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Abstract

In spite of many efforts to speed up cycle-accurate architecture simulation, exponential increases in
architectural design complexity threaten to make traditional design optimization techniques completely
intractable. Response surface methodologies address this challenge by transforming the optimization
process from a lengthy series of detailed simulations into the tractable formulation and rapid evaluation
of a marginally less accurate but easy to evaluate analytical expression—a predictive model. We propose
genetic programming as a powerful method for creating these predictive response surface models out of
sampled architectural performance data.

Genetically programmed response surfaces (GPRSs) allow the architect to make rapid design opti-
mizations (because only a small number of detailed simulations are needed) while simultaneously obtain-
ing insight into the problem domain (because the resulting response surface — a non–linear polynomial
in our case — exposes relationships and relative weights among the design variables). We validate our
methodology on realistic datasets and compare it to recently proposed techniques for predictive design
space exploration. GPRSs are highly accurate when making global predictions about architectural per-
formance behavior based on only small samples of performance data: global predictions of IPC incur
less than 3% mean percentage error based on sample sizes of less than 1% of one target processor design
space, and no worse than than mean 6% error at sample sizes as small as 0.0000002% out of over one
billion possible design points from a second target space. GPRSs can therefore reduce required simulation
costs by up to six orders of magnitude.

1 Introduction

Architects can no longer afford to rely solely on simulation to evaluate a design space. Design spaces are
simply too large, and there are too many interactions among parameters [8,12,20]. Isolating a small number
of variables to sweep neglects the fact that the values of many other parameters may change in order to
keep a balanced organization. As a simple example, Skadron et al. [26] showed that better branch prediction
changes the optimal values for ROB, LSQ, and cache size. The design space of a single core is already large;
the multicore design space is nearly intractable, because core architecture (depth/width/structure sizes/etc.),
core count, cache sizes, interconnect, energy efficiency, and thermal efficiency are all inter-related [20]. Even
if all variables are swept, at a cost of O(n variables * m steps per variable) simulations, optimizing one
variable at a time will stick in local minima and can produce dramatically sub-optimal designs. Analytical
models can be developed that are trivial to solve, but a model simple enough to derive a priori typically
cannot account for interactions, especially those involving multiple variables.

Techniques to speed up simulation time are not sufficient either, especially for multicore simulations,
and especially for parallel programs, where an accurate simulation result for a single design point may still
take a non-trivial time in order to properly account for thread interactions. Even if per simulation time is
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dramatically reduced, exhaustive search of all possible parameter bindings may still be necessary, at a cost
of O (n choose m). What is required is an automatically generated analytical model that accounts for the
necessary complexities but allows a large number of design points to be quickly evaluated.

This is not a new problem, nor one unique to computer architecture optimization tasks. In an effort
to address computational constraints on design space exploration, the modeling and simulation research
community has developed the family of techniques known as response surface methodology [4, 31]. Given a
sample of collected performance data, these techniques build approximation functions (“response surfaces”)
which accurately predict the performance of all the unsampled candidate designs. These functions serve to
transform the optimization process from a lengthy series of detailed simulations into the tractable formulation
and rapid evaluation of a marginally less accurate predictive model.

Techniques for creating globally accurate response surfaces range from simplistic linear regressions through
highly non-linear techniques like trained artificial neural networks. We advocate the use of genetic program-
ming [17] to create appropriate non-linear, polynomial approximation functions and fit them to the collected
architectural performance data. Genetic programming is a technique, based on evolutionary biology, used
to optimize a population of computer programs according to their ability to perform a computational task.
In our case, the ‘program’ is an analytic equation whose evaluation embodies the response surface model,
and the ‘task’ is to match the sample data points obtained from full–scale simulations [1].

The genetic programming (GP) algorithm operates on a population of expression trees, each of which
represents a candidate response surface — specifically, a polynomial function which maps a subset of the
design parameters to a performance measure. Individual functions deemed to provide the most accurate
predictions are recombined using a set of evolutionary operators to form new generations of increasingly fit
functions. Unlike a heuristic genetic search through the design space, GP uses the evolutionary process to
improve the accuracy of a set of approximation functions, rather than to attempt to heuristically improve
the performance of a set of designs. Creating an accurate approximation function and using it to predict
which designs are optimal becomes increasingly efficient as design spaces continue to grow.

Genetic programming has been previously shown to create globally accurate response surfaces that suc-
cessfully capture non-linear, highly multi-dimensional design spaces [1]. Because the predictive response
surface is created based on a set of input data (e.g simulated performance or power), the quality of its
output can only be as good as the simulator on which the data was collected. However, as the GPRSs are
highly accurate, this approach is able to derive functions which can be trivially evaluated to rapidly estimate
the result a long and costly cycle-accurate simulation would have produced. In fact, the time saved by
using a GPRS means that the few detailed simulations that are needed for training can afford to be even
more detailed, thus improving the overall efficiency and realism of the process. A final important property
of GPRSs is that they produce fairly intuitive functions that clearly expose the relationship and relative
importance of various configuration parameters.

