technique using CMOS thermal sensors.

1 Introduction

Reducing energy consumption has been one of the most interesting research topics in
the computer architecture field. As technology trends leads to packing transistors ever
more tightly, power densities are increasing rapidly. The higher heat flux leads to
higher cooling costs-otherwise high temperature might cause the unexpected func-
tional errors or permanent damage of microprocessors, especially in high-
performance microprocessors. Thus, it is important to control the temperature as well
as the energy consumption. To control the temperature, a couple of techniques have
been proposed. One is to use the cooling fan to lower the temperature of a chip and
the other is to make a heat spreader more efficiently. For example, Intel’s Pentium 4
already has a cooling fan and an efficient heat spreader [20][24] and PowerMac G5
has huge cooling pumps [18]. To solve the thermal problems, on the computer
architectural level, pipeline throttling, DVS (Dynamic Voltage Scaling), and DFS
(Dynamic Frequency Scaling) have been proposed [2][14][16].

To control the temperature, we need to know the actual temperature of the func-
tional block that needs to be controlled. In the Pentium 4, there are two independent
thermal sensors [19]. By using on-die temperature sensing circuit and a fast acting
temperature control circuit, the processor can rapidly initiate thermal management

* Corresponding author.

64 S.-W. Chung and K. Skadron

control. The Pentium 4, however, only uses one of its sensors for thermal manage-
ment; the other is for external use and is not located near any anticipated hotspots. In
fact, hotspots may move over time, depending on which on-chip functional blocks
(register fie, integer arithmetic, floating-point arithmetic, etc.) are most heavily used
[8]. As technology scales down, power density increases which might lead to more
localized hotspots. Temperature differences become exponentially larger with dis-
tance, so a single thermal sensor does not cover a large chip like the Pentium 4. In
future high-performance microprocessors, more than ten thermal sensors are expected
to be embedded in a microprocessor. However, the number of thermal sensors is lim-
ited, because they are too expensive to be placed in all the potential hotspots. When
potential hotspots that do not have thermal sensors are found serious after fabrication,
it is impossible to resolve the localized thermal problems without re-fabrication, using
previous techniques.

We chose DFS instead of DVS for the scheduling policy. There are three reasons.
1) The frequency transition at the high Vcc is done within few microseconds, which
takes much less, compared to the voltage transition [11]. 2) We found a linear propor-
tional relation between the frequency and the temperature by using simple regression
analysis. On the other hand, the voltage is not linearly proportional to the temperature,
which makes it difficult to find a relation between them. 3) In terms of reliability, the
supply voltage scaling reaches a plateau, since the difference between supply voltage
and threshold voltage should be kept large enough [6]. Thus, this paper proposes a
DFS technique using performance counters that efficiently controls the temperature
of the localized hotspots. The localized thermal problems that were found after fabri-
cation can be resolved by using the proposed technique.

The rest of this paper is organized as follows. Section 2 presents related works.
Section 3 explains the temperature-aware DFS scheduling using performance count-
ers. Section 4 describes the experiment methodology and Section 5 shows the effi-
ciency of the proposed technique. Section 6 concludes the paper and describes some
avenues for future works.

2 Related Works

Huang et al. [4] proposed a DVS-based technique for thermal control. Though they
investigated the memory hierarchy, they did not examine other hot functional blocks
such as register files. Brooks et al. [2] set a constant threshold power and they applied
five thermal control techniques (clock frequency scaling, voltage and frequency scal-
ing, decode throttling, speculation control, and I-cache toggling), when the threshold
power was exceeded. They found DFS and DVS to be inefficient because of the invo-
cation overhead. However, the inefficiency may be due to the short sampling period
(10K cycles) and large invocation overhead (more than 10 ms). Skadron et al. [12]
proposed formal control theory for dynamic thermal management. The previous stud-
ies used constant trigger temperature (or power) and fixed response. In contrast, they
allow the fetch-toggling rate to be changed according to the thermal history that may
need additional storage. There are some previous works [8][10] on thermal manage-
ment in SMP systems, which schedules the tasks making use of the idle SMP nodes.
Srinivasan et al. proposed the predictive dynamic thermal management by profiling

 A Novel Software Solution for Localized Thermal Problems 65

multimedia applications [16]. Most of these researches are based on the thermal sen-
sors to measure the temperature.

