
A Break-Even Formulation for Evaluating Branch Predictor Energy

Efficiency

Michele Co, Dee A.B. Weikle, and Kevin Skadron

Department of Computer Science

University of Virginia

Abstract

Recent work has demonstrated that a better branch pre-

dictor can increase the energy-efficiency of the system,

even if the new predictor consumes more energy. Conse-

quently, understanding the tradeoff between reduced mis-

speculation, execution time, and increased power spent

within a branch predictor is critical.

This paper proposes a simple, effective metric for eval-

uating the tradeoff between processor energy-efficiency

and branch predictor energy. By calculating a break-even

branch predictor energy budget for a given program and

an energy-efficiency target, we are able to evaluate the

energy-efficiency of several existing branch predictor de-

signs and provide a simple way to think about energy-

efficiency.

Furthermore, we develop a method for deriving a

branch predictor energy budget without requiring a power

model for the proposed branch predictor. We evaluate this

approach by comparing the budgets we calculate with re-

sults from simulation. Average error in our estimates is

less than 1.5% for all pipeline configurations with a confi-

dence of ±0.02 to ±0.06 Joules (1.7%-2.1%) for the inte-

ger benchmarks and ±0.01 to ±0.02 Joules (1.1%-1.7%)

for the floating point benchmarks for the evaluated con-

figurations.

1 Introduction

The computer engineering community has focused a

great deal of attention in recent years on energy-efficiency.

This is important for almost all new chip designs today.

Battery life is a concern for mobile devices, and even

for systems running off wall power, utility costs are a

concern–especially for large data centers.

Recent work by Parikh et al. [14] explored the energy-

efficiency of branch predictors, and generally concluded

that the better the predictor, the better the chip’s energy-

efficiency, since better prediction reduces mis-speculated

work and execution time, and hence reduces activity

throughout the CPU. This means that spending more

power in the predictor can still reduce power and improve

energy-efficiency. Parikh et al. [14] and other subsequent

work [1, 3] have looked at ways to reduce power in the

branch predictor.

We are not aware of any work that establishes a gen-

eral framework for when a new branch predictor design

is energy-efficient. Recent innovations in branch predic-

tion that consume more power per prediction, coupled

with continuing concerns about energy-efficiency, make

a break-even analysis valuable. This is especially impor-

tant for the very large predictors that have been proposed

in recent years. For example, the piecewise-linear branch

predictor proposed by Jimenez et al. [11] only confers

significant benefits above 32 KB, consuming from 1% -

11% of total chip power. A number of other recent pre-

dictors could consume non-trivial amounts of power as

well [9, 16, 19]. The contribution to total chip power of

a few predictor organizations for four different pipeline

configurations is categorized in Figure 1 (See Section 3

for details on processor configurations). These power es-

timates are based on Wattch [4] simulations.

This paper derives a simple metric for the break-even

energy efficiency of a branch predictor. It captures the

tradeoff between reduced mis-speculation and execution

time, and increased power in the branch predictor. The

metric is based on the ED2 metric [20] that has become

popular because it is voltage independent. This technique

gives the designer a way to predict how much energy is

available to spend on a new branch predictor design rel-

ative to an existing processor design for a given perfor-

mance of a particular program. This method for deriving

break-even branch predictor energy budget can be used

with or without a power model for the new design.

In this paper we:

• evaluate several existing branch predictor designs for

energy-efficiency using our technique (1KB bimodal

branch predictor as reference)

• observe that in general, for a single program, the

power of the remainder of the processor excluding

branch predictor is relatively constant regardless of

branch predictor used

• demonstrate how to determine a break-even budget

1



Figure 1: Branch predictor power as percent of total chip power in various processor configurations. (See Section 3.1

for configuration details.)

for a new design without a power model by estimat-

ing the new non-branch predictor energy and exam-

ine the validity of this estimation

• evaluate the independence of pipeline width, cache

size, and leakage on the energy-efficiency trends be-

tween existing branch predictor designs

• show an approximate bound on branch predictor en-

ergy budget and on benefit that can be obtained

through perfect branch prediction

This paper shows that pipeline width and cache size af-

fect the energy budget of a predictor, but do not affect the

relative performance of the branch predictors evaluated.

