
Evaluating Trace Cache Energy Efficiency

MICHELE CO, DEE A. B. WEIKLE, and KEVIN SKADRON

University of Virginia

Future fetch engines need to be energy efficient. Much research has focused on improving fetch
bandwidth. In particular, previous research shows that storing concatenated basic blocks to form
instruction traces can significantly improve fetch performance. This work evaluates whether this
concatenating of basic blocks translates to significant energy-efficiency gains. We compare proces-
sor performance and energy efficiency in trace caches compared to instruction caches. We find
that, although trace caches modestly outperform instruction cache only alternatives, it is branch-
prediction accuracy that really determines performance and energy efficiency. When access delay
and area restrictions are considered, our results show that sequential trace caches achieve very
similar performance and energy efficiency results compared to instruction cache-based fetch en-
gines and show that the trace cache’s failure to significantly outperform the instruction cache-based
fetch organizations stems from the poorer implicit branch prediction from the next-trace predictor
at smaller areas. Because access delay limits the theoretical performance of the evaluated fetch
engines, we also propose a novel ahead-pipelined next-trace predictor. Our results show that an
STC fetch organization with a three-stage, ahead-pipelined next-trace predictor can achieve 5–17%
IPC and 29% ED2 improvements over conventional, unpipelined organizations.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Design Studies

General Terms: Measurement, Performance

Additional Key Words and Phrases: Trace cache, fetch engine energy efficiency

1. INTRODUCTION

Energy efficiency has become important for almost all new chip designs. The
fetch unit contributes a large portion of total power consumption in a micro-
processor. For example, Bose et al. [2002] measure the POWER4’s front-end
instruction delivery path to consume 20% of net chip system power and about
35% of the processor core. Research trends also point toward aggressive fetch
engines for maximum performance. Understanding how fetch organization af-
fects processor energy efficiency is important to processor design.

The fetch unit’s role is to feed the dynamic instruction stream to the ex-
ecution unit. Instruction caches store instructions in static program order.

Authors’ address: M. Co, D. A. B. Weikle, and K. Skadron, Department of Computer Science, School
of Engineering, University of Virginia 151 Engineer’s Way, P.O. Box 400740 Charlottesville, Virginia
22904-4740; email: {micheleco,dweikle,skadron}@cs.virginia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1544-3566/06/1200-0450 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006, Pages 450–476.



Evaluating Trace Cache Energy Efficiency • 451

Because of the presence of taken control-flow instructions, some of the in-
structions fetched from the instruction cache are unused. Trace caches are
one type of high-fetch bandwidth mechanism, which instead stores instruc-
tions in dynamic program order, stitching together several nonsequential basic
blocks and increasing effective fetch bandwidth. The high-performance benefits
of many high-fetch bandwidth mechanisms have been evaluated in the research
community.

However, many high-fetch bandwidth mechanisms have drawbacks in terms
of complexity. They require additional levels of indirection, moderate to highly
interleaved instruction caches, or complex alignment networks. In addition,
some of these mechanisms are on the critical path and many of these mecha-
nisms have not been evaluated in terms of energy efficiency.

Most trace-cache implementations [Johnson 1994; Peleg and Weiser 1995;
Rotenberg et al. 1996a, 1996b] do not suffer from these complexity drawbacks
and thus have advantages in fetch engine design. Trace-cache implementa-
tions have been evaluated for their performance benefits over instruction cache-
only fetch designs. Trace-caches have also been evaluated for energy efficiency
within the trace cache design space, but we are not aware of any work analyzing
the relative energy efficiency of trace caches compared to instruction cache-only
fetch organizations.

Our work models several types of trace caches: the conventional or concurrent
trace cache (CTC), in which trace cache and instruction cache are probed in
parallel, the sequential trace cache (STC), described by Rotenberg et al. [1996a,
1996b], which accesses the trace cache and instruction cache sequentially, and
the block-based trace cache (BBTC), proposed by Black et al. [1999], which
stores basic blocks for assembly into traces. We present four sets of experimental
results.

First, we compare fetch-engine organizations without area budget restric-
tions across the parameters of associativity, area, and trace length. We eval-
uate the effect of these parameters on overall performance and energy ef-
ficiency. Then, to explore intrinsic branch-prediction capabilities, we evalu-
ate all fetch organizations with a similar predictor based on the next-trace
predictor (NTP) [Jacobson et al. 1997]. To account for the trend of decreas-
ing access times resulting from high clock speeds, we reevaluate the fetch
engines where the area of each component in the fetch engine organiza-
tion is restricted. Finally, we introduce and evaluate an ahead-pipelined
NTP to address decreasing cycle times. Each comparison is made with re-
spect to two parameters: performance (IPC) and energy-delay squared (ED2)
[Zyuban and Strenski 2002].

This work shows that branch prediction is much more important than the
storage order of instructions, either in a trace cache or in an instruction cache.
Providing fewer misspeculated instructions to the execution engine improves
overall processor energy efficiency, but newer, improved branch predictor de-
signs make the tradeoff between trace caches and instruction caches less
clear.

The rest of the paper is organized as follows: Section 2 presents related
work, Section 3 presents experimental methodology, Sections 4 and 5 present

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



452 • M. Co et al.

experimental results, and Section 6 presents conclusions and directions for
future work.

2. RELATED WORK

2.1 Fetch Engine Design

Friendly, Patel et al. [1997] and Rotenberg et al. [1996a, 1996b, 1999] performed
comprehensive studies of the trace cache design space with respect to perfor-
mance. We perform a similar design-space study to evaluate power, energy, and
performance tradeoffs on a more current processor pipeline.

Research has explored ways to reduce the power dissipation of trace caches.
Hu et al. [2002] showed that sequentially accessing the trace cache and the
level 1 (L1) instruction cache has significant power savings over accessing the
two structures simultaneously. In subsequent work, Hu et al. [2003] also com-
pared the concurrent access trace cache (CTC), sequential trace cache (STC),
and a new design, the dynamic direction prediction-based trace cache (DPTC)
for power efficiency and performance. They found that the DPTC exhibits less
performance loss than the STC, but with similar power consumption. Our work
expands this previous work by providing a comparison of fetch units containing
either CTCs, STCs, or BBTCs to fetch units containing an instruction cache-
only. We also evaluate the relative contribution of trace length and branch
prediction in overall processor energy efficiency and determine the effect of
additional parameters, such as leakage and delay.

Bahar et al. [1998], Kim et al. [2002], and Zhang and Yang [2003] have per-
formed work to improve traditional instruction cache energy consumption with-
out adversely affecting processor performance or on-chip energy consumption.
Bahar suggested the use of buffers between the L1 and L2 caches to improve
cache energy efficiency. Kim introduced the drowsy-instruction cache, which
selectively powered off segments of the instruction cache to improve power
consumption. Zhang proposed tag comparison elimination for reducing cache
energy consumption. Our work focuses on evaluating the relative energy ef-
ficiency of high-fetch bandwidth fetch organizations compared to those with
instruction caches only as opposed to focusing on techniques to improve tradi-
tional instruction cache energy efficiency.

Solomon et al. [2001] introduced the microoperation cache (μC) as an alter-
native front end for the Intel P6 processor family. The μC stores basic blocks
in decoded μop form and provides similar fetch bandwidth at lower power con-
sumption. The focus of their work was not to increase fetch bandwidth, but
rather to find a more energy efficient fetch engine design with comparable
performance for the Intel IA-32 architecture. The goal of our work is to under-
stand the characteristics that affect the energy efficiency of trace caches in a
relatively architecturally independent way. The IA-32 architecture’s front-end
characteristics are unique and insights drawn from evaluating the μC are not
easily extended to architectures, which support other ISAs. An evaluation of
the μC, while interesting, is not included because this trace cache design may
be an artifact of the high cost of decoding x86 instructions. Instead, we chose

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 453

to provide more general insights with respect to the relative energy efficiency
of trace cache-based fetch organizations versus instruction cache-only fetch
organizations.