Though the number of thermal sensors is limited by design budget, localized hot-
spots are too serious to be ignored [8]. Alternative to the thermal sensor is the
performance counter that was already embedded in microprocessors to evaluate the
performance. There have been several studies on using performance counters. Brooks
et al. proposed using performance counters to find activity factors [2], where details
were not proposed. Bellosa et al. proposed formulas that correlate the activity factor
to energy that is eventually correlated to temperature [1]. They tried to manage the
temperature by controlling power consumption [1][16] . They only concentrated on
the overall temperature (not on the localized hotspots). Lee et al. [6] also proposed
runtime temperature sensing using performance counters, which is accurate but incurs
some computational complexity, because they use full HotSpot [13][14].

In this paper, we present a software technique using performance counters that can
investigate the localized hotspots. To estimate the temperature of functional blocks,
we only have to calculate a simple linear formula with inputs from the activity factor
(the number of accesses) of the functional block. The linear formula is established by
simple regression analysis. The data (activity factor(X) and temperature(Y)) for re-
gression analysis can be obtained from real measurement in laboratories or from accu-
rate simulations. In this paper, the parameters for regression analysis are obtained
from simulation using HotSpot [13][14]. Though the performance counters are read
every 10 ms, the estimated temperature was shown to be accurate enough [3]. In addi-
tion, the frequency transition overhead that is done every 10 ms is negligible [11].

3 Temperature-Aware DFS Technique Using Performance
Counters

We examine two methods to measure the temperature: One is using CMOS thermal
sensors and the other is using performance counters. The former is more accurate but
needs CMOS thermal sensors. In other words, the thermal sensors should be placed in
the localized hotspots before fabrication. The latter is less accurate but does not need
additional hardware, since performance counters are already embedded in commercial
microprocessors. On-chip sensors are now widely used to measure the temperature
but are believed by many designers to be too expensive to be placed in all the poten-
tial localized hotspots. To alleviate the cost of the thermal sensors, only very probable
localized hotspots have the thermal sensors. After fabrication, there is a possibility
that severe localized hotspots that were not detected at the time of validation, are
found. For this case, we propose a temperature-aware DFS technique using perform-
ance counters for sensing the temperature of the possible localized hotspots. Origi-
nally, the performance counters are used to count specific micro-architectural events
for debugging and performance measurements. However, we can examine lots of
localized hotspots by utilizing performance counters. For example, in the Intel Pen-
tium 4, there are 45 configurable events and 18 physical performance counters, which
implies that we can estimate temperatures of the 45 functional blocks in the micro-
processors [15][27] .

66 S.-W. Chung and K. Skadron

For the temperature-aware scheduling, simple offline regression analysis [3] is used
to find a simple relation between selected values of activity factor and observed val-
ues of temperature. Please recall that the most probable value of Y can be predicted
for any value of X by simple regression analysis. Temperature can be estimated using
a simple formula (T=ax + b, where T is temperature, X is activity factor, and a and b
are coefficients). We only have to consider only the activity factor of the functional
unit that is investigated. The key observation is that the regression captures second-
order contributions from other functional units. We did try multiple regression analy-
sis with the current activity factor and the previous activity factor. Results were at
best minimally improved compared to results from simple regression analysis, and in
fact the accuracy with multiple regression analysis was sometimes worse.

