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Abstract. In this paper, we propose a temperature-aware DFS (Dynamic Fre-
quency Scaling) technique using the performance counters that is already em-
bedded in the commercial microprocessors. By using performance counters and 
simple regression analysis, we can predict the localized temperature and effi-
ciently schedule the tasks considering the temperature. The proposed technique 
is especially beneficial to potential localized thermal problems that are inevita-
ble due to limited number of costly CMOS thermal sensors. When localized 
thermal problems that were not detected by thermal sensors are found after fab-
rication, the thermal problems can be avoided by the proposed software solution 
without re-fabrication costs. The evaluation results show that the proposed 
technique is comparable to the DFS technique using CMOS thermal sensors. 

1   Introduction 

Reducing energy consumption has been one of the most interesting research topics in 
the computer architecture field. As technology trends leads to packing transistors ever 
more tightly, power densities are increasing rapidly. The higher heat flux leads to 
higher cooling costs-otherwise high temperature might cause the unexpected func-
tional errors or permanent damage of microprocessors, especially in high-
performance microprocessors. Thus, it is important to control the temperature as well 
as the energy consumption. To control the temperature, a couple of techniques have 
been proposed. One is to use the cooling fan to lower the temperature of a chip and 
the other is to make a heat spreader more efficiently. For example, Intel’s Pentium 4 
already has a cooling fan and an efficient heat spreader [20][24] and PowerMac G5 
has huge cooling pumps [18]. To solve the thermal problems, on the computer  
architectural level, pipeline throttling, DVS (Dynamic Voltage Scaling), and DFS 
(Dynamic Frequency Scaling) have been proposed [2][14][16]. 

To control the temperature, we need to know the actual temperature of the func-
tional block that needs to be controlled. In the Pentium 4, there are two independent 
thermal sensors [19]. By using on-die temperature sensing circuit and a fast acting 
temperature control circuit, the processor can rapidly initiate thermal management 
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control. The Pentium 4, however, only uses one of its sensors for thermal manage-
ment; the other is for external use and is not located near any anticipated hotspots. In 
fact, hotspots may move over time, depending on which on-chip functional blocks 
(register fie, integer arithmetic, floating-point arithmetic, etc.) are most heavily used 
[8]. As technology scales down, power density increases which might lead to more 
localized hotspots. Temperature differences become exponentially larger with dis-
tance, so a single thermal sensor does not cover a large chip like the Pentium 4. In 
future high-performance microprocessors, more than ten thermal sensors are expected 
to be embedded in a microprocessor. However, the number of thermal sensors is lim-
ited, because they are too expensive to be placed in all the potential hotspots. When 
potential hotspots that do not have thermal sensors are found serious after fabrication, 
it is impossible to resolve the localized thermal problems without re-fabrication, using 
previous techniques. 

We chose DFS instead of DVS for the scheduling policy. There are three reasons. 
1) The frequency transition at the high Vcc is done within few microseconds, which 
takes much less, compared to the voltage transition [11]. 2) We found a linear propor-
tional relation between the frequency and the temperature by using simple regression 
analysis. On the other hand, the voltage is not linearly proportional to the temperature, 
which makes it difficult to find a relation between them. 3) In terms of reliability, the 
supply voltage scaling reaches a plateau, since the difference between supply voltage 
and threshold voltage should be kept large enough [6]. Thus, this paper proposes a 
DFS technique using performance counters that efficiently controls the temperature 
of the localized hotspots. The localized thermal problems that were found after fabri-
cation can be resolved by using the proposed technique. 

The rest of this paper is organized as follows. Section 2 presents related works. 
Section 3 explains the temperature-aware DFS scheduling using performance count-
ers. Section 4 describes the experiment methodology and Section 5 shows the effi-
ciency of the proposed technique. Section 6 concludes the paper and describes some 
avenues for future works. 