It also shows that many branch predictors, including path

perceptron and hybrid global/local predictors, use only

a fraction of the energy they could to maintain energy-

efficiency when compared to a 1 KB bimodal branch pre-

dictor reference. In some cases, the branch predictor uses

only 8.4% of its energy budget.

We believe that our technique is general enough to ap-

ply to other processor structures as long as the assumption

of constant energy per cycle for the remainder of the pro-

cessor is adjusted to accurately describe the relationship

of that structure’s behavior within the processor.

The rest of the paper is organized as follows: Section 2

presents an explanation of our energy-efficiency evalua-

tion technique, Section 3 presents experimental methodol-

ogy, Section 4 presents current experimental results, Sec-

tion 5 presents related work, and Section 6 presents con-

clusions and directions for future work.

2 Derivation of Break-Even Formula

This section describes the reasoning behind the tech-

nique for calculating the energy budget for a branch pre-

dictor design given a specific program, a reference proces-

sor configuration, and a reference branch predictor. The

goal is two-fold. First, we want to determine if a new

branch predictor is at least as successful as a previously

designed predictor in terms of speed and power consump-

tion. Second, we would like to determine an upper bound

on the the benefits of a new branch predictor - specifically

whether there is a sufficient benefit available to warrant

further work toward an even better predictor.

2.1 Derivation of Energy Budget Formula

Assume for a program P , that the total energy of a pro-

cessor (Etotal) can be described as the sum of the energy

of the branch predictor (Ebpred) plus the energy of the re-

mainder of the processor (Eremainder):

Etotal = Ebpred + Eremainder (1)

Given a reference processor configuration, Configref ,

and a new processor configuration, Confignew,1 we

would like to have the same or better ED2 for Confignew

1Confignew differs from Configref by only the branch predictor

design

2



when compared to Configref . We define this goal, the

break-even point, based on the ED2 metric to be:

Etotal new × D
2
total new = Etotal ref × D

2
total ref (2)

where Etotal new is the total energy for running pro-

gram P on Confignew and Dtotal new is the total new

delay (execution time). While Etotal ref is the total en-

ergy for running the same program P on Configref , and

Dtotal ref is the total reference delay (execution time).

Expanding and rearranging (2) using (1), we obtain:

(Eremainder new + Ebpred budget) × D
2
total new

(Eremainder ref + Ebpred ref ) × D
2
total ref

= 1 (3)

Epredicted remainder new is the predicted energy that

Confignew will consume not including the branch pre-

dictor energy. Ebpred budget is the amount of energy

that the new branch predictor may consume and still

maintain the same ED2 as Configref . Ebpred ref and

Eremainder ref are the energy for the branch predic-

tor of Configref and the energy for the remainder of

Configref (not including branch predictor energy), re-

spectively. Dtotal ref is the delay or total execution time

(in seconds) of running program P on Configref .

We would like to know how much energy the new

branch predictor is allowed to consume given a particular

ED2. Therefore, we solve for Ebpred budget. Rearranging

the terms of (3) yields:

Ebpred budget =
(Eremainder ref +Ebpred ref )×D2

total ref

D2

total new

− Eremainder new

(4)

All of the energy and delay values for the reference

processor (Eremainder ref , Ebpred ref , and Dtotal ref )

can be obtained from cycle-accurate simulation, or if

available, from actual hardware measurement paired with

the use of performance counters. The total execution

time of Confignew, Dtotal new, is gathered from cycle-

accurate simulation. The energy for Confignew not in-

cluding the branch predictor, Eremainder new , may be ob-

tained from simulation results as described in Section 4.1

or may be estimated as described in Section 4.2. The

branch predictor energy budget, Ebpred budget, is calcu-

lated from Equation (4).

The intent behind the derivation of this formula is to

make explicit the tradeoffs designers make between per-

formance and power consumption involved in branch pre-

diction. This formula breaks the branch prediction budget

down into individual components that can be filled in with

the most accurate information the designer has on hand.

In some cases, it may allow quick calculations based on

simple simulations or even estimated prediction rates to

determine if a particular approach is worth pursuing fur-

ther.