At runtime, multiplying the activity factor by the regression coefficient is required
for temperature measurement. Although it is feasible to re-compute temperature every
cycle, this is wasteful, since even at the fine granularity of architectural units, it takes
at least 100K cycles until the temperature rise by 0.1C [14]. We chose a sample pe-
riod 10 ms, which is the scheduling granularity of commercial operating systems and
creates a natural opportunity for software to read the performance counts. For our
CPU clock rate of 2.6 GHz, this works out to be sampling period of 26 M cycles. This
is in any case the minimum granularity at which software techniques could perform
any kinds of thermal management. For example, to compute the temperatures of the
integer register file, we only utilized the IIPC (Integer Instructions Per Cycle) statis-
tic. Although the peak temperature estimation error was small, there were times when
our technique under- or over-estimated temperatures by as much as 10 degree. These
large differences only occurred when the performance counter technique responded
faster than the actual temperature. The reason is that the proposed technique is line-
arly proportional to the IIPC so that the estimated temperature changes quickly,
whereas the actual temperature changes gradually. We did not mediate these spikes
and dips, since we may be able to schedule tasks more efficiently if we know the
temperature tendency (increase/decrease) in advance.

In this paper, we compare the scheduling efficiency using the thermal sensors to
that using the performance counters. In the conventional technique using thermal
sensors, the frequency is lowered when the temperature is more than (or same as)
the threshold temperature and the actual temperature is measured from the thermal
sensors. On the contrary, in case of the proposed technique using performance
counters, the temperature is estimated from the activity factor so that the frequency
is lowered when the activity factor (instead of the actual temperature) is more than a
threshold.

4 Experiment Methodology

The processor used for the experiments is a 2.6 GHz Pentium 4, 130 nm Northwood
core. The typical power dissipation is 69.0 W, and the operating voltage is 1.6 V [23].
The processor supports hyper-threading technology, which allows the processor to run
two threads simultaneously. This means that the task that regularly reads the perform-
ance counters and calculates the temperature interferes minimally with user tasks: not

 A Novel Software Solution for Localized Thermal Problems 67

only does it consist of only a few instructions, but hyper-threading fits these few in-
structions into empty execution slots as instructions are issued within the processor.

The performance counters are used to count specific micro-architectural events for
debugging and performance measurements [21]. Each counter is associated with one
counter configurable control register (CCCR), which determines the specific count-
ing scheme. The event selection control registers (ESCRs) determine which event is
to be counted. A simplified device driver, adapted from the abyss device driver [27],
is used to configure all the control registers and read the performance counters.

The temperature model requires the geometric specifications and the floorplan
layout of the processor. We derived the configurations of Pentium 4 to configure
HotSpot [13][14]. These parameters are based on design schematics found in [23].
We also use the floorplan layout that was adapted from the Northwood core die
photo [22].

Though we are able to investigate the temperature of 45 functional blocks through
performance counters, we concentrate on the register file which is known as one of
the hottest functional blocks. In the simple regression analysis, IIPC is X (selected
value) and the temperature is Y (observed value). The actual temperature is obtained
from the HotSpot [13][14] that was proven to be accurate. To use the performance
counters, the Hotspot was modified to be based on a model by Isci and Martonosi [5]
for the Pentium 4.

We selected four benchmarks (bzip2, gap, gcc and parser) from the SPEC
CPU2000 benchmark suite [26], since these benchmarks show more temperature
differences than other benchmarks during the execution. Since running single
benchmark of these four benchmarks does not increase the temperature so much, we
would like to run two benchmarks at the same time. However, running two bench-
marks on two threads sometimes defers reading the performance counters severely
and incurs thermal throttling by the Pentium 4 processor, resulting in inefficient
evaluation of scheduling techniques. To prevent the inefficiency, we schedule the
tasks off-line instead of on-line. We ran two applications separately and obtained
the trace of the activity factor of all functional blocks. After then, we utilize off-line
task scheduling, by using activity factor of all functional blocks. When the proposed
technique using performance counters is adopted in the real world, the access to the
performance counter can be set to have a higher priority than the other tasks in
order to allow periodic accesses to the performance counter.