Parikh et al. [2002] explored the role of branch predictor organization on
power, energy, and performance tradeoffs for fetch engine design. They found
that although extra power might need to be expended to improve branch predic-
tion accuracy, overall processor power and energy dissipation can be reduced.
Our work focuses more broadly on both the cache and prediction mechanisms
in various fetch engine organizations and on their ultimate impact on overall
processor energy efficiency.

Fahs et al. [2001] proposed the rePLay microarchitecture, which includes
hardware support for dynamic optimization. The rePLay framework consists of
a frame constructor, programmable optimization engine, frame cache, sequenc-
ing component, and misspeculation recovery mechanism. The frame cache is
similar to trace caches in that it stores variable-length sequences of instruc-
tions that may span multiple traditional cache lines. Frames differ from traces
in that frames are atomic regions of instructions, which contain no internal
control dependencies, and in that there is no notion of partial commit of a
frame. All instructions within a frame must execute successfully to commit
or a full rollback must occur. Hardware support for dynamic optimization is
a field that requires the processor architecture to support hardware/software
communication. Exploring the energy efficiency of architectures, which support
software-controlled hardware-performed dynamic optimizations, is a very in-
teresting field in its own right. However, including an evaluation of this class of
architectures adds many more evaluation parameters, which make discerning
valuable insights about the relative energy efficiency of purely hardware-based
fetch organizations more difficult, so is not included.

Rosner et al. [2004] present the PARROT microarchitecture, which utilizes
trace caching, dynamic optimizations, and pipeline decoupling for improving
performance with reduced energy consumption. The PARROT microarchitec-
ture is designed to take advantage of the paradigm that 90% of execution time is
spent in 10% of the static code. This microarchitecture has the ability to identify
hot (frequently executed) and cold (infrequently executed) traces and send them
to devoted hot and cold execution pipelines, respectively. Traces designated to
the hot pipeline are aggressively optimized. Their results show significant per-
formance gain and energy savings. The focus of this paper is to compare trace
cache-based fetch organizations to conventional instruction cache fetch orga-
nizations. A fair evaluation of the class of aggressive architectures, which in-
clude dynamic optimization hardware such as the PARROT, rePLay, and many
other architectures, involves many additional parameters and is not included
here.

2.2 Fetch Bundles [Stream Fetching/Implicit Multiple-Branch Prediction]

Yeh and Patt [1992] introduced the basic block target buffer to reduce the
delay in predicting branch target addresses. They reduced the delay by stor-
ing both the target and fall-through addresses of each basic block predicted.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



454 • M. Co et al.

Reinman et al. [1999] expanded on Yeh and Patt’s basic block target buffer
work [Yeh and Patt 1992] and introduced the fetch target buffer (FTB) to de-
couple fetching from fetch predictions. They introduced the idea of terminating
fetch bundles with strongly biased taken branches instead of terminating a
fetch bundle on the first encountered branch. In other words, one fetch bundle
represents a sequence of instructions whose internal branches are implicitly
predicted as not taken. The final branch in the block is still predicted explicitly
by a branch predictor to determine the start address of the next fetch bundle.
Ramirez et al. [2002] introduce a fetch model, which extends Reinman’s work
by using streams, a stricter definition of Reinman’s fetch bundle. A stream is
an arbitrary length sequence of instructions (including not taken branches)
terminating with a taken branch. Therefore, branch direction predictions are
implicit within a stream. This stream definition means that the stream predic-
tor produces an explicit address prediction of the last branch in the previous
stream.

The instruction cache STREAM model described in Section 3.1 uses some of
the ideas of Reinman’s and Ramirez’ work. We use Ramirez’ stream definition
to allow fetching past not taken branches. To make more straightforward com-
parisons across fetch engine designs and to focus on the benefits of instruction
cache versus trace cache, we do not decouple fetch predictions from instruction
fetching as both Reinman and Ramirez do.

Oberoi and Sohi [2003] proposed parallelism in the front end, in which sev-
eral instruction sequence fragments are fetched and renamed in parallel from
a banked instruction cache. Our experiment to isolate the effects of branch
prediction on fetch engine designs evaluates a fetch organization with an in-
struction cache and a next trace predictor, which is a simplified, sequential
version of the Oberoi work. A full evaluation of parallelized trace construction
fetch organizations is beyond the scope of this work. In this work, we instead
focus on understanding the energy-efficiency implications of sequential fetch
organizations.

Several high-fetch bandwidth mechanisms, such as branch address
cache [Yeh et al. 1993], subgraph predictor [Dutta and Franklin 1995], col-
lapsing buffer [Conte et al. 1996], multiple-block ahead predictor [Seznec et al.
1996], block-based trace cache [Black et al. 1999], and trace cache [Johnson
1994; Peleg and Weiser 1995; Rotenberg et al. 1996a, 1996b] have been pro-
posed. Many of these mechanisms have drawbacks in terms of complexity and
power. Therefore, for this work, we only consider the trace cache described by
Rotenberg et al. [1996b] and the block-based trace cache described by Black
et al. [1999].

There is separate previous work evaluating the relative performance of
trace caches compared to instruction caches, evaluating hardware optimiza-
tions for improving instruction cache energy efficiency, and evaluating the rel-
ative energy efficiency of particular trace cache designs. We are not aware
of any further research examining the relative power-energy-performance
tradeoff between fetch organizations which have only instruction caches and
fetch organizations which have a combination of instruction cache and trace
cache.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 455

Table I. Simulated Processor Microarchitecture

Processor Core
Active list 128 entries
Physical registers 80
LSQ 128 entries
Issue width 16 instructions per cycle
Functional units 16 IntALU, 4 IntMult/Div,

8 FPALU, 4 FPMult/Div,
2 memory ports

Memory Hierarchy
L1 D-cache size 64 KB, 2-way, LRU, 64 B blocks,

writeback
L1 I-cache size 64 KB, 2-way, LRU, 64 B blocks

2-way interleaved
both 2-cycle latency

L2 Unified, 4 MB, 8-way LRU,
128B blocks, 12-cycle latency,

writeback
Memory 225 cycles (75 ns)
TLB size 128-entry, fully assoc.,

30-cycle miss penalty
Branch Predictor

Branch predictor Hybrid PAg/GAg
with GAg chooser

BTB 2 K-entry, 2-way
RAS 32-entry

3. EXPERIMENTAL METHODOLOGY

All experiments in this work use the SimpleScalar Toolset [Burger and Austin
1997] and a modified Wattch [Brooks et al. 2000] infrastructure with a power
model based on the Alpha 21364 [Skadron et al. 2003]. The base out-of-order
simulator was extended to include concurrent trace cache (CTC), sequential
trace cache (STC), block-based trace cache (BBTC), and path-based NTP mod-
els. The microarchitecture model is summarized in Table I. Cache and predictor
acronyms are listed in Table II and evaluated fetch engines are listed in Ta-
bles III and IV.

To more closely study the efficiency of the fetch engines, we chose a highly
parallelizing execution core. We altered the base microarchitecture to have 128
instruction fetch queue entries, 128 register rename entries, and 128 load/store
queue entries. In addition, the base architecture was modified so that as many
as 16 instructions can be issued, executed, and committed in one cycle. Thus, a
maximum of 16 IPC is possible with a perfect fetch engine and perfectly parallel
code. Highly parallelizing execution cores have been used in prior trace cache
studies [Rotenberg et al. 1996b, 1997, 1999; Black et al. 1999]. We, therefore,
use a similar wide core here. Our results show that branch prediction accuracy
has a strong effect on the performance of the wider cores.

Since current CPU designs are increasingly using conditional clocking tech-
niques to reduce power consumption, the power and energy metrics were
calculated using Wattch’s conditional clocking method, which scales power lin-
early with port or unit usage [Brooks et al. 2000].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



456 • M. Co et al.