3 Experimental Methodology

All experiments in this work use SimpleScalar [5] and

a modified Wattch [4] infrastructure with a power model

based on the 0.13µ Alpha 21364 [18]. The microarchitec-

ture model is summarized in Table 1.

To model leakage, when a port or unit is not in use,

a fixed ratio of maximum power dissipation is charged:

10% in most of our experiments.

3.1 Parameters

In our experiments, we evaluate variations of three fac-

tors in processor design:

• pipeline width: 4-wide issue (narrow) and 16-wide

issue (wide)

• L1 and D1 cache sizes: 16KB (small) and 256KB

(big)

• leakage ratio: 10% and 50%

We chose these parameters as a starting point for our

study. In terms of pipeline width, we chose a pipeline

that is 4-wide to consider today’s processors and a 16-

wide to look forward to more aggressive processor issue

widths. For caches, we chose a very small cache and a

cache more representative of what might be seen in cur-

rent processors. In addition, we modeled leakage ratios of

10% to reflect current technology and 50% leakage ratio

to look forward to the future process technology trends.

3.2 Branch Predictors Evaluated

The specific details of the branch predictor designs

evaluated are listed in Table 2. We evaluate variations

on path perceptron [19], gshare [13], hybrid [6, 12],

O-GEHL [15], and piecewise linear [10] predictors. The

same size BTB (2k-entry, 2-way set associative) and RAS

(32-entry) are used for all branch predictors. We use the

bimodal predictor as the reference model for all of the cal-

culations described in Section 2.

3.3 Benchmarks

We evaluate our results using the integer and floating

point benchmarks from the SPEC CPU2000 suite. The

benchmarks are compiled and statically linked for the Al-

pha instruction set using the Compaq Alpha compiler with

SPEC peak settings and include all linked libraries but no

operating-system or multiprogrammed behavior.

Simulations are fast-forwarded according to Sherwood

and Calder’s SimPoint numbers [17], then run in full-

detail cycle-accurate mode (without statistics-gathering)

3



Processor Core

Active List 128 entries

Physical registers 80

LSQ 128 entries

Issue width wide: 16 instructions per cycle

narrow: 4 instructions per cycle

Functional Units wide: 16 IntALU,4 IntMult/Div, 8 FPALU,4 FPMult/Div, 2 mem ports

narrow: 4 IntALU,1 IntMult/Div, 2 FPALU,1 FPMult/Div, 2 mem

ports

Memory Hierarchy

IL1 & DL1 small: 16KB, 64-byte line, 2-way set associative, LRU

big: 256KB, 64-byte line, 2-way set associative, LRU

L2 Unified Cache, 4 MB, 8-way LRU,

128B blocks, 12-cycle latency, writeback

Memory 225 cycles (75ns)

TLB Size 128-entry, fully assoc.,

30-cycle miss penalty

Branch Predictor

BTB 2 K-entry, 2-way

RAS 32-entry

Table 1: Simulated processor microarchitecture.

Name Area Description

bimodal 1KB 4k-entry, 2-bit counters

path perceptron 10KB 64-bit global history register

10 1KB tables

10 bits of history per table

gshare 2KB 13-bit history, 8k-entry

gshare 4KB 14-bit history, 16k-entry

gshare 8KB 15-bit history, 32k-entry

hybrid 2KB 2k-entry meta, 2k-entry bimodal, 4k-entry 2lev

hybrid 4KB 4k-entry meta, 4k-entry bimodal, 8k-entry 2lev

hybrid 8KB 8k-entry meta, 8k-entry bimodal, 16k-entry 2lev

O-GEHL 8KB 6, 2k-entry, 4-bit tables

1k-entry, 5-bit counter table

2k-entry, 5-bit counter table

1k-entry, 1-bit tag table

48-bit global history register

48-entry, 8-bit global address register

piecewise linear 8KB weight table: 8590-entry 7-bit counters

bias table: 599-entry 7-bit counters

global path history: 48 8-bit addresses

48-bit global history register

local history table: 55 16-bit shift registers

piecewise linear 32KB weight table: 34360-entry 7-bit counters

bias table: 3496-entry 7-bit counters

global path history: 26 8-bit addresses

26-bit global history register

local history table: 220 16-bit shift registers

Table 2: Branch predictors evaluated

4



for 300 million instructions to train the processor struc-

tures –including the L2 cache—and the branch predictor

before statistics gathering is started. This interval was

found to be sufficient to yield representative results [8].