Specifically, the main contributions of this paper are:

1. We prove that the GPRS technique is highly accurate when making global predictions about architec-
tural performance behavior based on only small samples of performance data.

2. We demonstrate the usefulness of GP-provided explicit approximation functions in identifying impor-
tant design parameters, uncovering variable relationships, and locating optimal design subsets.

3. We provide a direct comparison with recently published techniques and offer suggestions for to how
these techniques could be integrated for maximum accuracy and efficiency.

On a superscalar processor design space consisting of over 20K design configurations, the genetic pro-
gramming algorithm creates response surfaces which allow for global predictions of IPC with less than 3%
mean percentage error and less than 9% worst case error, based on sample sizes of less than 1% of the total
design space. Sample sizes as low as 0.1% of the global space still result in functions which incur less than
5% mean error, and less than 21% worst case error. Of particular importance, the approximation equation
provided by the GP process reveals subsets of the design space which in all but one of our tests cases contain
100% of the exhaustively determined global performance optima. On a second, larger superscalar proces-
sor design space containing over one billion design points, we find that the median percentage error of the
predictions range from 1.1% to 6.1% at sample sizes as low as 200 design points.

High accuracy at low sample sizes is not the only benefit conferred on an architect making use of GRPS.
GPRS almost completely decouples the amount of time it takes to optimize a design from the amount of time
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required to run a cycle–accurate simulation. Combined with a robust sampling method, GPRS collapses
exponential design space growth caused by an increase in dimensionality back down to a linear increase in
the number of fully simulated points in the sample set. Variables which have a significant impact on the
target performance metric are explicitly identified. In addition, GPRSs allow us to predict the performance
impact of a design change without actually simulating the adapted design. Once GPRS has explicitly defined
the relationships among the design variables, we can evaluate the predicted change analytically. In sum,
GPRS combines the automated ease of training neural networks [14] with the accuracy and insight provided
by complex regression models [19].

The rest of this paper is organized as follows: Section 2 explains recent related work, Section 3 describes
the GP methodology in greater depth, Section 4 details our experimental methodology, Section 5 presents
a illustrative case study in using GPRS, Section 6 shows how the technique performs on realistic data sets,
Section 7 enumerates significant conclusions and outlines plans for future work.

2 Related Work

Response surface methodology is well established and has previously been used in many engineering fields
to address design optimization problems where the functional computation costs of evaluating design fitness
are high [23, 31]. GPRSs specifically have been used for optimizing the calcination of roman cement [29],
and predicting stress fractures in steel [30]. Genetic programming in general has been previously used in
the computer architecture domain in the context of automatically synthesizing accurate branch and jump
predictors [11]. Alvarez [1] found that that the genetic programming process detects which design variables
have a significant performance impact during the approximation model construction, and can sometimes
extrapolate beyond the initially defined range of the variables. His results also indicate that the technique
is robust in the face of noise in the sample performance data [28].

As Ipek et al. [14] have observed, the computer architecture community has tended to exclusively use with
simulation-based methods and techniques to reduce the length of design space searches, such as sampling
methods (e.g., [5, 13, 24]). Despite many calls for reduced reliance on simulation (e.g., [27]), only recently
has the architecture community begun to more aggressively investigate analytical methods.

2.1 Reducing Simulation Inputs

Phansalkar et al. [22] and Eeckhout et al. [10] analyze the SPEC2k [7] benchmark suite and use Principle
Components Analysis to select a representative subset of the most unique sections and applications in an
attempt to reduce the total number of simulations required to characterize overall suite performance. Klein
et al. offer MinneSPEC, a reduced input set for the SPEC2k CPU benchmark suite, as a workload suitable
for rapid exploration of the design parameter space [16]. SimPoint [25] and SMARTS [32] also serve to
automatically reduce instruction stream sizes and thereby decrease the time required for simulation analysis.
Statistical simulation [9] generates small, synthetic traces based on observed application characteristics,
allowing the actual application to be replaced in simulation with the more concise synthetic trace. All
these techniques are fundamentally orthogonal to response surface methodology because they are concerned
with decreasing per simulation overhead via reduced input sets, rather than decreasing the total number of
simulations via output prediction.