Table II. Cache and Predictor Acronyms

Acronym Cache Acronym Predictor
IC Instruction cache HYB BPRED Hybrid branch predictor
STC Sequential access trace cache GPERC Global perceptron branch predictor
CTC Concurrent access trace cache NTP Path-based next-trace predictor
BBTC Block-based trace cache TT Trace table

Table III. Summary of Initial Fetch Engines Evaluated

Original Fetch Engines Evaluated
Fetch Engine Name Cache Predictor Fetch Bundle
STC NTP STC NTP Trace

w/backing IC w/backing HYB BPRED
CTC NTP CTC NTP Trace

w/backing IC w/backing HYB BPRED
IC CLASSIC BPRED IC HYB BPRED Cache line
IC CLASSIC GPERC IC GPERC Cache line
IC STREAM BPRED IC HYB BPRED Stream
IC STREAM GPERC IC GPERC Stream
BBTC TT BBTC TT 4-Block trace

Table IV. Summary of Fetch Engines Evaluated to Isolate
Branch Prediction Effects

Additional Fetch Engines Evaluated
Fetch Engine Name Cache Predictor Fetch Bundle
IC CLASSIC NTP IC NTP Cache line
IC STREAM NTP IC NTP Stream
BBTC NTP BBTC NTP 4-Block trace

To model leakage, when the port or unit is not in use, a fixed ratio of maximum
power dissipation is charged: 10% in most experiments. We examined the effect
of increasing leakage, but found that leakage differences are minimal between
the various fetch engines when the area of each fetch component is restricted.
(See Section 4.3.1 for further discussion.)

We conducted several experiments to evaluate the performance and en-
ergy efficiency of some common fetch engine designs. Table II describes the
acronyms used in this paper and Table III describes the initial set of fetch
engines evaluated. We then performed a set of controlled experiments to deter-
mine if branch prediction accuracy plays a major role in the difference between
the evaluated fetch engines. To isolate the effect of differing branch predic-
tion accuracy, we evaluate each fetch organization when the best-performing
branch predictor, the NTP, is used in the design. Table IV lists these addi-
tional fetch organizations. The effect of delay is considered in another set of
experiments by restricting the area of each fetch component and a novel ahead-
pipelined NTP, which improves NTP performance in the face of delay, is eval-
uated. Sections 3.1 and 3.2 discuss the details of the fetch organizations we
evaluated.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 457

3.1 Instruction Cache Model

For a more direct comparison to the trace cache fetch engines, the instruction
caches modeled in our experiments have long cache lines (16 instructions wide)
and are two-way interleaved.

We simulate two types of fetching behavior for the instruction cache modeled
in our experiments: CLASSIC and STREAM.

3.1.1 IC CLASSIC. The CLASSIC fetch behavior modeled represents the
capability of current instruction cache fetch engines. The branch predictor is
allowed to predict only the first branch encountered per fetch bundle and a
maximum of 16 instructions may be fetched.

3.1.2 IC STREAM. The STREAM model we use is a simple, but aggres-
sive approximation of stream fetching. For consistency with the other fetch
organizations evaluated, our model differs from previous work. We use a two-
way interleaved instruction cache, which allows the fetch engine to fetch up to
the first taken branch or a maximum of 16 instructions.

Our model does not use a basic block target buffer as in Yeh and Patt’s
work [1992]. Instead, a traditional branch target buffer and branch predictor
is used to make branch target address predictions. Because the trace cache
fetch engines we evaluated do not decouple fetch predictions from instruction
fetching, we chose to evaluate our instruction cache fetch engines without de-
coupling. This differs from the decoupled fetch designs of Reinman et al. [1999]
and Ramirez et al. [2002]. However, our STREAM model uses Ramirez’
definition of stream (sequential list of instructions terminated by a taken
branch).

Our IC STREAM model fetches aggressively as a result of the two-way inter-
leaved instruction cache. We also allow the branch predictor to predict multiple-
branches within a single cycle. We believe that this model is useful for compar-
ison because it represents the potential for an instruction cache-based fetch
engine with idealized fetch bandwidth and with multiple-branch prediction ca-
pabilities. We chose this design to evaluate instruction cache fetch engines with
more idealized (larger) fetch bundles.

3.2 Trace Cache Models

3.2.1 Sequential and Concurrent Access Trace Caches. The sequential
trace cache (STC) modeled in the experiments is the model described by
Rotenberg et al. [1999] shown in Figure 1. The STC consists of a path-based
NTP [Jacobson et al. 1997], which predicts the next-trace to be fetched, out-
standing trace buffers (OTB) to hold in-flight predicted traces, and the trace
cache itself. Instructions are stored in undecoded form unlike the μop cache
present in the Intel Pentium 4 architecture. Sequential access was modeled as
described in the work of Hu et al. [2002]. The backing instruction cache is only
probed on the next cycle after a trace cache miss. The STC’s power was modeled
as an array structure, similar to an instruction cache, with one read and one
write port. The concurrent access trace cache (CTC) is the same fetch organiza-
tion as the STC, except that the backing instruction cache and the trace cache

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



458 • M. Co et al.

Fig. 1. STC (and CTC) model. (Patterned after figure in Rotenberg et al. [1999]).

are probed in parallel. The power model for the CTC is adjusted to reflect the
parallel trace cache and instruction cache access.

Traces may be defined in many ways. Since we use Jacobson et al. hybrid
NTP [1997], we use the definition of trace used in their work for all CTC and STC
simulations. A trace has a maximum of 16 instructions and as many as seven
branches (six internal branches, plus a possible seventh terminating branch).
Indirect branches terminate a trace. The NTP uses path history information (re-
cently committed traces) to make predictions much like a global history branch
predictor (GAs). This information is combined with trace history to index a table
that makes a prediction about the next-trace to be fetched. In our experiments,
eight previous trace identifiers are hashed together to get indexes into the 64-
K entry correlating table and into the 32-K entry secondary table. A selector
mechanism chooses the prediction from the more accurate table.

To model the power of the hybrid NTP, the correlating table, secondary table,
return history stack (RHS), and path history register are each modeled as array
structures with one read and one write port.

The outstanding trace buffer (OTB) maintains information about in-flight
traces. When an entire trace commits, the trace is written to the trace cache (if
needed) and the OTB entry is reclaimed. OTB entries also maintain informa-
tion needed to recover from mispredicted branches. The power for the OTB is
modeled as an array structure with two read ports and one write port. One read
port is shared by fetch and misprediction recovery mechanisms and one read
port is devoted to the commit time mechanism. The single write port is shared
between fetch and misprediction recovery mechanisms. The experiments in
Section 4 use 128 OTB entries.

3.2.2 Block-Based Trace Cache Model. The block-based trace cache
(BBTC) described by Black et al. [1999] (Figure 2) is another type of trace
cache, which represents a trace as a series of pointers to basic blocks, which
are stored in a block cache. The BBTC modeled in our experiments consists of
a trace table, which makes next-trace predictions, a block cache, which stores
basic blocks for trace construction, a rename table to maintain fetch address
renaming, and a fill unit, which controls the update of the other three compo-
nents. The trace table predicts a series of blocks to fetch using block identifier
execution history and branch history bits. These predicted blocks are fetched

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 459

Fig. 2. BBTC model patterned after [Black et al. 1999].

from the block cache and assembled to construct a trace. Blocks are allocated
to the block cache by the rename table, which maintains a mapping of fetch ad-
dresses to block identifiers. The fill unit controls the update of the trace table,
block cache, and rename table.

The trace definition in Black et al. BBTC model is different than the STC and
CTC model’s trace definition. A BBTC trace is defined to be a series of blocks
with each block being defined as a series of instructions terminated by a branch,
or a fixed user-defined maximum number of sequential instructions. There are
no other special trace termination conditions. To make the BBTC trace defini-
tion more comparable to the STC trace definition, we altered the BBTC trace
definition to terminate traces on indirect branches, as in Rotenberg’s work. Our
experiments show that this modification in the trace definition improves the
BBTC’s trace predictions and consequently improves IPC. We chose to model a
replication of four and a maximum basic block size of six instructions to match
the published best-performing BBTC.