By running applications, we can have the coefficients for the formula. For more
accurate estimation, we only use the samples whose IIPC is more than 2.0. We set
the confidence interval is 99% in order to cover as many cases as possible. The
formula that we obtained from the simple regression analysis is Y = 14.1*X + 58.4,
where the IIPC (X) corresponding to 95 Celsius (Y) is 2.59.

The DFS using thermal sensors lowers the frequency by 20% when the tempera-
ture is same as (or more than) 95 Celsius. It increases the frequency by 5% every 10
ms up to the 2.6 GHz when the temperature is lower than 95 Celsius. The DFS
using performance counters lowers the frequency to (2.6 GHz * (2.59/previous
IIPC)), when the IIPC is more than 2.59. When the IIPC is lower than 2.59, the fre-
quency is 2.6 GHz.

68 S.-W. Chung and K. Skadron

5 Evaluations

We evaluate the proposed DFS scheduling technique in six cases: bzip2 + gap, bzip2
+ gcc, bzip2 + parser, gap + gcc, gap + parser, and gcc + parser. According to [25],
maximum temperatures are between 65~100 Celsius in commercial microprocessors,
depending on the model. We set the threshold temperature to 95 Celsius. We also
assume that the frequency can be freely set not to distort the experiment results by
discrete frequency.

5.1 Scheduling Efficiency

Figure 1 shows the temperature changes when there is no consideration for tempera-
ture. In Figure 1, the temperature varies fast in (a), (b) and (c) due to the characteristic
of bzip2, whereas the temperature does not vary so much and it is under 100 Celsius
in (d), (e) and (f).

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

110

1 114 227 340 453 566 679 792 905 1018 1131 1244 1357 1470 1583 1696 1809 1922

Time Slice Number

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

Fig. 1. Temperature changes (w/o DFS)

 A Novel Software Solution for Localized Thermal Problems 69

Figure 2 shows the temperature changes when DFS using CMOS thermal sensors
is applied. As shown in the Figure 2, the temperature is varied significantly when the
temperature is around 95 Celsius. The reason is that the frequency increases/decreases
by a constant rate (20% for increase and 5% for decrease). If the frequency is de-
creased only by 10% or less, the temperature remains over 95 Celsius for longer time.
When the frequency is increased more gradually, the performance loss will be severe.
If the frequency is increased more than 5%, there are more temperature violations.
Please note that there is no run-time information on how much the frequency should
be changed. In fact, we tried to make use of the temperature history to find patterns of
temperature variation in order to utilize the run-time information, which turned out
not so helpful.

Figure 3 describes the temperature changes when the DFS is applied using per-
formance counters. Different from Figure 2 where CMOS thermal sensors are used,
Figure 3 does not show the spikes and dips of the temperature around 95 Celsius. In
the proposed technique, the frequency is determined by referencing to the previous
IIPC. When the previous IIPC is more than 2.59, the clock frequency is 2.6 GHz *

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 128 255 382 509 636 763 890 1017 1144 1271 1398 1525 1652 1779 1906 2033 2160

Time Slice Number

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041

Time Slice Number

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 119 237 355 473 591 709 827 945 1063 1181 1299 1417 1535 1653 1771 1889 2007

Time Slice Number

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

Fig. 2. Temperature changes (w/ DFS using thermal sensors)

70 S.-W. Chung and K. Skadron

(2.59/(previous IIPC)). Otherwise, the frequency is 2.6 GHz (full speed). Thus, the
fluctuation around 95 Celsius is less severe, compared to the DFS using thermal
sensors.

As explained in the Section 3, using performance counters can make it possible to
foresee the temperature tendency in advance. Accordingly, the proposed technique
decreases the frequency early when the temperature goes up, which reduces the spikes
around 95 Celsius.

5.2 More Details of Temperature Changes

Figure 4 presents the ratio of times when the actual temperature is over the threshold
temperature. Both DFS techniques dramatically reduce the thermal violations. Some-
times the DFS using the performance counters performs better and sometimes does
not. At least, we can say that the DFS using the performance counters is comparable
to the DFS using the thermal sensors.