2.2 Statistical and Analytical Models

Yi et al. use a Plackett-Burman fractional factorial design of experiments to prioritize design parameters
for statistical sensitivity studies [33]. By fixing unimportant parameter values to reasonable constants, they
reduce the size of the design space that must be searched. They propose sweeping the critical parameters
with more extensive simulations to actually optimize the design; GPRS identifies significant variables and
builds an approximation function of their behavior at the same time, thus providing a comparable level of
insight while obviating the need for further simulations. Joseph et al. derive linear performance models
using stepwise regression [15]. Their models are not meant to be used to make predictions about design
performance, and like Yi et al.’s are intended only to identify the interactions and significance of the various
design parameters.
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Lee and Brooks [19] perform regression modeling based on cubic splines in order to generate predictive
approximation functions for performance and power. Their design space is quite large, and consists of over
20 billion design points across 21 benchmarks. They achieve predictions of up to 96% mean accuracy while
sampling only one in 5 million design points [19]. The method they present is a statistical process rather than
an automated algorithm, and requires some a priori intuition about variable relationships on the part of the
architect [14]. They employ uniform random sampling to select a set of designs for full–scale simulation.

Lee and Brooks made a subset of their superscalar performance simulation datasets available to us,
enabling an evaluation of the relative accuracy of the GPRS technique. As reported in Section 6, GPRS
achieves comparable or improved accuracy based on smaller sample sizes. An advantage of GPRS over
statistical and analytical models is that the response surfaces are generated automatically, rather than
having to be carefully constructed and tuned by the architect based on their knowledge of the design space.
Conversely, while vastly better than an exhaustive search, GPRS is still much more computationally intensive
than any statistical technique.

2.3 Heuristic Design Space Search

Kumar et al. attempt to search through a large heterogeneous chip multiprocessor design space heuristically
[18]. They encounter over 2 billion configuration options even before factoring in permutations of applications,
and their study contrasts exhaustive search results with those obtained by a simplistic hill-climbing search
algorithm. Hill–climbing search selects a configuration 4.5% worse than the configuration selected by the
exhaustive global search, while requiring 86% fewer full simulations [18].

Kumar et al.’s methodology is fundamentally different from GPRS. Their hill–climbing search requires
a full-scale simulation whenever any single design point needs to be evaluated in order to further guide the
direction of the search. Every step of any heuristic search requires yet another set of detailed simulations;
genetic programming will create fit approximation functions far faster than the search algorithm could ever
hope to navigate the design space. Creating an accurate approximation function and evaluating it numerically
is far more efficient and scalable than searching through the design space heuristically.

2.4 Artificial Neural Networks

Ipek et al. [14] propose training artificial neural networks (ANNs) to create predictive global approximation
models of several computer architecture design spaces. Their neural networks in general achieve 97–99%
mean prediction accuracy after only training on 1–2% of the design space [14].

Neural networks are a useful tool because of their ability to automatically learn non–linear functions.
However, they also represent a “blackbox” in that they give the designer no explicit insight into the re-
lationships that the network develops between the input variables and the response function. Genetically
programmed response surfaces, by contrast, create non–linear yet explicitly defined functions, and thereby
allow the designer to see exactly what the algorithm has learned from the sample data.

Ipek et al. made the exhaustive, full-scale performance simulation datasets from their memory and
superscalar processor studies available to us for use in our own analysis of GPRS. This allows us to make
a fair, direct comparison based on realistic simulated processor performance data between GPRS and the
established ANN technique.

3 Mechanics of Genetic Programming

This section assumes the reader is familiar with the basic processes of standard genetic algorithms. Ge-
netic programming is an evolutionary technique that produces functions that characterize the behavior of
a response variable in terms of a set of design parameters. Like all evolutionary algorithms, the biological
concepts of natural selection and survival of the fittest are at the heart of genetic programming: the algo-
rithm is structured such that accurate candidate response surfaces are more likely survive and reproduce,
and so subsets of their highly fit structure spread across generations, leading to a rising average fitness and
the eventual convergence of the algorithm. Readers seeking more information about genetic programming in
general should refer to [17], and those seeking information about genetically programmed response surfaces
should refer to [1].
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Figure 1: A. An expression tree B. Addition of tuning parameters C. Crossover breeding

The genetic programming process simply recombines and mutates a set of functions as it searches for one
which fits well to the sample dataset. Response surface functions are encoded as binary expression trees,
and the algorithm begins training with a population of randomly generated trees. Every generation, each
candidate response surface is tuned to match the sample data as well as possible and is then evaluated. Can-
didates whose functions provide an accurate mapping between the design parameters and the performance
metric are retained and recombined, while unfit surfaces are discarded. Eventually, the process converges on
a small number of highly fit response surfaces.

3.1 Modeling Representation

Candidate response surfaces are represented as in-order expression trees, where an individual node in a tree
represents a user-defined operator, an encoded design variable or a tuning parameter (Figure 1 A). Operators
are defined by the architect – in this case we include simple arithmetic operators, square and square root
operators and a logarithmic operator. If operators are undefined for certain inputs (e.g. divide by zero), a
harsh fitness penalty is assigned to the expression tree containing them if such an exception is ever raised
during fitness evaluation.