For power modeling, the BBTC components are each modeled as array struc-
tures with one read port and one write port.

3.3 Cache Parameters

The fetch engine experiments, which contain either CTC, STC, or BBTC, also
include a noninterleaved instruction cache, which serves as backup in the case
of a trace cache miss. The fetch engine components, which were held constant,
are shown in Table V.

3.3.1 Trace Cache Parameters. Since the number of components in the
CTC, STC, and BBTC designs differ from the number of components in IC
designs, an equal-area comparison is difficult. Therefore, we examine the fetch
engines over a range of different fetch engine areas. We first evaluate the fetch
engines when the area of individual fetch engine components is unrestricted.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



460 • M. Co et al.

Table V. Parameters Held Constant for STC, CTC, and BBTC
Experiments

Component Configuration
I-cache 512 set, 64B line, two-way, LRU
Branch predictor Hybrid: 4K-entry PAg,

4K-entry GAg (12-bit history)
4k-entry GAg chooser
2k-entry, two-way set associative BTB
32-entry RAS

OTB 128 entries
NTP 64K-entry correlating table

32K-entry secondary table
128-entry RHS

Table VI. CTC/STC and IC Areas with Corresponding Fetch
Engine Areasa

Fetch Engine CTC/STC Fetch Engine
Area (KB) Area (KB) Area (KB) IC Area (KB)

980 16 100 64
996 32 164 128

1028 64 292 256
1092 128 548 512
1220 256 1060 1024
1476 512

aUsed in experiments which use default NTP and OTB components. Cache
area is included in the fetch engine area total.

This allows us to examine the theoretical potential of the various fetch engines.
Then, to consider access time, we restrict the area of each individual component
of each fetch engine to areas of 2 through 512 KB in successive simulations.

Associativities for the STC and CTC are varied in the experiments, but the
replacement policy is fixed to LRU, and the line size is fixed to the length
of one trace (16 instructions). Table VI shows the fetch engine areas used in
the experiments of Section 4. These experiments use the ideal NTP and OTB
parameters specified by Jacobson et al. [1997]. The area used for the CTC/STC
alone is listed alongside the total fetch engine area. The remaining fetch engine
area is calculated by totaling the area of the backing instruction cache, branch
predictor (including BTB), OTB, and hybrid NTP.

In the first comparison, the area of the STC is varied while the areas of the
other components are held constant (see Table V). In a second comparison, the
areas of the STC, NTP, and OTB are limited to 2 through 512 KB. Similarly,
the associativities of the BBTC are varied. Fetch engine and component areas
for BBTC with trace table and BBTC with NTP are summarized in Tables VII
and VIII.

3.3.2 Instruction Cache Parameters. In experiments that model an IC-only
fetch engine, we use a two-way set associative, two-way interleaved instruc-
tion cache with 64 byte lines, and LRU replacement. For the IC HYB BPRED
unrestricted component area experiments, the fetch engine area is comprised

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 461

Table VII. BBTC–TT Component Areas and Corresponding Fetch Engine Areas

Fetch Engine Trace Table Rename Table Block Cache
Area (KB) Area (KB) Area (KB) Area (KB)
268 32 8 128
436 64 16 256
772 128 32 512
1444 256 64 1024

Table VIII. BBTC-NTP Component Area and Corresponding Fetch Engine Areas.a

Fetch Engine Rename Table Block Cache NTP
Area (KB) Area (KB) Area (KB) Area (KB)
1746 8 128 1510
1930 16 256 1558
2250 32 512 1606
2842 64 1024 1654

aNTP area varies as size of block cache index/area varies and no trace table is included.

Table IX. Fastforward Numbers for Benchmarksa

Benchmark Input Fastforward (Insts)
164.gzip ref graphic 77.3 B
176.gcc ref expr 1.3 B
186.crafty ref 72.8 B
197.parser ref 183.8 B
252.eon ref rushmeier 36.3 B
253.perlbmk ref diffmail 13.3 B
255.vortex ref lendian3 28.3 B

aBenchmarks are fast forwarded and then warmed up for 300 M instructions before
statistics gathering.

of the area for the IC and the branch predictor, with the branch predictor area
held constant. These parameters are listed in Table V. The IC areas and the
area of the entire fetch engine are listed in Table VI.

3.4 Benchmarks

We evaluate our results using benchmarks from the SPEC CPU2000 suite. The
benchmarks are compiled and statically linked for the Alpha instruction set
using the Compaq Alpha compiler with SPEC peak settings and include all
linked libraries but no operating system or multiprogrammed behavior. Seven
integer benchmarks (gzip, gcc, crafty, parser, eon, perlbmk, and vortex) and five
floating-point benchmarks (wupwise, mesa, art, facerec, and ammp) were used
in the experiments.

Our initial experiments demonstrated little performance benefit from larger
fetch engines on the floating-point benchmarks. We suspect that this is because
they have a small text size and are highly predictable. Thus, results for floating-
point benchmarks are not shown and can be found in Co and Skadron [2003].

Simulations are fast-forwarded according to the numbers in Table IX
[Sherwood et al. 2001], then run in full-detail cycle-accurate mode (without
statistics-gathering) for 300 million instructions to train the caches—including
the L2 cache—and the branch predictor before statistics gathering is started.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



462 • M. Co et al.

Fig. 3. IPC and ED2–IC fetch engines using hybrid-branch predictor versus global perceptron
branch predictor.

This interval was found to be sufficient to yield representative results [Haskins
and Skadron 2003].

The individual results for each benchmark exhibited similar trends. There-
fore, our results are presented as the average of the benchmarks.

4. FETCH ENGINE AREA EXPLORATION

We performed a comparison of the fetch engine designs listed in Table III.
The areas listed in Tables VI, VII, and VIII were used. STC and BBTC asso-
ciativity and area were varied and the IPC and energy-delay squared (ED2)
were analyzed. We chose to examine ED2 as a metric because it considers both
power dissipation and performance and is voltage independent. Increased as-
sociativity improved the IPC for CTC, STC, and BBTC, but showed only modest
improvement in ED2. We present direct-mapped results for these fetch engines,
because it represents the worst-performing associativity and ED2. Results for
other associativities did not change the relationship between the fetch engines
studied and so are not presented for the sake of space. The results for IC fetch
engines all use a two-way associative, two-way interleaved IC.

4.1 Unrestricted Component Area

Each fetch engine was simulated using its published best branch predictor
or trace predictor configurations. First, we considered the performance of two
branch predictors in the evaluated fetch organizations: the hybrid branch pre-
dictor, which is used in the Alpha 21264, and the global perceptron branch
predictor, which is considered the best branch prediction algorithm available
today.

Figure 3 shows the IPC and ED2 of the IC fetch engines using the different
predictors. When comparing the STREAM models, we see that the fetch engine
containing the global perceptron has a 10.3–10.7% better IPC. When comparing
the CLASSIC models, the fetch engine with the global perceptron again has
an average of 11% higher IPC. This improvement in IPC is as a result of the
improved branch predictor accuracy of the global perceptron predictor. Both
CLASSIC and STREAM global perceptron fetch models show a 26–28% better
(lower) ED2. Since the IC with global perceptron fetch engines far outperform

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 463

Fig. 4. IPC and ED2–Unrestricted area fetch engines (STC, BBTC, and IC).

those with hybrid branch predictor, the remainder of our experimental results
exclude fetch engines using a hybrid branch predictor.

Figure 4 shows the IPC and ED2 of the initial fetch organizations evalu-
ated. When comparing the STC-NTP to IC STREAM GPERC, IC CLASSIC
GPERC, and BBTC TT, it is clear that there is a difference in perfor-
mance. Compared to STC NTP, IC STREAM GPERC’s IPC is 0.24% worse, IC
CLASSIC GPERC is 2.0% worse, and BBTC TT is 19% worse. We believe that
the BBTC TT’s lower IPC is because of poor trace predictions provided by the
trace table. Because of the BBTC TT’s poor performance, for the remainder
of this paper, we exclude BBTC TT results. The BBTC TT’s poor performance
result does not conflict with Black’s et al. work [1999], which uses perfect trace
prediction. However, the BBTC is still included in the branch prediction isola-
tion section.