4 Results

The following sections describe the results of com-

paring the break-even branch predictor budgets of sev-

eral current branch predictor designs with their actual

energy consumption. Section 4.1 shows how budgets

are calculated using cycle-accurate simulated values for

Eremainder new . Section 4.2 then explains how to esti-

mate Eremainder new and validates this estimate by com-

paring it to the simulated results. Section 4.3 describes an

upper bound for branch predictor budgets based on perfect

branch prediction. Section 4.4 then shows how changing

the leakage ratio to 50% affects the results.

4.1 Branch Predictor Budgets from Simulation

Ebpred budget can be calculated using Eremainder new

gathered from cycle-accurate simulation. Figure 2 shows

the calculated Ebpred budget values for each benchmark

for each processor configuration. The actual values of

the results differ based on processor configuration, but the

overall relationship between the branch predictors eval-

uated is the same. Both the path perceptron and the

O-GEHL predictor have a higher branch predictor energy

budget on average than the other branch predictors eval-

uated. This indicates that both the path perceptron’s and

O-GEHL’s prediction accuracy are much higher than the

other predictors evaluated and the increased prediction ac-

curacy boosts the energy budget available to be spent on

their implementation and still satisfy the break-even point.

For all the graphs, the gshare.2KB predictor often dis-

plays negative branch predictor energy budget values. A

negative budget on a particular benchmark indicates that

the branch predictor’s performance does not improve the

overall processor performance sufficiently to recoup the

energy expended in the predictor itself. In other words,

even if the branch predictor were to consume zero en-

ergy, the branch predictor would not be able to fulfill the

ED2 break-even point and the reference predictor would

be a better choice. On these specific benchmarks this is

because the 2KB area causes destructive aliasing which

cripples the gshare predictor’s accuracy.

Figure 3 shows the percent of the calculated branch

predictor energy budget consumed by the evaluated

branch predictors. Any predictor that uses less than

100% on a particular benchmark is worth considering

for that benchmark. Branch predictors which use less

than 100% of their energy budget are providing additional

energy-efficiency beyond the break-even point. On aver-

age the trends of the branch predictor energy consumption

amongst the benchmarks are the same. Several bench-

marks exhibit consumption in excess of the budget for

one or more predictors, some in excess of 300%. For all

these benchmarks, the particular branch predictor was un-

able to come close to the break-even ED2 point. More

specifically, branch predictors which exhibit greater than

300% energy budget consumption can not fulfill the en-

ergy break-even point, and often have negative branch

predictor budgets, which we represent in our graphs as in-

finitely large numbers above the 300% demarcation line.

The trend evident in the per benchmark graph of Fig-

ure 3 is still maintained when the average of the bench-

marks is calculated as in Figure 4 which summarizes the

overall results for both integer and floating point bench-

marks. Once the average is plotted per predictor, though,

it is clear that it is the gshare.2KB predictor that is not

a benefit to power consumption when all benchmarks are

considered. Note that on the floating point benchmarks

few examples exist of predictors exceeding their budget.

This is because the floating point benchmarks are very

predictable, enabling even simple predictors to obtain a

maximum benefit.

At this point one may ask why not just simulate the

entire configuration and determine which predictors de-

liver better performance with less energy consumption. In

the next section, we show an example of estimating one

of the simulated components of the equation. We believe

that this formula enables us to understand better and more

quickly not only the benefits of a particular predictor, but

the potential benefits of additional improvements as well.

4.2 Branch Predictor Energy Budgets without
an Existing Power Model

It is desirable to estimate Epredicted remainder new

when there is no pre-existing power model readily avail-

able for the candidate branch predictor.