2   Related Works 

Huang et al. [4] proposed a DVS-based technique for thermal control. Though they 
investigated the memory hierarchy, they did not examine other hot functional blocks 
such as register files. Brooks et al. [2] set a constant threshold power and they applied 
five thermal control techniques (clock frequency scaling, voltage and frequency scal-
ing, decode throttling, speculation control, and I-cache toggling), when the threshold 
power was exceeded. They found DFS and DVS to be inefficient because of the invo-
cation overhead. However, the inefficiency may be due to the short sampling period 
(10K cycles) and large invocation overhead (more than 10 ms). Skadron et al. [12] 
proposed formal control theory for dynamic thermal management. The previous stud-
ies used constant trigger temperature (or power) and fixed response. In contrast, they 
allow the fetch-toggling rate to be changed according to the thermal history that may 
need additional storage. There are some previous works [8][10] on thermal manage-
ment in SMP systems, which schedules the tasks making use of the idle SMP nodes. 
Srinivasan et al. proposed the predictive dynamic thermal management by profiling 
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multimedia applications [16]. Most of these researches are based on the thermal sen-
sors to measure the temperature.  

Though the number of thermal sensors is limited by design budget, localized hot-
spots are too serious to be ignored [8]. Alternative to the thermal sensor is the  
performance counter that was already embedded in microprocessors to evaluate the 
performance. There have been several studies on using performance counters. Brooks 
et al. proposed using performance counters to find activity factors [2], where details 
were not proposed. Bellosa et al. proposed formulas that correlate the activity factor 
to energy that is eventually correlated to temperature [1]. They tried to manage the 
temperature by controlling power consumption [1][16] . They only concentrated on 
the overall temperature (not on the localized hotspots). Lee et al. [6] also proposed 
runtime temperature sensing using performance counters, which is accurate but incurs 
some computational complexity, because they use full HotSpot [13][14].  

In this paper, we present a software technique using performance counters that can 
investigate the localized hotspots. To estimate the temperature of functional blocks, 
we only have to calculate a simple linear formula with inputs from the activity factor 
(the number of accesses) of the functional block. The linear formula is established by 
simple regression analysis. The data (activity factor(X) and temperature(Y)) for re-
gression analysis can be obtained from real measurement in laboratories or from accu-
rate simulations. In this paper, the parameters for regression analysis are obtained 
from simulation using HotSpot [13][14]. Though the performance counters are read 
every 10 ms, the estimated temperature was shown to be accurate enough [3]. In addi-
tion, the frequency transition overhead that is done every 10 ms is negligible [11]. 

3   Temperature-Aware DFS Technique Using Performance 
Counters 

We examine two methods to measure the temperature: One is using CMOS thermal 
sensors and the other is using performance counters. The former is more accurate but 
needs CMOS thermal sensors. In other words, the thermal sensors should be placed in 
the localized hotspots before fabrication. The latter is less accurate but does not need 
additional hardware, since performance counters are already embedded in commercial 
microprocessors. On-chip sensors are now widely used to measure the temperature 
but are believed by many designers to be too expensive to be placed in all the poten-
tial localized hotspots. To alleviate the cost of the thermal sensors, only very probable 
localized hotspots have the thermal sensors. After fabrication, there is a possibility 
that severe localized hotspots that were not detected at the time of validation, are 
found. For this case, we propose a temperature-aware DFS technique using perform-
ance counters for sensing the temperature of the possible localized hotspots. Origi-
nally, the performance counters are used to count specific micro-architectural events 
for debugging and performance measurements. However, we can examine lots of 
localized hotspots by utilizing performance counters. For example, in the Intel Pen-
tium 4, there are 45 configurable events and 18 physical performance counters, which 
implies that we can estimate temperatures of the 45 functional blocks in the micro-
processors [15][27] .  
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For the temperature-aware scheduling, simple offline regression analysis [3] is used 
to find a simple relation between selected values of activity factor and observed val-
ues of temperature. Please recall that the most probable value of Y can be predicted 
for any value of X by simple regression analysis. Temperature can be estimated using 
a simple formula (T=ax + b, where T is temperature, X is activity factor, and a and b 
are coefficients). We only have to consider only the activity factor of the functional 
unit that is investigated. The key observation is that the regression captures second-
order contributions from other functional units. We did try multiple regression analy-
sis with the current activity factor and the previous activity factor. Results were at 
best minimally improved compared to results from simple regression analysis, and in 
fact the accuracy with multiple regression analysis was sometimes worse. 