The performance difference between STC NTP and the other fetch engines
could be the result of two factors: branch prediction accuracy and instruction
storage order in the caches.

To understand the interplay between branch prediction accuracy and in-
struction storage order, we evaluate the additional fetch engine designs listed
in Table IV. These fetch engines still contain either an IC, STC, or BBTC, but
all use the same predictor (NTP) to make predictions. For the IC, the multiple-
branch predictions provided by the NTP are consumed by the branch predictor
one at a time. We chose to use the NTP to isolate branch prediction effects,
because adapting it to work with the IC and BBTC was conceptually straight-
forward and would make comparisons to CTC and STC fetch engines simpler.
The results of these experiments are discussed in Section 4.2.

4.1.1 The Effects of Trace Construction Heuristics. Rosner et al. [2003] pre-
sented a taxonomy and evaluation of heuristics for constructing long atomic
traces for high instruction coverage. The trace construction heuristic chosen
for a trace cache has a potentially significant effect on the trace cache hit rate,
trace prediction accuracy, and overall performance and energy efficiency of the
front end.

For the STC results evaluated in the other sections of this paper, the
trace construction heuristic used has a maximum trace length (MTL) of 16,
6 maximum internal branches, and must terminate on indirect branches. We

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



464 • M. Co et al.

Fig. 5. Branch prediction tsolation (IPC and ED2)—Unrestricted area fetch engines that use NTP.

evaluated several static trace construction heuristics on the STC-based fetch
organization.

In our experiments, we explored terminating traces at backward branches,
at calls, and at both backward branches and calls together. The base trace
definition for comparison terminated traces only upon encountering an indi-
rect branch for any MTL. Because of the nature of the trace identifier used
in our STC model, we required that all traces must still terminate on indirect
branches in addition to any of the other terminating conditions evaluated. This
is reasonable since indirect branches are often difficult to predict.

For the SPECcpu2000 Integer benchmarks on an STC-based fetch design, we
varied the maximum trace length (MTL) (16–256 instructions) while holding
the associativity (four-way) and number of cache lines constant (8 K lines) to
reduce cache conflict effects. The maximum number of branches allowed within
each trace was also varied (4–64 branches).

Figure 6 shows the results for 16, 64, and 256 MTL, all normalized to results
for 16 MTL traces, which terminate only on indirect branches (16 base). Com-
pared with 16 MTL traces terminating only with indirect branches, additional
terminating conditions have varying effects, depending on the benchmark. On
average, varying these terminating conditions does not improve performance
for the integer benchmarks, with the exception of mcf. As the trace length is
increased, this effect is magnified, but again, IPC is not improved over the
16 MTL trace definition.

This result agrees with the results suggested by Rosner et al. [2003], which
suggests that techniques that are able to use dynamic information (through the
use of additional hardware to monitor dynamic behavior) yield better front-end
performance. The design space for evaluating using dynamic information in
trace construction is interesting and merits further exploration. However, this
space is large and requires the addition of extra hardware. Adding hardware
here would only increase the overhead that the trace cache fetch organizations
would need to overcome to achieve equivalent or better energy efficiency than
instruction cache-only fetch organizations. Therefore, we chose to limit our eval-
uation of trace construction heuristics to static trace construction heuristics,
which require no additional hardware.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 465

Fig. 6. IPC performance of different trace construction heuristics for different maximum trace
lengths (MTL)—16, 64, and 256 instructions. Trace construction heuristics shown: base, terminate
on backward branch, terminate on calls, and terminate on backward branches and calls. All results
are normalized to 16 MTL base trace construction heuristic results, so only points above 0% show
an improvement over base method.

4.2 Isolating Branch Prediction Effects

The different performance of the fetch engine designs in the previous section
could be because of a combination of better branch prediction and more effective
instruction storage order. To explore these two factors, we repeated the previ-
ous experiment with an additional set of fetch engine designs. Both IC and
BBTC fetch engines were altered to include an NTP as the branch prediction
mechanism.

One might think that a better approach to isolating branch prediction ef-
fects might be to probabilistically adjust the branch prediction accuracy of
the respective branch/trace predictors in each fetch engine. The rationale for
probabilistically altering branch predictions to make the prediction accuracy
equal across fetch engines is to eliminate possible negative interactions be-
tween predictor and cache. However, probabilistic boosting of branch predic-
tion accuracy assumes that all branches in a program are of equal weight and
of equal predictability. This is not true. It is known that mispredictions are
often clustered together. Therefore, we choose to isolate the effects of differing
quality branch/trace predictors by supplying each type of cache with an NTP.
We choose the NTP because the STC requires multiple branch predictions,

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



466 • M. Co et al.

which are not easily provided by the branch predictors we use in our experi-
ments. Our goal is to evaluate the differences in instruction storage order (IC,
STC, and BBTC). We feel that using the NTP with each of the caches is a bet-
ter way to isolate the effects of different branch prediction accuracy between
predictors.

Augmenting the BBTC with an NTP improves the IPC for the BBTC. Com-
pared to STC NTP, the BBTC NTP’s IPC is 8.6% worse compared to BBTC TT’s
19% worse. IC STREAM NTP’s IPC is 1.43% worse than STC NTP, compared
to IC STREAM GPERC’s 1.95% worse. This demonstrates that branch predic-
tion plays an important role in the performance of the fetch engines. Figure 5
shows the results.

Branch prediction accuracy is the dominant factor affecting performance and
energy efficiency. This is demonstrated through our evaluation of the fetch en-
gines with the NTP. The only difference in the BBTC TT fetch organization
and the BBTC NTP fetch organization is the trace prediction mechanism. The
trace table makes poorer predictions than the NTP. Substituting the more ac-
curate NTP for the TT attains a 13% IPC improvement and a 29% improvement
in ED2. This result, combined with the similar performance of STC NTP and
IC STREAM NTP in Figure 5, demonstrate that branch prediction accuracy is
much more important than instruction storage order. To make a fair compar-
ison of fetch engine designs, equivalent branch predictors must also be used.
Otherwise, our results show that what will really be compared is the differences
in branch prediction accuracy of the branch predictors.

4.3 Restricted Component Area

Clock rates in modern processors are increasing rapidly, while wire latencies
are not scaling accordingly. As a result, the time delay to access structures
is becoming a serious obstacle. To account for access time considerations, we
performed an experiment where the area of each component of each fetch en-
gine was limited to fixed-area budgets ranging from 2 to 512 KB. We perform
this experiment with all fetch engines, using direct-mapped structures, where
applicable. For example, for BBTC simulations, the area of each of the BBTC
components (trace table, rename table, block cache), backing instruction cache,
and branch predictor was limited to a fixed area.

4.3.1 Performance Evaluation. Figures 7 and 8 show that at 32 KB and
larger component areas, the STC NTP achieves up to 5% higher IPC than
IC CLASSIC GPERC. The STC NTP does not do as well at component ar-
eas smaller than 32 KB, because of the NTP’s poor performance with tight
area limitations. The IC NTP fetch organizations do not start to outperform
IC CLASSIC GPERC until much higher component areas. The effect of in-
creasing leakage is discussed in the following section.

4.3.2 Leakage Effects. Total power dissipation as a result of chip leakage
is projected to exceed total dynamic power as feature sizes reach 65 nm [SIA
2001]. To ensure that we consider the energy efficiency of CTCs, STCs, and
ICs both now, and in future process technologies, we examined the results of

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 467

Fig. 7. IPC and ED2 for equal area fetch components: (a) by maximum component area and (b) by
total fetch engine area.

varying the leakage ratio from 10 to 50% of maximum power dissipation. Since
leakage effects did not affect the IPC in our results, we do not present IPC
results for other leakage ratios in this section.