If and only if it can be assumed that the average energy

per cycle used by the non-predictor portion of the refer-

ence design is equal to the average energy per cycle of the

non-predictor portion of the new design while running the

same program, then2:

Eremainder ref

Dtotal ref

=

Epredicted remainder new

Dtotal new

(5)

Solving for Epredicted remainder new :

Epredicted remainder new =

Eremainder ref × Dtotal new

Dtotal ref

(6)

Equation (6) will then allow a designer to solve for

Ebpred budget, which is the value of interest. Substitute

2The accuracy of this assumption is explored in Section 4.2

5



(a) (b)

(c) (d)

Figure 2: Calculated branch predictor energy budget (Ebpred budget) for processor configurations. Note that in some

cases that the energy budget is negative. This indicates that even at zero branch predictor energy consumption, the new

predictor’s performance is insufficient to recoup the energy (in excess of the reference predictor’s energy) expended in

the predictor itself.

(6) into (4):

Ebpred budget = Total energy budget for Confignew
︷ ︸︸ ︷

(Eremainder ref + Ebpred ref ) × D2

total ref

D2

total new

−

Eremainder ref × Dtotal new

Dtotal ref
︸ ︷︷ ︸

Eremainder new

(7)

Note that Equation (7) is simply an expanded version

of Equation (1).

Figure 5 (a) shows the estimated

Epredicted remainder new for the SPECint2000

benchmarks run on a processor configuration with a

narrow pipeline and big caches. Figure 6 shows the

raw Epredicted remainder OGEHL.8KB and

Eactual remainder OGEHL.8KB results overlaid for the 8

KB O-GEHL predictor for both integer and floating point

benchmarks. Notice that there is little difference between

the remainder energy predicted when compared to the

remainder energy gathered from simulation data. We

display the 8 KB O-GEHL predictor results because our

technique exhibits the largest absolute difference on it of

all the branch predictors evaluated. Raw results for the

other processor configurations included in the study were

similar in trend, so are omitted due to space constraints.

Figure 7 shows the absolute percent difference between

Epredicted remainder new and Eactual remainder new for

the four main processor configurations evaluated. The

range of error is at most 11% and on average less than

1.5% for all benchmarks and for all processor configura-

tions. Figure 8 summarizes the average percent deviation

of Epredicted remainder new from Eactual remainder new

for each of the configurations and clearly shows that the

standard deviation from Eactual remainder new for both

integer and floating point benchmarks is very small. The

6



(a) (b)

Figure 3: Percent of branch predictor energy budget (Ebpred budget) actually consumed by branch predictor as mea-

sured by simulation for narrow pipeline with big caches processor configuration: (a) integer benchmarks, (b) float-

ing point benchmarks. Note that lower values indicate branch predictor energy consumption lower than (better)

Ebpred budget and higher values indicate energy consumption greater than Ebpred budget (worse). Note that branch

predictor energy budget percentages below 100% line perform better than the energy break-even point. Configurations

with negative branch predictor energy budgets are manually set to exceed the 300% threshold.

(a) (b)

Figure 4: Percent of aggregate Ebpred budget consumed by new branch predictor. This is the ratio between the total

Ebpred actual across the entire workload and the total Ebpred budget across the entire workload

error bars on the graph show ± 1 standard deviation.

The closeness of our estimated

Epredicted remainder new to Eactual remainder new

shows that the assumption made in Equation (5) is

relatively accurate. Since the expectation is that the same

amount of work is being performed in each case

(executing a particular benchmark or program), one

might think that the processor configuration with the

shorter execution time would use a greater energy per

cycle at the break-even point. The configuration with the

slower execution time is actually carrying out additional

work to recover from mis-speculation, rather than

performing useful work. Since this estimate of the

Eremainder new is fairly accurate, we believe it is

possible to determine a branch predictor energy budget

without actually having a power model for the branch

predictor. Section 4.4 shows that with increasing leakage

ratio, our estimate only becomes more accurate.

4.3 Estimating an Upper Bound for Branch Pre-
dictor Energy Budgets

It would be interesting to evaluate the limits of branch

predictor energy budgets. The best possible branch pre-

dictor energy budget comes from ideal or perfect branch

prediction. We performed an experiment using an ap-

7



(a) (b)

Figure 5: (a) predicted energy of remainder of Confignew, Epredicted remainder new and (b) actual/simulated energy

of remainder Eactual remainder new .