Cardinal and continuous design variables are encoded as floating point values, while boolean variables
are converted into 0/1 values. These values are not normalized using minimax scaling because the use of
tuning parameters (Section 3.3) serves to abstract the form of the approximation function from the data
value ranges [1]. Nominal parameters (variables representing discrete choices with no inherent quantifiable
properties) are represented with one-hot encoding [14].

3.2 Evolution

A candidate response surface’s fitness is evaluated based on two metrics: the quality of the approximation of
the experimental data by the candidate, and the size of its associated expression tree. Like Alvarez [1], we
quantify the quality of the model by calculating the sum of squares of the difference between the candidate
surface’s predictions and the sample performance datapoints (Eq. 1). Penalizing lengthy expression trees
serves to keep the equations more compact and globally fit, though obviously care must be taken not to
promote oversimplification. In Equation 2 the constant c is used to control the size penalty; size is measured
in terms of the number of tuning parameters (ntp) which have been introduced into the function. The
genetic programming process attempts to minimize Equation 2. After a period where the fitness of of the
best candidate fails to improve beyond a certain threshold, the GP algorithm is declared to have converged
and is halted.
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Q(Si) =

P∑
p=1

(Fp − F̃p)2

P∑
p=1

Fp
2

(1)

Φ(Si) = Q(Si) + c ∗ ntp2
i → min (2)

The evolutionary reproduction and mutation processes in GP are much like those of normal genetic
algorithms. Candidates are selected for reproductive participation according to their fitness (with more fit
candidates having a higher probability of being selected), and the selected candidates then swap randomly
determined subtrees (Figure 1 C). With mutation, a randomly selected node in a randomly selected expression
tree is mutated into a different node of the same type (i.e. operators mutate into other operators, design
variables into other design variables).

A user–specified percentage of unfit individuals from the old generation are culled before ever getting a
chance to reproduce — this is termed the kill percentage. Removing the most unfit individuals encourages
further breeding between the more successful members of the population. A user–specified percentage of
the most highly fit individuals are also added directly into the next generation unchanged — this is termed
the elite percentage. These individuals may still breed and produce offspring for the new generation, but
transferring them directly enables the best candidate solutions found so far to be preserved for multiple
generations.

3.3 Tuning Parameters

A critical but completely automated step of the genetic programming process is the assignment of tuning
parameters to a candidate expression tree. Tuning parameters abstract the structure of the expression from
the specific data value ranges; using them results in simpler approximation functions [1]. Essentially, these
added parameters serve to mold the generic structure provided by the expression tree so that it fits as
closely as possible to the sample data. Tuning parameters are added by the algorithm to an expression
tree deterministically based on the tree’s topology, and their values are automatically adjusted to fit the
candidate surface to the data (Figure 1 B). The effectiveness of the overall genetic programming technique
hinges on the ability to detect fit candidates; poor tuning will result in theoretically fit expressions being
inadvertently discarded by the technique.

For the tuning process itself, our implementation of the GP algorithm uses an open source implementation
of the Levenberg–Marquardt algorithm for solving nonlinear least–squares problems. Levenberg–Marquardt
is an iterative technique that can be thought of as a combination of steepest descent and the Gauss–Newton
method [21], with the method of convergence changing depending on its proximity to a solution. Initial
guesses at tuning parameter values are automatically supplied to the L–M algorithm by short runs of a
generic genetic algorithm.

3.4 Design of Experiments

We choose to use a design of experiments (DOE) technique known as the Audze-Eglais Uniform Latin
Hypercube design of experiments [2] to select the points included in the sample set of performance data
used in the genetic programming of the response surfaces. Audze-Eglais selects sample points which are as
evenly distributed as possible through the design space by formulating the problem as one of gravitational
attraction and minimizing the “potential energy” of the system of points. We formulate our Audze-Eglais
DOEs using the optimization technique described by Bates et al. [3].

A major benefit of using this particular DOE is that it gives us high confidence that even if very few
points are included in the sample set used for training, they will still be evenly distributed across the space
of all possible designs. Random sampling [19] is unable to guarantee such a fair representation, and sampling
based on variance [14] does not allow us to collect the complete set of sample data prior to the response
surface training process. Plackett-Burman DOEs like those used by Yi et al. [33] are actually overly sparse
for design spaces of this size — the time spent completing the tens of extra full–scale simulations suggested
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name parameter values
x0 fetch/issue/commit width 4,6,8 instructions
x1 frequency 2,4 GHz
x2 max branches 8,32
x3 branch predictor 1,2,4K entries
x4 branch target buffer 1,2K sets (2-way)
x5 ALUs/FPUs 2 choices per issue width
x6 ROB size 96,128,160
x7 Register file 2 choices per ROB size
x8 Ld/St queue 16/16,24/24,32/32
x9 L1 ICache 8,32Kbytes
x10 L1 DCache 8,32Kbytes
x11 L2 Cache 256,1024Kbytes

Table 1: Ipek et al. processor design space variables

name set cardinality
x0 depth 10
x1 width 3
x2 physical registers 10
x3 reservation stations 10
x4 I-L1 cache 5
x5 D-L1 cache 5
x6 L2 cache 5
x7 main memory 10
x8 control latency 2
x9 fixed-point latency 5
x10 floating point latency 5
x11 memory latency 5

Table 2: Lee and Books processor design space variable sets

by the Audze–Eglais design is certainly offset by the increased confidence we can have in the robustness of
the resulting model.