We found that when component areas are restricted to account for access la-
tency, and a uniform temperature is assumed, increased leakage ratio has little
effect on the relative energy efficiency of the evaluated fetch engine designs. In
other words, the energy efficiency relationship between the fetch designs does
not change. The increasing leakage ratio acts only as a vertical offset. This is
because of the fact that the components for the respective fetch organizations
are relatively equal in size as a result of the area restriction and, since all these
structures are SRAM arrays, leakage just tracks area.

However, leakage is dependent on temperature, which, turn is dependent on
the architecture’s floorplan. To estimate these thermal effects, we calculated the
power density for the main fetch engine structures (IC, branch predictors, STC,
and NTP) using a beta version of Cacti 4.0 [Shivakumar and Jouppi 2001] that
has been updated compared to version 3.0 to include both subthreshold and gate
leakage, various ways to model SRAM, and modeling of different power modes.
A process technology of 0.13 μm is assumed. Results are shown in Figure 9. For
each fetch design, the power density calculations include only the instruction

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



468 • M. Co et al.

Fig. 8. Percentage difference of (a) IPC and (b) ED2 relative to IC CLASSIC GPERC.

Fig. 9. Power density for fetch organizations evaluated by maximum component area.

or trace cache (or both) and the prediction units. The results shown are for the
16, 128, and 512 KB component areas.

We found that for the component areas studied, the power densities of trace-
cache-based fetch engines were not more than that of a fetch unit containing
an instruction cache and global perceptron branch predictor. In fact, Figure 9
shows that the power density of the STC fetch design is always slightly lower
than IC with global perceptron. The STC power density is lower than that
of the IC because the STC’s instruction storage layout provides more useful
instructions per fetch bundle than ICs. Basically, on average, the STC will
require fewer accesses due to more efficient storage, which, in turn, results in
fewer total accesses. This indicates that the leakage ratio for STC-based fetch
designs will not increase at a higher rate than IC-based fetch designs because
of temperature effects. (Since all other hardware is held constant in the study,
we did not consider other components that might contribute to temperature.)

While estimating power density is a simplistic approach to evaluating the
thermal effects on leakage rate, it is a good indicator and a more detailed eval-
uation including floor planning and thermal management are outside of the
scope of this work. We assume that, for each size, the STC or IC components
would be placed similarly, so that neighboring functional units temperatures
would have similar effects.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 469

STC gets higher IPC than the other fetch engines starting at 32 KB com-
ponent areas, followed closely by IC STREAM GPERC, IC CLASSIC GPERC.
However, the ED2 for component areas larger than 16 KB is approximately the
same for the STC and IC GPERC fetch engines. Higher IPC is offset by more
structures to access and more power at a given area.

When the components of each fetch engine are restricted to a specific area
budget, the effect of leakage is not significant, compared to the results when
fetch engine area budget is unrestricted. Each component in each fetch engine
is no larger than a fixed area, so naturally the effect of leakage for each fetch-
engine becomes similar.

For the BBTC, the published best configuration has an 8-k entry trace ta-
ble (128 KB) and 4-k entry block cache (512 KB). The block cache (the main
component of the BBTC) may be penalized under the area restriction. This ex-
plains why the BBTC does not fare as well for the restricted component area
experiments.

5. AHEAD PIPELINED NTP

Faster clock rates lead to shorter cycle times. Shorter cycle times makes access-
ing larger structures more challenging. Our experimental results show that
branch prediction accuracy is an important factor in fetch engine performance.
Our results show that the NTP provides better branch prediction accuracy than
a hybrid branch predictor and similar branch prediction accuracy. However, at
very small component areas, the NTP performs poorly. Ahead pipelining is one
technique to enable a structure to be larger and still be able to produce output
each cycle.

Ahead pipelining initiates a prediction many cycles in advance of when it
is needed to hide access latencies. To do so, older information must be used to
generate a set of the predictions for selection. At the last moment, the most
current information is used to select the final prediction. Patt et al. [1993] eval-
uates pipelined access to a branch address cache to perform multiple-branch
prediction. Jimenez [2003], Seznec [2004], Seznec et al. [1996], and Tarjan and
Skadron [2004], evaluate ahead-pipelining single-branch predictors in order to
obtain better prediction accuracy (enable larger-branch predictor structures),
while considering the impact of delay. We apply the ahead-pipelining concept
to the NTP trace prediction mechanism and perform a set of experiments in
which we compare the performance and energy efficiency of fetch engines with
the pipelined NTP.

Ahead pipelining the NTP is a way to reduce some of the performance loss
from reduced area because of cycle-time restrictions. It allows the planning of
structures larger than can be accessed within a single cycle and yet still produce
accurate output each cycle.

Roughly 1–2 KB can be accessed within a single cycle [Jimenez et al. 2000].
If a structure can be pipelined to two stages, the structure could be made as
large as 4–8 KB. As the depth of the pipeline increases, the area for a particular
structure that can be accessed roughly quadruples [Jimenez 2003].

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



470 • M. Co et al.

Fig. 10. Sample three-stage ahead-pipelined NTP.

Figure 10 shows an example of a three-stage ahead-pipelined NTP. Several
cycles before a prediction is needed, the current trace history is used to select a
range of entries to extract from the NTP tables. Since several trace predictions
are in-flight in the NTP pipeline, this history does not include information about
the immediately preceding trace. To capture information about immediately
preceding traces, the range of entries is reduced to a single entry in the cycle
immediately before it is needed. The most recent history is hashed to select
which of the range of entries is used. This technique is similar to the technique
used by Patt et al. [1993] and Jimenez [2003], except that we apply it to next-
trace prediction, which is a form of implicit multiple-branch prediction. Trace
misprediction latency is modeled as the depth of the NTP pipelining (flushing
the NTP pipeline). However, since the backing-branch predictor is used in a
misprediction, much of the latency as a result of the NTP ahead pipelining is
used to fetch via the slow path mechanism.

We compare 1–512 KB NTP component areas, assuming that the NTP
pipeline depth must increase as the area is increased. We vary the pipeline
depth from 1 (unpipelined) to 5 and vary the range of entries chosen by the
incomplete history from 1 to 8 (see Table X).

Figure 11 shows the NTP correct trace prediction accuracy of the NTP for
varying pipeline depths and selection ranges for the 16-KB component area. (All
structures in the NTP can be no larger than 16 KB). We choose to show the NTP
trace prediction accuracy in order to demonstrate the potential for pipelining
the NTP. The bar labeled Depth 1 represents the maximum attainable NTP
prediction accuracy since it is the single-cycle trace prediction accuracy. As
the depth of the pipeline increases, if only a single entry is selected in the
early stages, the trace prediction accuracy rapidly decreases. This is because

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 471

Table X. NTP Component Areas and
Corresponding NTP Pipeline Deptha

Component
Area (KB) Pipeline Depth

1 1
2 1
4 2
8 2

16 3
32 3
64 4
128 4
256 5
512 5

aNumber of entries selected in advance is varied
at values 1, 2, 4, and 8.

Fig. 11. NTP correct trace prediction accuracy as affected by pipeline depth and number of entries
selected for final prediction.

of the use of only older history and no newer history to make the next-trace
prediction. Increasing the selection range of entries at prediction time improves
the prediction accuracy. As the number of entries selected is increased to 8, the
difference in trace prediction accuracy from the original, nonpipelined NTP
rapidly decreases. As the depth of the pipeline increases, the trace prediction
declines because of the use of more old history and less new history to make
the trace prediction.

Figure 12 compares the NTP trace prediction accuracy of comparable
pipelined NTP design points. A nonpipelined 1-KB area, NTP can be com-
pared to a progressively larger, more deeply ahead-pipelined NTP. The dark
colored section of the bar represents the trace prediction accuracy when ahead
pipelined, while the shaded area of the bar represents the trace prediction ac-
curacy if the same area structure were to be accessible within a single cycle.
These results show that the trace prediction accuracy does not suffer too much
of a penalty from being pipelined.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



472 • M. Co et al.