(a) (b)

Figure 6: OGEHL.8KB Eactual remainder vs. Epred remainder (a) integer and (b) floating point benchmarks.

proximated perfect branch prediction technique in which

branch mispredictions are detected in the decode stage

and then corrected. Misfetches are not avoidable with

this technique. However, this method gives us an idea of

where the upper bound of branch predictor energy budgets

lies.

Figure 11 shows the results of our experiment for both

integer and floating point benchmarks. Since the integer

benchmarks are less predictable, the Ebpred budget with

our pseudo-perfect technique is clearly greater (better)

than that of the other predictors in our evaluation, with

O-GEHL and piecewise linear branch predictors coming

very close on eon. For the floating point benchmarks, one

might be puzzled that the perfect prediction Ebpred budget

is not the highest budget number on average, but rather O-

GEHL and piecewise linear branch predictors have simi-

lar or higher budgets, especially for art. Both eon and art

are benchmarks in which our pseudo-perfect prediction

technique fails due to high numbers of instruction mis-

fetches. For example, on eon our pseudo-perfect branch

prediction technique misfetches 20 instructions per 1k in-

structions, and 8.6 instructions per 1k instructions for art.

This is much higher than both O-GEHL’s and piecewise

linear branch predictors’ misfetch rates which are effec-

tively zero (0.05-0.08 misfetches per 1k instructions).

The graph shows that there is still some benefit to be

gained by improving branch prediction accuracy and gives

us an approximate idea of where this upper bound lies.

4.4 Leakage Effects

All of the previous experiments were run using a value

of 10% for leakage. To see the effects of leakage values

more in line with future processor technology, we ran se-

lected experiments using a 50% leakage ratio.

Figure 9 shows that the general trend for the branch

8



(a) (b)

(c) (d)

Figure 7: Absolute Value of Percent Difference between Epredicted remainder new and Eactual remainder new for (a)

narrow pipeline with small caches, (b) narrow pipeline with big caches, (c) wide pipeline with small caches, (d) wide

pipeline with big caches.

(a) (b)

Figure 8: Average deviation of Epredicted remainder new from Eactual remainder new for 10% leakage ratio: (a)

integer and (b) floating point benchmarks. Error bars illustrate ± 1 standard deviation.

9



Figure 9: 50% Leakage Ratio: Ebpred budget new for narrow pipelines, big caches for integer benchmarks. Note that

although the magnitude of the graph is amplified, the general shape of the graph is very similar to the shape of the

graph in Figure 2(b).

(a) (b)

Figure 10: 50% Leakage Ratio: Average Epredicted remainder new and standard deviation from Eactual remainder new

for (a) integer and (b) floating point benchmarks. Note that although the predicted energy goes up compared to 10%

leakage results, the standard deviation does not increase proportionally.

predictor budget is the same between predictors and

amongst benchmarks. Results for other configurations

and for the floating point benchmarks were very similar

and are not included due to space constraints.

We also see from the results that our estimation of

Epred remainder new is still accurate as the leakage ra-

tio increases. In fact, the standard deviation does not in-

crease proportionally with the leakage ratio as shown in

Figure 10.3 This is due to the fact that the power differ-

ence between activity and inactivity in the structures is

less due to increased leakage. This demonstrates that our

technique is still useful as leakage begins to dominate.

3Piecewise linear 32 KB results not included.

5 Related Work

Parikh et al. [14] explored the energy-efficiency of

branch predictors. They concluded that better prediction

accuracy led to better processor energy-efficiency. They

also made the insight that spending additional power in

the predictor can still reduce overall power and improve

processor energy-efficiency. The work in this paper builds

on this insight and develops a metric for determining a

branch predictor energy budget for a new branch predic-

tor design.

Aragon et al. [1] analyze the reasons for performance

loss due to conditional branch mispredictions and develop

a simple technique for fetching, decoding, and renaming

along the alternate path for low confidence branches to re-

duce misprediction penalty and thus reduce overall energy

10



Figure 11: (Ebpred budget) for perfect branch prediction for narrow pipeline, big caches configuration.

consumption. Baniasadi and Moshovos [2] examined re-

ducing branch predictor power dissipation by selectively

turning off tables in a combined branch predictor design.