(a) bzip2 + gap

60

65

70

75

80

85

90

95

100

105

110

1 127 253 379 505 631 757 883 1009 1135 1261 1387 1513 1639 1765 1891 2017 2143

Time Slice Number

T
e
m
p
e
ra
tu
re

(b) bzip2 + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

110

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041

Time Slice Number

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 120 239 358 477 596 715 834 953 1072 1191 1310 1429 1548 1667 1786 1905 2024

Time Slice Number

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

Fig. 3. Temperature changes (w/DFS using performance counters)

 A Novel Software Solution for Localized Thermal Problems 71

23.2%

57.0%

40.8%

32.6%

46.8%

10.2%

4.7%

12.1%

7.4%
5.4% 6.0%

1.1%
2.7%

16.1%

0.9%

8.9%

1.0% 0.1%
0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchmarks

T
im
e
 w
h
e
n
 t
e
m
p
e
ra
tu
re
 i
s
 o
v
e
r
th
e
 t
h
re
s
h
o
ld
 (
%
)

w/o DFS w/ DFS using thermal sensors w/DFS using performance counters

Fig. 4. Ratio of times when the actual temperature is over the threshold value (95 Celsius)

Figure 5 shows the average temperature difference between the actual temperature
and the threshold value, when the actual temperature is over the threshold value.
Though the temperature violation ratios in Figure 4 are not negligible, the average
temperature excesses are significantly reduced. The average values of the temperature
excesses in Figure 5 are 0.37 and 0.40 degree, on average, for the DFS using thermal
sensors and the DFS using performance counters, respectively.

5.51

7.51

4.16

3.42

1.9

0.94

0.43 0.47 0.38 0.41 0.32 0.22
0.53 0.47 0.49

0.32
0.54

0.03
0

1

2

3

4

5

6

7

8

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchmarks

A
v
e
ra
g
e
 E
x
c
e
s
s
 T
e
m
p
e
ra
tu
re
 w
h
e
n
 t
h
e
 a
c
tu
a
l
te
m
p
e
ra
tu
re

is
 o
v
e
r
th
e
 t
h
e
rs
h
o
ld
 (
d
e
g
re
e
)

w/o DFS w/ DFS using thermal sensors w/DFS using performance counters

Fig. 5. Average temperature difference between the actual temperature and the threshold value
(95 Celsius)

Figure 6 shows the maximum temperature when the actual temperature is over the
threshold value. We can notice that the DFS using performance counters always out-
performs the DFS using thermal sensors. The DFS using performance counters more
accurately forecasts the temperature by referencing to the IIPC, which prevents the
spikes. However, the DFS using thermal sensors can not predict future temperature.
Thus, the temperature continues to go up even with the DFS, because the power

5.3 Performance

The tasks in this experiment are not periodic, in other words, which is not predictable.
Thus, we should sacrifice the performance to sustain the temperature under the
threshold value. If more aggressive DFS technique were adopted, the number
of thermal violations would be decreased. As the number of thermal violations

72 S.-W. Chung and K. Skadron

decreases, the performance is naturally degraded. For example, suppose that one tech-
nique sets the threshold value to 90 Celsius and the other sets it to 100 Celsius. The
former has less thermal violation and more performance degradation. For a fair com-
parison, we should check that the both techniques are similarly aggressive. If the
proposed DFS using performance counters performed much worse than the DFS using
thermal sensors, the experiment would not be fair.