Fig. 12. Improvement of NTP correct trace prediction accuracy as NTP table areas increase. Labels
are of the form X Y Z, where X = NTP Area, Y = NTP Pipeline Depth, and Z = Number of entries
selected for final trace prediction.

Fig. 13. Classic (a) vs. stream fetching (b). IPC of 128 KB IC and STC fetch engines with ahead-
pipelined NTP relative to 128 KB IC with global perceptron predictor. (Triangles and squares
represent IPC when area of NTP is doubled for IC or STC fetch organizations.)

Figure 8 shows that a 32-KB STC, accessible in a single cycle, has similar
ED2 to IC CLASSIC GPERC; 32 KB is the maximum area accessible using a
three-deep pipelined NTP. Since 32 KB is not accessible in a single cycle, we
compare the performance of our 32 KB three-deep pipelined STC NTP, which
can provide one prediction per cycle to a 2-KB nonpipelined STC NTP, which
can be accessed in a single cycle. We find that a 17.2% improvement in IPC
and 29% reduction in ED2 is observed. (See Figure 13.) This suggests that
with ahead pipelining, STCs can provide significant performance benefits and
increased energy efficiency.

Figure 13 shows the IPC of IC and STC fetch engines using an ahead-
pipelined NTP. These results are compared to the IPC of a 128 KB IC with a
global perceptron predictor (IC GPERC, the global perceptron branch predictor

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 473

simulated is accessible within a single cycle). Large STC and IC (128 KB) are
used to minimize the effect of cache misses in the experiment. The horizon-
tal line represents the IPC of the 128 KB IC GPERC. Each bar in the graph
represents a fetch engine with the given area NTP. The symbol above each
bar (triangles for IC, squares for STC) represents the IPC result when dou-
bling the respective area of the NTP, but keeping the same NTP pipeline depth.
The doubled area of the NTP represents the maximum NTP area that may be
reached without needing to add an additional pipeline stage. The graphs show
that ahead pipelining the NTP dramatically increases the performance of both
the IC and STC fetch engines up to 16 KB (NTP pipeline depth 3). At 16 KB,
the STC fetch engine with CLASSIC fetching gets 2–5.5% higher IPC than the
IC GPERC and with STREAM fetching gets 1.5–5% higher IPC. The IC NTP
configuration does not outperform the IC GPERC design until the NTP is ex-
panded to 64 KB (1.3–4.8% higher IPC). This IPC gain is about the same as the
STC NTP at 16–32 KB. We believe that the lower IPC for the IC compared to
the STC with NTPs of 16 KB and smaller is as a result of instruction storage
order differences. At lower areas, the NTP has greatly reduced prediction ac-
curacy, which could be partially masked by the STC’s instruction storage order
(traces). We believe that the IC’s storage of instructions in static program order
is more sensitive to this drastically poorer misprediction rate.

The graphs also show that increasing the NTP area and NTP pipeline depth
continue to improve the IPC, but at a diminishing rate than from 1 to 32 KB.
Empirically, an NTP pipeline depth of 3 exhibits reasonable performance for any
of the fetch engines using CLASSIC fetching. As the pipeline depth increases
beyond this point, we see diminishing returns in the performance gain. We
believe this decrease in IPC is because of the fact that older history is used
to make the initial region selection from the NTP. With STREAM fetching, an
NTP pipeline depth of 4 still achieves some performance improvement.

6. CONCLUSIONS AND FUTURE WORK

We evaluate the energy efficiency of trace caches compared to instruction
caches. Our experiments show that when fetch components are not constrained
by realistic factors, such as access time and resource constraints, fetch en-
gines based on STCs are more energy efficient, while providing a significant
performance improvement over IC-only fetch engine organizations. With these
idealistic assumptions, the ED2 results show that although an STC and its sup-
porting components may occupy more chip area than an IC-only fetch engine,
the STC yields better energy efficiency overall because of better opportunities
for accessing smaller area fetch engine components and minimizing energy ex-
penditures via clock-gating techniques. These results represent the theoretical
benefit of trace caches, which stem primarily from the implicit multiple-branch
prediction of the NTP, but also from the benefit of storing instructions as traces
as opposed to static program blocks.

To further understand the source of the STC’s better energy efficiency when
no restrictions on resources and access delay are imposed, the cache designs
are evaluated when their branch predictors are normalized to use the NTP. We

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



474 • M. Co et al.

find that branch prediction accuracy plays a critical role in the performance
of all of the fetch engines. For BBTC, we find that replacing the TT with the
NTP achieves a 13% improvement in IPC and 29% improvement in ED2. This
result emphasizes the continuing importance of research to improve branch
prediction accuracy.

However, when considering the impact of access delay by limiting the area
of the fetch engine structures, we find that the benefit of STC fetch engines
compared to IC fetch engines is more modest than when delay is not considered.
This is because the NTP and STC are not as effective at smaller areas. When
component area is limited to 32 KB or less, IC fetch organizations have much
better IPC and ED2. However, at larger component areas, the better branch
prediction capability of the NTP and more efficient instruction delivery of the
STC attain only modestly better IPC and ED2 than the IC fetch organizations.

To address the effect of increasing access delay on STCs, we introduce and
evaluate an ahead-pipelined NTP. When comparing to a single-cycle accessible,
non-pipelined, 2-KB STC NTP, a two-deep pipelined 32-KB STC NTP can pro-
vide a 17.2% IPC improvement and 28.9% ED2 improvement. Our experiments
show that ahead-pipelining the NTP to four stages (allowing 64 KB of area) al-
lows the IC CLASSIC NTP to get 1.3–4.8% higher IPC than an IC, with 4-KB
global perceptron predictor. The STC NTP fetch engine achieves similar IPC
improvement at an NTP pipeline depth of 3.

Future directions for this work include exploring the energy efficiency of
other fetch engine designs and incorporating the dynamic prediction-directed
trace cache [Hu et al. 2003] and filter trace-cache [Tang et al. 2001] models.
Our results also suggest that the large design space for trace-construction and
trace-prediction techniques is a fertile area for future work.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Foundation under grant
nos. CCR-0133634 and EIA-0224434, and a grant from Intel MRL. We would
also like to thank Eric Rotenberg and Jason D. Hiser for their helpful input.

REFERENCES

BAHAR, R. I., ALBERA, G., AND MANNE, S. 1998. Power and performance tradeoffs using various
caching strategies. In Proceedings of the 1998 International Symposium on Low Power Electronics
and Design. ACM Press, New York. 64–69.

BLACK, B., RYCHLIK, B., AND SHEN, J. 1999. The block-based trace cache. In Proceedings of the
26th Annual International Symposium on Computer Architecture. IEEE Computer Society Press,
Washington, DC. 196–207.

BOSE, P., BROOKS, D., BUYUKTOSUNOGLU, A., COOK, P., DAS, K., EMMA, P., GSCHWIND, M., JACOBSON,
H., KARKHANIS, T., KUDVA, P., SCHUSTER, S., SMITH, J., SRINIVASAN, V., ZYUBAN, V., ALBONESI, D., AND

DWARKADAS, S. 2002. Early-stage definition of lpx: A low power issue-execute processor. In
Proceedings of the Workshop on Power-Aware Computer Systems held in conjunction with HPCA-
8. Cambridge, MA.

BROOKS, D., TIWARI, V., AND MARTONOSI, M. 2000. Wattch: A framework for architectural-level
power analysis and optimizations. In Proceedings of the 27th Annual International Symposium
on Computer Architecture. 83–94.

BURGER, D. C. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, version 2.0. Computer Architec-
ture News 25, 3 (June), 13–25.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



Evaluating Trace Cache Energy Efficiency • 475

CO, M. AND SKADRON, K. 2003. Evaluating the energy efficiency of trace caches. Tech. Rep. CS-
2003-19, University of Virginia, Department of Computer Science.