4 Experimental Methodology

We use simulated performance data previously collected by Ipek et al. [14] and Lee et al. [19] for their recent
predictive design space exploration studies. These datasets allow us to present a direct comparison of the
accuracy of the three techniques, and also provide a validation of the effectiveness of GPRS at modeling
realistic architectural design spaces. The Ipek et al. processor design space contains 12 design variables,
resulting in over 20K unique design points. The Lee and Brooks design space has 23 design variables divided
into 12 groups, with all variables assigned to the same group being varied together. The finer–grained
parametrization of the design variables in the Lee and Brooks study results in approximately one billion
design points. Both sets of performance data were collected from detailed simulations running over a subset
of the SPEC2k CPU benchmarks [7]. Ipek et al. made their benchmark selections based on metric similarity
clustering suggestions provided by Phansalkar et al. [22], and used the MinneSPEC [16] reference inputs [14].
Lee and Brooks created their input traces by sampling the SPEC full reference input set [19].

We use a tool based on [3] to automatically generate an Audze-Eglais Design of Experiments of a specified
size for a user-supplied list of parameters and their associated valid bindings.. The size of the sample set
varies depending on the size of design space being studied — a hard lower bound for most DOEs is that
there must be at least as many sample points as there are dimensions. The output of our DOE formulator
is a list of points within the global design space that will become the training set for the GPRS formation
algorithm. For the purposes of this study, we then simply extract these datapoints out of the previously
collected set of performance data, but in a brand new optimization study we would simulate each of them
in full detail. The subset of collected performance data becomes the input to our GPRS builder application.

In selecting the parameters used to control the operation of the GP algorithm, we generally adhere to the
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IPC 1.322 + (1.834e− 06 ∗ ((−69835.5 ∗ x1)− (((−1972.46 ∗ x6)− ((−1129.92 ∗ (x8 ∗ x1))
−(0.359 ∗ (x11 ∗ ((−132.256 ∗ x0)− (289.655 ∗ x1)))))) + ((−1.318 ∗ (x8 ∗ (x6 ∗ x0)))
−((−363.66 ∗ (x1

x5
) ∗ (x11 ∗ x0)))− (71303.8 ∗ (x6

x5
)))))))

Branch Prediction 0.9616 + (0.000581 ∗ (x3 ∗ x4))

L2 Miss Rate 0.2824 + (−3.675e− 06 ∗ (((−1694.59 ∗ x10) + (−420.003 ∗ (x11
x10

))) + (140.062 ∗ x11)))

Table 3: GPRS approximation functions generated for case study.

values suggested by Alvarez in his genetic programming optimization studies [1]. We use an initial population
size of 500 candidate expression trees, limit the maximum number of generations to 1000 (the GP process
almost always converged after fewer than 100 generations), set the size penalty constant c to 0.000001, and
use a 10% elite percentage and 10% kill percentage to aid in convergence. Because a response surface is
simply an analytic equation, off-the-shelf numeric solvers can be used to rapidly locate the predicted global
optima and examine other features of the surface (we use Mathematica R©).

This short chain of applications is already almost fully automated, and represents an extremely powerful
infrastructure for architects faced with difficult design optimization tasks. With this in mind, we are working
to formalize a framework for taking a set of a benchmarks, a simulator configuration script, and a list of
design parameters with their bindings and automatically formulating DOEs and creating GPRSs based on
them, with no further user input required. Such a tool would ideally be publicly released with the final
version of this manuscript.

5 A Simple Case Study

Using genetic programming to derive response surfaces is extraordinarily easy. The steps in the process are
straightforward: determine which points will be included in the sample set, simulate those design points,
run an automated tool on the collected data, and numerically optimize the resulting response surface.
To emphasize the ease architects will have in creating genetically programmed response surfaces and in
understanding their results, we present the following illustrative case study.

The superscalar processor design space described in Table 1 contains twelve design dimensions, each with
several possible parameter values. As architects confronting the problem of finding the best configuration
for such a superscalar processor design, we abhor the idea of fully simulating all 20K possible configurations.
Creating an analytical regression model would require us to specify predictors for a response surface using
domain-specific knowledge, and then carry out tests of statistical significance and fitness to tune the our
regression model. An automated response surface builder requires less a priori architect knowledge and less
architect effort to produce conclusive results.