At runtime, multiplying the activity factor by the regression coefficient is required 
for temperature measurement. Although it is feasible to re-compute temperature every 
cycle, this is wasteful, since even at the fine granularity of architectural units, it takes 
at least 100K cycles until the temperature rise by 0.1C [14]. We chose a sample pe-
riod 10 ms, which is the scheduling granularity of commercial operating systems and 
creates a natural opportunity for software to read the performance counts. For our 
CPU clock rate of 2.6 GHz, this works out to be sampling period of 26 M cycles. This 
is in any case the minimum granularity at which software techniques could perform 
any kinds of thermal management. For example, to compute the temperatures of the 
integer register file, we only utilized the IIPC (Integer Instructions Per Cycle) statis-
tic. Although the peak temperature estimation error was small, there were times when 
our technique under- or over-estimated temperatures by as much as 10 degree. These 
large differences only occurred when the performance counter technique responded 
faster than the actual temperature. The reason is that the proposed technique is line-
arly proportional to the IIPC so that the estimated temperature changes quickly, 
whereas the actual temperature changes gradually. We did not mediate these spikes 
and dips, since we may be able to schedule tasks more efficiently if we know the 
temperature tendency (increase/decrease) in advance.  

In this paper, we compare the scheduling efficiency using the thermal sensors to 
that using the performance counters. In the conventional technique using thermal 
sensors, the frequency is lowered when the temperature is more than (or same as) 
the threshold temperature and the actual temperature is measured from the thermal 
sensors. On the contrary, in case of the proposed technique using performance 
counters, the temperature is estimated from the activity factor so that the frequency 
is lowered when the activity factor (instead of the actual temperature) is more than a 
threshold.   

4   Experiment Methodology 

The processor used for the experiments is a 2.6 GHz Pentium 4, 130 nm Northwood 
core. The typical power dissipation is 69.0 W, and the operating voltage is 1.6 V [23]. 
The processor supports hyper-threading technology, which allows the processor to run 
two threads simultaneously. This means that the task that regularly reads the perform-
ance counters and calculates the temperature interferes minimally with user tasks: not 
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only does it consist of only a few instructions, but hyper-threading fits these few in-
structions into empty execution slots as instructions are issued within the processor. 

The performance counters are used to count specific micro-architectural events for 
debugging and performance measurements [21]. Each counter is associated with one 
counter configurable control register (CCCR), which determines the specific count-
ing scheme. The event selection control registers (ESCRs) determine which event is 
to be counted. A simplified device driver, adapted from the abyss device driver [27], 
is used to configure all the control registers and read the performance counters. 

The temperature model requires the geometric specifications and the floorplan 
layout of the processor. We derived the configurations of Pentium 4 to configure 
HotSpot [13][14]. These parameters are based on design schematics found in [23]. 
We also use the floorplan layout that was adapted from the Northwood core die 
photo [22].  

Though we are able to investigate the temperature of 45 functional blocks through 
performance counters, we concentrate on the register file which is known as one of 
the hottest functional blocks. In the simple regression analysis, IIPC is X (selected 
value) and the temperature is Y (observed value). The actual temperature is obtained 
from the HotSpot [13][14] that was proven to be accurate. To use the performance 
counters, the Hotspot was modified to be based on a model by Isci and Martonosi [5] 
for the Pentium 4. 

We selected four benchmarks (bzip2, gap, gcc and parser) from the SPEC 
CPU2000 benchmark suite [26], since these benchmarks show more temperature 
differences than other benchmarks during the execution. Since running single 
benchmark of these four benchmarks does not increase the temperature so much, we 
would like to run two benchmarks at the same time. However, running two bench-
marks on two threads sometimes defers reading the performance counters severely 
and incurs thermal throttling by the Pentium 4 processor, resulting in inefficient 
evaluation of scheduling techniques. To prevent the inefficiency, we schedule the 
tasks off-line instead of on-line. We ran two applications separately and obtained 
the trace of the activity factor of all functional blocks. After then, we utilize off-line 
task scheduling, by using activity factor of all functional blocks. When the proposed 
technique using performance counters is adopted in the real world, the access to the 
performance counter can be set to have a higher priority than the other tasks in 
order to allow periodic accesses to the performance counter. 