CONTE, T., MENEZES, K., MILLS, P., AND PATEL, B. 1996. Optimization of instruction fetch mech-
anisms for high issue rates. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture. 333–344.

DUTTA, S. AND FRANKLIN, M. 1995. Control flow prediction with tree-like subgraphs for superscalar
processors. In Proceedings of the 28th Annual International Symposium on Microarchitecture.
258–263.

FAHS, B., BOSE, S., CRUM, M., SLECHTA, B., SPADINI, F., TUNG, T., PATEL, S. J., AND LUMETTA, S. S. 2001.
Performance characterization of a hardware mechanism for dynamic optimization. In MICRO34.
IEEE Computer Society, Washington, DC. 16–27.

FRIENDLY, D., PATEL, S., AND PATT, Y. 1997. Alternative fetch and issue policies for the trace cache
fetch mechanism. In Proceedings of the 30th Annual International Symposium on Microarchitec-
ture. 24–33.

HASKINS, J. W., JR. AND SKADRON, K. 2003. Memory reference reuse latency: Accelerated sampled
microarchitecture simulation. In Proceedings of the 2003 IEEE International Symposium on
Performance Analysis of Systems and Software. 195–203.

HU, J., VIJAYKRISHNAN, N., IRWIN, M. J., AND KANDEMIR, M. 2003. Using dynamic branch behav-
ior for power-efficient instruction fetch. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2003).

HU, J., VIJAYKRISHNAN, N., KANDEMIR, M., AND IRWIN, M. J. 2002. Power-efficient trace caches. In
Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE
’02).

ITRS 2001. International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/
2001ITRS/Home.htm.

JACOBSON, Q., ROTENBERG, E., AND SMITH, J. E. 1997. Path-based next-trace prediction. In Proceed-
ings of the 30th Annual International Symposium on Microarchitecture. 14–23.

JIMENEZ, D. 2003. Reconsidering complex branch predictors. In In Proceedings of the 9th Inter-
national Symposium on High Performance Computer Architecture. 43–52.

JIMENEZ, D. A., KECKLER, S. W., AND LIN, C. 2000. The impact of delay on the design of branch
predictors. In Proceedings of the 33rd Annual ACM/IEEE International Symposium on Microar-
chitecture. ACM Press, New York. 67–76.

JOHNSON, J. 1994. Expansion caches for superscalar processors. Tech. Rep. CSL-TR-94-630, Com-
puter Science Laboratory, Stanford University.

KIM, N., FLAUTNER, K., BLAAUW, D., AND MUDGE, T. 2002. Drowsy instruction caches: Leakage
power reduction using dynamic voltage scaling and cache sub-bank prediction. In Proceedings
of the 35th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer
Society Press, Washington, DC. 219–230.

OBEROI, P. AND SOHI, G. 2003. Parallelism in the front-end. In Proceedings of the 30th
Annual International Symposium on Computer Architecture. ACM Press, New York. 230–
240.

PARIKH, D., SKADRON, K., ZHANG, Y., BARCELLA, M., AND STAN, M. 2002. Power issues related to
branch prediction. In Proceedings of the Eighth International Symposium on High-Performance
Computer Architecture. 233–244.

PATT, Y., YEH, T.-Y., AND MARR, D. 1993. Increasing the instruction fetch rate via multiple branch
prediction and a branch address cache. In Proceedings of the 7th International Conference on
Supercomputing. 67–76.

PELEG, A. AND WEISER, U. 1995. Dynamic flow instruction cache memory organized
around trace segments independent of virtual address line. US. Patent Number 5, 381,
533.

RAMIREZ, A., SANTANA, O., LARRIBA-PEY, J., AND VALERO, M. 2002. Fetching instruction streams.
In Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchitecture.
IEEE Computer Society Press, Washington, DC. 371–382.

REINMAN, G., AUSTIN, T., AND CALDER, B. 1999. A scalable front-end architecture for fast instruction
delivery. In Proceedings of the 26th Annual International Symposium on Computer Architecture.
IEEE Computer Society. 234–245.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.



476 • M. Co et al.

ROSNER, R., MOFFIE, M., SAZEIDES, Y., AND RONEN, R. 2003. Selecting long atomic traces for high
coverage. In Proceedings of the 2002 International Conference on Supercomputing. ACM Press,
New York, NY. 2–11.

ROSNER, R., ALMOG, Y., MOFFIE, M., SCHWARTZ, N., AND MENDELSON, A. 2004. Power aware-
ness through selective dynamically optimized traces. In Proceedings of the 31th Annual
International Symposium on Computer Architecture. IEEE Computer Society, Washington, DC.
162.

ROTENBERG, E., BENNETT, S., AND SMITH, J. 1996a. Trace cache: A low latency approach to high
bandwidth instruction fetching. Tech. Rep. 1310, Cs Dept. University of Wisconsin, Madison.

ROTENBERG, E., BENNETT, S., AND SMITH, J. 1996b. Trace cache: A low latency approach to high
bandwidth instruction fetching. In Proceedings of the 29th Annual IEEE/ACM International
Symposium on Microarchitecture. 24–35.

ROTENBERG, E., JACOBSON, Q., SAZEIDES, Y., AND SMITH, J. 1997. Trace processors. In Proceedings of
the 30th Annual International Symposium on Microarchitecture. 138–148.

ROTENBERG, E., BENNETT, S., AND SMITH, J. E. 1999. A trace cache microarchitecture and evaluation.
IEEE Transactions on Computers 48, 2, 111–120.

SEZNEC, A. 2004. Revisiting the Perceptron Predictor. Tech. Rep. 1620, IRISA.
SEZNEC, A., JOURDAN, S., SAINRAT, P., AND MICHAUD, P. 1996. Multiple block ahead branch predictors.

In Proceedings of the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems.

SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find pe-
riodic behavior and simulation points in applications. In Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques.

SHIVAKUMAR, P. AND JOUPPI, N. P. 2001. Cacti 3.0: An integrated cache timing, power, and area
model. Tech. Rep. WRL-TR-2001/2.

SKADRON, K., STAN, M. R., HUANG, W., VELUSAMY, S., SANKARANARAYANAN, K., AND TARJAN, D. 2003.
Temperature-aware microarchitecture. In Proceedings of the 30th Annual International Sympo-
sium on Computer Architecture. 2–13.

SOLOMON, B., MENDELSON, A., ORENSTEIN, D., ALMOG, Y., AND RONEN, R. 2001. Micro-operation cache:
A power aware frontend for the variable instruction length isa. In Proceedings of the 2001 Inter-
national Symposium on Low Power Electronics and Design. ACM Press, New York. 4–9.

TANG, W., GUPTA, R., AND NICOLAU, A. 2001. Design of a predictive filter cache for energy savings
in high performance processor architectures. In Proceedings of the 2001 International Conference
on Computer Design. 68–73.

TARJAN, D. AND SKADRON, K. 2004. Revisiting the perceptron predictor again. Tech. Rep. CS-2004-
28, University of Virginia, Department of Computer Science.

TARJAN, D., SKADRON, K., AND STAN, M. 2004. An ahead pipelined alloyed perceptron with single
cycle access time. In Proceedings of the 5th Workshop on Complexity-Effective Design.

YEH, T.-Y. AND PATT, Y. N. 1992. A comprehensive instruction fetch mechanism for a processor
supporting speculative execution. In Proceedings of the 25th Annual International Symposium
on Microarchitecture. IEEE Computer Society Press, Washington, DC. 129–139.

ZHANG, Y. AND YANG, J. 2003. Low cost instruction cache designs for tag comparison elimination.
In Proceedings of the 2003 International Symposium on Low Power Electronics and Design. ACM
Press, New York. 266–269.

ZYUBAN, V. AND STRENSKI, P. 2002. Unified methodology for resolving power-performance tradeoffs
at the microarchitectural and circuit levels. In Proceedings of the 2002 International Symposium
on Low Power Eelctronics and Design. ACM Press, New York. 166–171.

Received December 2004; revised February 2006; accepted June 2006

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 4, December 2006.