106.8

108.6

105.4

101.6

100.2

98.7

97.0

99.2

99.8 99.7 99.5

96.2
95.8

97.6
97.3

96.0

97.5

95.0

90.0

92.0

94.0

96.0

98.0

100.0

102.0

104.0

106.0

108.0

110.0

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchmarks

M
a
x
im
u
m
 A
c
u
ta
l
T
e
m
p
e
ra
tu
re

w/o DFS w/ DFS using thermal sensors w/DFS using performance counters

Fig. 6. Maximum temperature for each technique consumed in the past should be dissipated,
resulting in higher maximum temperature

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

(a) bzip2 + gap (b) bzip2 + gcc (c) bzip2 + parser (d) gap + gcc (e) gap + parser (f) gcc + parser

Benchmarks

N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

w/o DFS w/ DFS using thermal sensors w/DFS using performance counters

Fig. 7. Execution time normalized to the no DFS

Figure 7 shows the execution time normalized to the no DFS. The relative execu-
tion time, compared to the no DFS, only depends on the benchmarks’ characteristics,
themselves. The importance lies in the relative execution time between the DFS using
thermal sensors and the DFS using performance counters. As shown in Figure 7, it is
hard to say which technique is better in terms of performance, which implies two
techniques are similarly aggressive, in the perspective of thermal control.

6 Conclusions and Future Works

Uneven activity from one functional block to another, results in localized hotspots
that may move over time. Thus, accurate thermal monitoring therefore requires lots of

 A Novel Software Solution for Localized Thermal Problems 73

thermal sensors. This may be too costly, because precise CMOS thermal sensors are
expensive in terms of area and power. As an alternative, we can use performance
counters and regression analysis.

In this paper, we show that the DFS using performance counters is comparable to
(sometimes better than) the DFS using thermal sensors. The DFS using performance
counters only have to utilize the performance counters that are already embedded in
most commercial microprocessors. Especially, after fabrication, when a microproces-
sor or an SOC (System On Chip) turns out to have localized hotspots that are not cov-
ered by CMOS thermal sensors, the proposed technique using performance counters
can be a cost-effective solution. Though we used the temperature from the Hotspot
[13][14] for regression analysis, the temperature from more accurate circuit-level ther-
mal simulations can be used for regression analysis, which leads to more efficiency.

We only concentrated on the integer register file. However multiple functional
blocks can be monitored and controlled using performance counters, since different
clock frequencies might be assigned to different functional blocks. In this paper, we
freely change the frequency but experiments with discrete frequencies would be inter-
esting. We only examined the scheduling efficiency only with the DFS, since the
DVS is not so reliable due to technology scaling [6] and it has more timing overhead
[11]. The alternative to the DFS is clock gating to cool down the localized hotspots.

Acknowledgements

This works was supported by a Korea University Grant.

References

1. F. Bellosa, A. Weissel, M. Waitz, and S. Kellner. Event-Driven Energy Accounting for
Dynamic Thermal Management. In Proceedings of COLP 2003, Sep. 2003.

2. D. Brooks and M. Martonosi. Dynamic Thermal Management for High-Performance Mi-
croprocessors. In Proceedings of HPCA’01, Jan. 2001.

3. S. W. Chung and K. Skadron. Using On-Chip Event Counters for High-Resolution, Real-
Time Temperature Measurements. Proceedings of ITHERM’06, June 2006.

4. M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas. A Framework for Dynamic Energy Effi-
ciency and Temperature Management. In Proceedings of Micro’00, 2000

5. C. Isci and M. Martonosi. Runtime Power Monitoring in High-End Processors: Methodol-
ogy and Empirical data. In Proceedings of Microarchitecture (Micro’03), Dec. 2003.

6. V. Narayana and Y. Xie. Reliability Concerns in Embedded System Designs. IEEE Com-
puter, vol. 39 no. 1, pp.118-120, Jan. 2006.

7. K.-J. Lee and K. Skadron. Using Performance Counters for Runtime Temperature Sensing
in High-Performance Processors. In Proceedings of the Workshop on High-Performance,
Power-Aware Computing (HP-PAC), April 2005.

8. K.-J. Lee and K. Skadron. Analytical Model for Sensor Placement on Microprocessors. In
Proceedings of the IEEE International Conference on Computer Design (ICCD’05), Oct.
2005.