By running applications, we can have the coefficients for the formula. For more 
accurate estimation, we only use the samples whose IIPC is more than 2.0. We set 
the confidence interval is 99% in order to cover as many cases as possible. The 
formula that we obtained from the simple regression analysis is Y = 14.1*X + 58.4, 
where the IIPC (X) corresponding to 95 Celsius (Y) is 2.59. 

The DFS using thermal sensors lowers the frequency by 20% when the tempera-
ture is same as (or more than) 95 Celsius. It increases the frequency by 5% every 10 
ms up to the 2.6 GHz when the temperature is lower than 95 Celsius. The DFS 
using performance counters lowers the frequency to (2.6 GHz * (2.59/previous 
IIPC)), when the IIPC is more than 2.59. When the IIPC is lower than 2.59, the fre-
quency is 2.6 GHz. 
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5   Evaluations 

We evaluate the proposed DFS scheduling technique in six cases: bzip2 + gap, bzip2 
+ gcc, bzip2 + parser, gap + gcc, gap + parser, and gcc + parser. According to [25], 
maximum temperatures are between 65~100 Celsius in commercial microprocessors, 
depending on the model. We set the threshold temperature to 95 Celsius. We also 
assume that the frequency can be freely set not to distort the experiment results by 
discrete frequency.  

5.1   Scheduling Efficiency 

Figure 1 shows the temperature changes when there is no consideration for tempera-
ture. In Figure 1, the temperature varies fast in (a), (b) and (c) due to the characteristic 
of bzip2, whereas the temperature does not vary so much and it is under 100 Celsius 
in (d), (e) and (f).  
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Fig. 1. Temperature changes (w/o DFS) 
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Figure 2 shows the temperature changes when DFS using CMOS thermal sensors 
is applied. As shown in the Figure 2, the temperature is varied significantly when the 
temperature is around 95 Celsius. The reason is that the frequency increases/decreases 
by a constant rate (20% for increase and 5% for decrease). If the frequency is de-
creased only by 10% or less, the temperature remains over 95 Celsius for longer time. 
When the frequency is increased more gradually, the performance loss will be severe. 
If the frequency is increased more than 5%, there are more temperature violations. 
Please note that there is no run-time information on how much the frequency should 
be changed. In fact, we tried to make use of the temperature history to find patterns of 
temperature variation in order to utilize the run-time information, which turned out 
not so helpful.  

Figure 3 describes the temperature changes when the DFS is applied using per-
formance counters. Different from Figure 2 where CMOS thermal sensors are used, 
Figure 3 does not show the spikes and dips of the temperature around 95 Celsius. In 
the proposed technique, the frequency is determined by referencing to the previous 
IIPC. When the previous IIPC is more than 2.59, the clock frequency is 2.6 GHz *  
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(c) bzip2 + parser

60

65

70

75

80

85

90

95

100

105

1 121 241 361 481 601 721 841 961 1081 1201 1321 1441 1561 1681 1801 1921 2041

Time Slice Number

T
e
m
p
e
ra
tu
re

(d) gap + gcc

60

65

70

75

80

85

90

95

100

105

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

 
(e) gap + parser

60

65

70

75

80

85

90

95

100

105

110

1 119 237 355 473 591 709 827 945 1063 1181 1299 1417 1535 1653 1771 1889 2007

Time Slice Number

T
e
m
p
e
ra
tu
re

(f) gcc + parser

60

65

70

75

80

85

90

95

100

105

110

1 115 229 343 457 571 685 799 913 1027 1141 1255 1369 1483 1597 1711 1825 1939

Time Slice Number

T
e
m
p
e
ra
tu
re

 

Fig. 2. Temperature changes (w/ DFS using thermal sensors) 
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(2.59/(previous IIPC)). Otherwise, the frequency is 2.6 GHz (full speed). Thus, the 
fluctuation around 95 Celsius is less severe, compared to the DFS using thermal 
sensors. 

As explained in the Section 3, using performance counters can make it possible to 
foresee the temperature tendency in advance. Accordingly, the proposed technique 
decreases the frequency early when the temperature goes up, which reduces the spikes 
around 95 Celsius. 