The first step in generating a GPRS is to select a set of sample points from the global design space. The
naive way to do this is pick points uniformly at random, but formulating a Design of Experiments is a more
robust alternative. Plackett–Burman [33], Audze–Eglais [2], and Latin Hypercube are all proven methods
for formulating DOEs. For the DOE-based results presented in this paper, we generate an Audze-Eglais
DOE automatically using a tool based on [3].

After DOE formulation or random selection, we have a list of points in the design space. Each point
on the list must be simulated to evaluate those performance measures that we are interested in optimizing
or investigating. These simulations may take some time, but collecting this data is certainly less time
consuming than exhaustively simulating millions or billions of possible designs. For our simple case study,
we use measurements of IPC, branch prediction miss rate and L2 cache miss rate for the SPEC2k CPU
benchmark application applu.

The performance data collected from the simulations are stored in a file that is fed to the automated GP-
based response surface creation tool. Via evolution and selective breeding, the tool produces approximation
equations for predicting performance based on the design variables listed in Table 1. The equations produced
for our case study are reported in Table 3; all the equations had < 3% mean global error when tested against
performance data from an exhaustive global search.

By examining the equations in Table 3 and variables in Table 1, we can see that the design variables
that are useful in predicting the response of the performance measure change depending on which metric we
use. Branch predictor size and the maximum number of branches are the variables that prove most useful
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in predicting branch prediction accuracy, L2 cache size and L1 data cache size are the best predictors of
L2 miss rate, and IPC is based on a more complicated combination of many variables’ effects. None of the
ratios or variable relationships were specified in advance — the genetic programming algorithm is wholly
responsible for identifying the relevant variables and their relationships.

These conclusions are rather intuitive, but this basic case simply serves to further validate the technique.
Such an instantly comprehensible response would not be possible using a trained artificial neural network.
While an ANN would eventually allow us to draw the same conclusions, we would have to query and probe
the network repeatedly and test the effect of changing different variable values in order to gain the same level
of insight. The function can also be used as–is to instantly predict the performance impacts of making a
change to a baseline design (e.g. a decrease in L2 cache size will decrease IPC by an analytically determinable
amount).

However, our primary goal is not just to understand the relative impact of various design parameters
on a performance measure, but also to actually optimize our target design. Given a tuned response surface
embodied in an explicit approximation function, there are two ways this could be done. The brute force
approach would be to rapidly evaluate every design point using the response surface equation and select one
of the ones with the best predicted performance. A slightly more refined approach involves optimizing the
variables included in the approximation function analytically or numerically, and then exploring the design
points in the remaining subspace more thoroughly.

For our IPC case study, we numerically located the maximum of our approximation function. The
following values are the parameter bindings which maximize IPC: {x0 = 8, x1 = 2, x6 = 160, x8 = 32/32,
and x11 = 1024}. It would have been difficult to tell a priori that these specific variables were the most
important design considerations. Furthermore, validating the predictive equation against the exhaustive
simulation data reveals that as long as the design we choose incorporates these parameter bindings, the
worst possible performance we could end up with is within 2.5% of the true global optima for IPC.

Using genetically programmed response surfaces to optimize designs merely requires architects to make
use of a short sequence of automated processes. No matter how they choose to use the resulting approximation
function, they save a huge amount of time that would have otherwise been spent running large numbers of
detailed simulations. Our case study illustrates the ease of using the GPRS technique as a design optimization
tool, as well as some of the benefits conferred by this technique to the architect in the form of insight into
the target design space.

6 Experimental Results

We strove to address the following questions in our more general experimental studies:

1. Global accuracy. Do the equations generated by GPRS accurately and robustly depict the true behavior
of the performance measures?

2. Sample sizes. How much of the design space must be simulated in full detail in order to produce
accurate predictions?

3. Identification of optima. Does GP give the architect insight into which variables are important and
which subspaces should be explored? How close to the true global optima are the points in the
recommended subsets?

4. Comparison with alternatives. How well does GPRS perform as compared to other recently proposed
techniques? What are the possibilities for integration?

Our first study makes use of data provided by Ipek et. al [14]. They conducted an exhaustive search of
the design space delineated by Table 1 for a subset of the SPEC CPU 2000 benchmark suite [7]. We take
this exhaustive, fully–simulated set of datapoints as our global population, and use an Audze-Eglais DOE
to select the sample set of performance data used to train the GPRS.