In additional work, Baniasadi and Moshovos exploit the

insight that branches in steady state do not need to up-

date the branch predictor to reduce the number of branch

predictor accesses and therefore reduce branch predic-

tor energy consumption. [3] Chaver et al. [7] proposed

a method for using profiling to characterize branch pre-

diction demand. They use this information to selectively

disable portions of a hybrid branch predictor and resize

the branch target buffer to reduce branch predictor en-

ergy consumption. Our work does not develop a specific

technique for reducing energy consumption, but rather

demonstrates a method for reasoning about the energy-

efficiency of branch predictor designs.

6 Conclusions

This paper describes a general, systematic method for

calculating the break-even energy budget for a branch pre-

dictor design. The method requires a cycle-accurate per-

formance and power/energy model for a reference pro-

cessor and a cycle-accurate simulation of the branch pre-

dictor design under consideration. An accurate esti-

mate of the energy budget can then be made without a

power/energy model for the candidate branch predictor.

The techniques presented in this paper allow the compar-

ison of the energy-efficiency of different branch predic-

tor designs without having to equalize branch predictor

area or branch prediction accuracy rates. It further gives a

branch predictor designer a technique with which to eas-

ily determine the energy available to achieve an energy-

efficient branch predictor, given the performance for a set

of programs and an upper bound on the energy available

for an ideal predictor.

This paper also evaluates the branch predictor energy

budgets for several existing branch predictor designs on

the SPECcpu2000 benchmarks and evaluates the energy-

efficiency of these designs. We also put forth the notion

that average energy per cycle consumption of the remain-

der of the pipeline varies little between different branch

predictor designs. We further find that the branch predic-

tor performance and energy trends are fairly independent

relative to pipeline width and cache size, thus reducing

the design space exploration needed during future branch

predictor research. Finally, these results were determined

to hold even when the leakage was increased to 50%.

Overall, our results suggest that even the very aggres-

sive branch predictors recently proposed in ISCA 2005 do

not yet violate energy efficiency bounds, at least not when

aggregating across SPEC overall as a workload. This in-

dicates that research on further improvements in branch

prediction is warranted.

7 Future Work

There are many directions in which this work may be

extended. The study could easily be expanded to include

all configurations of larger, more aggressive, and more

complex branch predictor designs as well as no-predictor

configurations. branch predictors, which are improved

versions of the designs presented in [10, 15].

An upper bound for branch predictor energy budget

can be demonstrated and used to estimate the bound on

benefit that can be obtained from achieving perfect branch

prediction.

This work also has the potential to lead to a technique

to estimate a branch predictor energy budget without re-

quiring either cycle-accurate simulator or power model

for the future branch predictor design. We envision that

in the future, given a functional simulator with which

to derive branch prediction accuracy on a particular pro-

gram, designers will be able to derive the branch predic-

tor break-even energy budget much earlier in the design

process, allowing them to narrow the design space search

11



much more quickly.

This technique could also be combined with program

phase detection techniques and adaptive hardware tech-

niques to develop a method to improve energy-efficiency

by adapting the branch predictor hardware based on pro-

gram characteristics and break-even energy information.

Another interesting factor to explore is the impact of

training time due to operating system context switches on

branch predictor energy budget.

We believe that the method described in this pa-

per can be refined to allow simpler estimates for the

power/performance tradeoffs associated with branch pre-

dictor design. In addition, the technique described in this

paper could be applied as presented to determine the en-

ergy budgets of other processor structures such as caches,

register files, buffers, etc.

This paper shows how these results are independent of

cache size, pipeline width, and leakage ratio. Future work

could determine the effect of register file size and buffers

as well.

Acknowledgments
This work is supported in part by the National Science

Foundation under grant nos. NSF CAREER award CCR-

0133634, and CNS-0340813, EIA-0224434, and a grant

from Intel MRL. We would also like to thank Jason D.

Hiser for his helpful input.