5.2   More Details of Temperature Changes 

Figure 4 presents the ratio of times when the actual temperature is over the threshold 
temperature. Both DFS techniques dramatically reduce the thermal violations. Some-
times the DFS using the performance counters performs better and sometimes does 
not. At least, we can say that the DFS using the performance counters is comparable 
to the DFS using the thermal sensors. 
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Fig. 3. Temperature changes (w/DFS using performance counters) 
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Fig. 4. Ratio of times when the actual temperature is over the threshold value (95 Celsius) 

Figure 5 shows the average temperature difference between the actual temperature 
and the threshold value, when the actual temperature is over the threshold value. 
Though the temperature violation ratios in Figure 4 are not negligible, the average 
temperature excesses are significantly reduced. The average values of the temperature 
excesses in Figure 5 are 0.37 and 0.40 degree, on average, for the DFS using thermal 
sensors and the DFS using performance counters, respectively.  
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Fig. 5. Average temperature difference between the actual temperature and the threshold value 
(95 Celsius) 

Figure 6 shows the maximum temperature when the actual temperature is over the 
threshold value. We can notice that the DFS using performance counters always out-
performs the DFS using thermal sensors. The DFS using performance counters more 
accurately forecasts the temperature by referencing to the IIPC, which prevents the 
spikes. However, the DFS using thermal sensors can not predict future temperature. 
Thus, the temperature continues to go up even with the DFS, because the power  

5.3   Performance 

The tasks in this experiment are not periodic, in other words, which is not predictable. 
Thus, we should sacrifice the performance to sustain the temperature under the 
threshold value. If more aggressive DFS technique were adopted, the number  
of thermal violations would be decreased. As the number of thermal violations  



72 S.-W. Chung and K. Skadron 

 

decreases, the performance is naturally degraded. For example, suppose that one tech-
nique sets the threshold value to 90 Celsius and the other sets it to 100 Celsius. The 
former has less thermal violation and more performance degradation. For a fair com-
parison, we should check that the both techniques are similarly aggressive. If the 
proposed DFS using performance counters performed much worse than the DFS using 
thermal sensors, the experiment would not be fair. 
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Fig. 6. Maximum temperature for each technique consumed in the past should be dissipated, 
resulting in higher maximum temperature 
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Fig. 7. Execution time normalized to the no DFS 

Figure 7 shows the execution time normalized to the no DFS. The relative execu-
tion time, compared to the no DFS, only depends on the benchmarks’ characteristics, 
themselves. The importance lies in the relative execution time between the DFS using 
thermal sensors and the DFS using performance counters. As shown in Figure 7, it is 
hard to say which technique is better in terms of performance, which implies two 
techniques are similarly aggressive, in the perspective of thermal control.  

6   Conclusions and Future Works 

Uneven activity from one functional block to another, results in localized hotspots 
that may move over time. Thus, accurate thermal monitoring therefore requires lots of 
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thermal sensors. This may be too costly, because precise CMOS thermal sensors are 
expensive in terms of area and power. As an alternative, we can use performance 
counters and regression analysis.  

In this paper, we show that the DFS using performance counters is comparable to 
(sometimes better than) the DFS using thermal sensors. The DFS using performance 
counters only have to utilize the performance counters that are already embedded in 
most commercial microprocessors. Especially, after fabrication, when a microproces-
sor or an SOC (System On Chip) turns out to have localized hotspots that are not cov-
ered by CMOS thermal sensors, the proposed technique using performance counters 
can be a cost-effective solution. Though we used the temperature from the Hotspot 
[13][14] for regression analysis, the temperature from more accurate circuit-level ther-
mal simulations can be used for regression analysis, which leads to more efficiency.  

We only concentrated on the integer register file. However multiple functional 
blocks can be monitored and controlled using performance counters, since different 
clock frequencies might be assigned to different functional blocks. In this paper, we 
freely change the frequency but experiments with discrete frequencies would be inter-
esting. We only examined the scheduling efficiency only with the DFS, since the 
DVS is not so reliable due to technology scaling [6] and it has more timing overhead 
[11]. The alternative to the DFS is clock gating to cool down the localized hotspots. 
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