9. Merkel, F. Bellosa, and A. Weissel. Event-Driven Thermal Management in SMP Systems,
In Proceedings of the Second Workshop on Temperature-Aware Computer Systems
(TACS’05), June 2005.

74 S.-W. Chung and K. Skadron

10. M. D. Powell, M. Gomaa, and T. N. Vijaykumar. Heat-and-Run : Leveraging SMT and
CMP to Manage Power Density Through the Operating System. In Proceedings of Interna-
tional Conference on Architectural Support for Programming Language and Operating
System (ASPLOS’04), Oct. 2004.

11. E. Rotem, A. Naveh, M. Moffie, and A. Mendelson. Analysis of Thermal Monitor Features
of the Intel Pentium M Processor. In Proceedings of the Second Workshop on Tempera-
ture-Aware Computer Systems (TACS’04), June 2004.

12. K. Skadron, T. Abdelzaher, and M. R. Stan. Control-Theoretic and Thermal-RC Modeling
for Accurate and Localized Dynamic Thermal Management. In Proceedings of HPCA’02,
Feb. 2002.

13. K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayana, and D. Tarjan. Tem-
perature-Aware Microarchitecture. In Proceedings of the 30th International Symposium on
Computer Architecture (ISCA’03), June 2003.

14. K. Skadron, M. Stan, K. Sankaranarayana, W. Huang, S. Velusamy, and D. Tarjan. Tem-
perature-Aware Microarchitecture: Modeling and Implementation. ACM Transaction on
Architecture and Code Optimization. Vol. 1, No. 1, March 2004, pp. 94-125.

15. B. Sprunt. Pentium 4 Performance-Monitoring Features. IEEE Micro, 22(4), Jul/Aug 2002.
16. J. Srinivasan and S. V. Adve. Predictive Dynamic Thermal Management for Multimedia

Applications. In Proceedings of International Conference on Supercomputing (ICS’03),
June 2003.

17. Weissel and F. Bellosa, Dynamic Thermal Management for Distributed Systems. In Pro-
ceedings of the First Workshop on Temperature-Aware Computer Systems (TACS’04),
June 2004

18. Apple Computer. Quad G5 2.5Ghz Processors. Available in http://homepage.mac.com/
thunderaudio PhotoAlbum11.html.

19. J. Citaerlla. The Intel PIV’s Thermal Diodes. Available in http://www.overclockers.com/
artocles 517.

20. HP Corporation, Intel Corporation, Microsoft Corporation, Phoenix Tech. Ltd., and To-
shiba Corporation, “Advanced Configuration and Power Interface Specification”,. Avail-
able in http://www.acpi.info /DOWNLOADS/ACPIspec30.pdf, September 2004

21. Intel Corportation. IA-32 Intel Architecture Software Developers Manual. Vol. 3: System
Programming Guide, 2004.

22. Intel Pentium 4 Northwood Die Photo. Available in http://www.chip-architect.com/news/
003_04_20_Looking_at_Intels_Prescott_part2.html

23. Intel Pentium 4 Technical Documents. Available in http://www.intel.com/design/Petium4/
documentation.html

24. Intel Corporation. Thermal Zone Information. Available in http://support.intel.com/
support/motherboards/desktop/sb/CS-12552.htm

25. RCN Corporation. Processor Electrical Specifications, Available in http://users.erols.com/
chare/ elec.htm

26. Standard Performance Evaluation Corp.. Available in http://www.specbench.org.
27. B. Sprunt. Brink and Abyss Pentium 4 Performance Counter Tools for Linux. Available in

http://www.eg.bucknell.edu/bsprunt/emon /brink_abyss.

	Introduction
	Related Works
	Temperature-Aware DFS Technique Using Performance Counters
	Experiment Methodology
	Evaluations
	Scheduling Efficiency
	More Details of Temperature Changes
	Performance

	Conclusions and Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