References
[1] J. L. Aragon, J. Gonzalez, A. Gonzalez, and J. E. Smith. Dual path

instruction processing. In Proceedings of the 2002 International

Conference on Supercomputing, pages 220–229, New York, NY,

USA, 2002. ACM Press.

[2] A. Baniasadi and A. Moshovos. Branch predictor prediction: A

power-aware branch predictor for high-performance processors. In

Proceedings of the 2002 International Conference on Computer

Design, pages 458–461, 2002.

[3] A. Baniasadi and A. Moshovos. Sepas: a highly accurate energy-

efficient branch predictor. In Proceedings of the 2004 International

Symposium on Low Power Eelctronics and Design, pages 38–43,

New York, NY, USA, 2004. ACM Press.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proceed-

ings of the 27th Annual International Symposium on Computer Ar-

chitecture, pages 83–94, June 2000.

[5] D. C. Burger and T. M. Austin. The SimpleScalar tool set, version

2.0. Computer Architecture News, 25(3):13–25, June 1997.

[6] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt. Branch classification:

a new mechanism for improving branch predictor performance. In

MICRO27, pages 22–31, New York, NY, USA, 1994. ACM Press.

[7] D. Chaver, L. Pi nuel, M. Prieto, F. Tirado, and M. C. Huang.

Branch prediction on demand: an energy-efficient solution. In

Proceedings of the 2003 International Symposium on Low Power

Eelctronics and Design, pages 390–395, New York, NY, USA,

2003. ACM Press.

[8] J. W. Haskins, Jr. and K. Skadron. Memory reference reuse la-

tency: Accelerated sampled microarchitecture simulation. In Pro-

ceedings of the 2003 IEEE International Symposium on Perfor-

mance Analysis of Syste ms and Software, pages 195–203, Mar.

2003.

[9] Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-based next trace

prediction. In Proceedings of the 30th Annual International Sym-

posium on Microarchitecture, pages 14–23, 1997.

[10] D. Jimenez. Idealized piecewise linear branch prediction. In Pro-

ceedings of the First Workshop Championship Branch Prediction

in conjunction with MICRO-37, December 2004.

[11] D. A. Jiménez. Piecewise linear branch prediction. In Proceedings

of the 32nd Annual International Symposium on Computer Archi-

tecture, page TBD. IEEE Computer Society, 2005.

[12] S. McFarling. Combining Branch Predictors. Technical Report

TN-36, June 1993.

[13] S. McFarling and J. Hennesey. Reducing the cost of branches.

In Proceedings of the 13th Annual International Symposium on

Computer Architecture, pages 396–403, Los Alamitos, CA, USA,

1986. IEEE Computer Society Press.

[14] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan. Power

issues related to branch prediction. In Proceedings of the Eighth

International Symposium on High-Performance Computer Archi-

tecture, pages 233–44, Feb. 2002.

[15] A. Seznec. The O-GEHL branch predictor. In Proceedings of the

First Workshop Championship Branch Prediction in conjunction

with MICRO-37, December 2004.

[16] A. Seznec. Analysis of the O-GEometric History Length branch

predictor. In Proceedings of the 32nd Annual International Sym-

posium on Computer Architecture, page TBD. IEEE Computer So-

ciety, 2005.

[17] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution

analysis to find periodic behavior and simulation points in appli-

cations. In Proceedings of the 2001 International Conference on

Parallel Architectures and Compilation Techniques, Sept. 2001.

[18] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankara-

narayanan, and D. Tarjan. Temperature-aware microarchitecture.

In Proceedings of the 30th Annual International Symposium on

Computer Architecture, pages 2–13, June 2003.

[19] D. Tarjan, K. Skadron, and M. Stan. An ahead pipelined alloyed

perceptron with single cycle access time. In Proceedings of the 5th

Workshop on Complexity-Effective Design, 2004.

[20] V. Zyuban and P. Strenski. Unified methodology for resolving

power-performance tradeoffs at the microarchitectural and circuit

levels. In Proceedings of the 2002 International Symposium on

Low Power Eelctronics and Design, pages 166–171. ACM Press,

2002.

12