We calculate percentage errors between the predicted values suggested by the response surface equation
with the detailed simulation data. We calculate error across all collected data points — in this case, the
entire design space — and find that the GPRSs provide highly accurate predictions of design performance
on a global scale. This effectiveness is clearly illustrated by the learning curves in Figure 2. With sample
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Figure 2: Mean GPRS error decreases as sample size grows. Error bars are 1 standard deviation.

sizes as small as 0.1%, the GPRS predictions of performance for all the non-sampled points achieve 2.8–4.9%
mean error with standard deviations between 2.2–3.4%. When 0.5% of the design space is sampled, this
result improves to 1.2–3.0% mean percentage error with standard deviations in the range of 1.1–2.3%. These
results are generally comparable to the performance of the neural network–based technique, but with better
accuracy achieved at the smaller sample sizes. Making successful predictions at very small sample sizes will
become increasingly important as architectural design spaces continue to grow exponentially.

We are also concerned with the distribution of prediction error across the design space. Not only do we
desire a low variance in error, but we also do not want to badly mispredict any individual points. To explore
the worst of our predictions we use cumulative density functions of individual point error, in the fashion of
both Ipek et al. [14] and Lee and Brooks [19]. Figure 3 shows that at a 0.5% sample size maximum percentage
errors on any one point range up to only 15% for even the most poorly predicted benchmarks, with at least
80% of the points having a prediction percentage error smaller than 5%. On the best–predicted benchmarks
over 94% of the points have percentage errors < 4% and the maximum error is only 7%. Maximum error
values for the ANN technique were not reported for the processor benchmarks.

Our second study made use of performance and power data that were collected from a superscalar
processor design space by Lee and Brooks [19] to test their regression modeling technique for performance
prediction. The design space used is described in Table 2, and they too simulated over a subset of the
SPEC CPU 2000 benchmark suite. Their statistical analysis achieved median error rates as low as 4.1% for
performance and 4.3% for power (with maximum errors of 33.1% and 45.2% respectively) when sampling
fewer than 4000 design points out of over 1 billion per benchmark. Lee and Brooks used uniform random
sampling when they selected the points used to formulate their regression models. For this study, we likewise
use random sampling rather than a DOE — this allows us to evaluate the comparative effectiveness of GPRS
independent of the more robust sampling method. Figure 4 uses cumulative density functions of percentage
error to illustrate the performance of GPRS on this large design space.

At sample sizes as low as 200 out of 1 billion design points per benchmark, we find that the median
percentage error of the predictions provided by the GRPSs range from 1.1% to 6.1%, with variances of
2.3% and 9.9% respectively. Maximum errors range between %23.1 and 44.8%; in general these values are
outliers. Because the Lee and Brooks dataset does not represent an exhaustive search of the design space, we
cannot perform the same global evaluation we are able to use on the Ipek et al. data. Instead, we evaluate
GPRS error based on 300 datapoints not included in the sample set. Again we find that GPRS attains
accuracy comparable to the alternative technique, but achieves it at smaller sample sizes. The reduction of
six orders of magnitude in the total number of required simulations afforded by using GPRS as compared to
an exhaustive search also speaks strongly to the merit of the technique.

It is interesting to note that our outlier error values are generally larger than those reported by Lee and
Brooks, even though GPRS had lower median errors. Figure 5 graphs the absolute accuracy of the GPRS
predictions as compared to a subset of the simulated performance data. The benchmark equake was the best
predicted, while twolf was one of the worst. While there seems to be a slight bias towards underestimation
in the the 0.4 to 0.7 IPC range for twolf, there is not strong evidence of a systematic bias generating outliers
in these benchmarks.

Recall that genetically programmed response surfaces are explicit approximation functions relating design
variables to performance measures, and we can make use of their explicit nature to gain insight into the
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Figure 3: CDFs of GPRS error for Ipek et al. design space at a 0.5% sample size. The Y-axis represents the
percentage of design points with prediction errors < the X-axis value.

Figure 4: CDFs of GPRS error for Lee et al. design space at a 0.000002% sample size
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Figure 5: IPC values predicted by GPRS vs IPC values recorded by Lee et al.for 300 non-sampled configu-
rations

benchmark (1) design parameter bindings (2) true (3) pred. (4) worst (5) %
x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

applu 8 2 • • • • 160 • 64 • • 1024 2.25 2.235 2.19 100
art 8 2 32 • • • 160 • 64 • • 1024 0.53 0.537 0.51 100
bzip2 8 2 32 • • • 160 • 64 • • 1024 1.48 1.433 1.42 100
crafty 8 2 • 4 2 8 • 112 64 • 32 • 1.76 1.744 1.62 100
equake 8 2 32 4 • 8 160 • 64 • • 1024 1.66 1.627 1.61 100
gcc 8 2 32 4 2 8 • • 64 32 32 • 1.29 1.269 1.15 100
mcf • 2 32 • • • 160 • 64 • • 1024 0.58 0.559 0.54 100
mesa 8 2 32 • 2 8 160 • 64 • • • 3.04 2.909 2.87 100
mgrid 8 2 • • • 8 • • 64 • • 1024 1.73 1.723 1.41 100
swim • 2 • • • • 160 • 64 • • • 0.95 0.936 0.89 100
twolf 8 2 32 4 2 8 • • 64 • 32 256 1.01 0.979 0.93 75
vortex 8 2 • 4 2 8 160 • 64 • • 1024 2.48 2.362 2.31 100

Table 4: Summary of GRPS results after training on Ipek et al.’s processor performance data with sample size
of 0.5%. (1) Parameter bindings determined by numerically optimizing the GPRS function. • indicates that
the parameter was dropped from the response surface function. (2) True global optima in IPC as determined
by exhaustive search. (3) Optimal IPC value predicted by GRPS. (4) Worst value in subset delineated by
parameter bindings. (5) Percent of true global optima contained in subset delineated by parameter bindings.

target design space. We found that the most accurate functions for the Ipek et al. processor design space
included 5–9 of the 12 design variables. As can be seen in Table 4, different variables were identified as
significant for different applications and performance measures. Intuitively, this makes sense considering that
different architectural characteristics will have different performance impacts on memory-bound applications
as compared to CPU-bound ones. For example, a benchmark which drops cache parameters from its response
surface due to their irrelevant impact on performance is clearly not memory-bound. On the architecture
side, it becomes quite clear when looking at the response surfaces generated for a target benchmark or set
of benchmarks which design decisions will actually have a significant impact on performance. Furthermore,
the response surface makes it easy to predict exactly what the performance impact of a given design decision
will be.

Given a GPRS, a simple numerical optimization with off-the-shelf software rapidly determines the optimal
values for the significant variables. We numerically calculate these parameter bindings for the response
surfaces generated by the Ipek et al. processor performance data (Table 4). The remaining variables form
a subset of the design space that contains the true global optima — in all but one of our tests on the Ipek
et al. design space, 100% of the true global optima are contained within this subspace. An architect could
search this subspace to find the precise optimal values, but even if they just assign the remaining variables
to be random values within the initial sample range, the resulting design will still be near optimal. We find
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that the performance of even the worst point within the subset space is always within 19% of the true global
optima, and for most benchmarks was within 8%. The predicted optimal value for IPC was also very close
to the value of the true optima in all cases.

Even a 0.1% sample size represents a reduction of three orders of magnitude in the number of simula-
tions required per optimization. Our success with the Lee and Brooks dataset demonstrates that accurate
predictions at even lower sample percentages are certainly feasible when the design space is large enough;
we become limited only when the size of the sample becomes smaller than the number of design dimensions.
Furthermore, due to our use of a formal DOE and the interpolation provided by our response surface, only
a few more samples are needed per dimension added to the problem. This collapses the exponential growth
of the design space back down to a linear increase in the size of the sample set.

We find that in practice the time required to create a highly accurate GPRS is two orders of magnitude
larger than the few minutes required to train an artificial neural network [14]. There is some variance
depending on how difficult it is for the surface to capture the design space, but generally for a population
size of 500 running completely unparallelized we find that every additional 100 sample points adds about
two hours to convergence time. However, the time spent creating and evaluating a GPRS is still significantly
smaller than the time required to complete a large set of full–scale simulations, and the GPRS technique’s
increased effectiveness at smaller sample sizes may in some cases more than make up for the increased training
time when compared to artificial neural network approaches on large design spaces. A further consideration is
the embarrassingly parallel nature of most portions of the GPRS algorithm (e.g. the evaluation of candidates’
fitness, offspring mutation, etc.), of which our current implementation does not take full advantage. This
innate parallelism makes GPRS an appealing algorithm to run on state-of-the-art multicore architectures.

7 Conclusions and Future Work

Using genetically programmed response surfaces to optimize architecture designs only requires architects to
make use of a short sequence of fully automated tools. In exchange, architects can anticipate vast reductions
in simulation time, rapid identification of important design parameters and subspaces, and can maintain a
high degree of confidence in the predictive results. Genetically programmed response surfaces predict the
performance impacts of proposed design changes without requiring additional detailed simulation data, and
they will scalably address future increases in design complexity.

Ultimately, genetic programming is a superior technique because it provides the architect with the explicit
expression of an approximation function containing design variables proven to have a significant impact on
the target performance measure. Having an explicit equation allows the architect to rapidly optimize these
highly relevant design variables using a numerical method of their choice. The remaining variables, those
not included in the approximation equation, make up a subset of the design space that is near optimal, and
one which as far as we have seen will contain the global performance optima.

Exploring the subset design space made up of these trivial–impact design variables may allow the architect
to fine–tune their design in order to achieve maximal performance. The architect can identify narrow regions
of interest by exploring designs similar to the optima of the approximation function. However, the architect
simultaneously can have a high level of confidence that the variables which were not expressly included in
the approximation function are those which do not significantly impact performance in the first place.

Unlike the heuristic hill-climbing design space search performed in [18], the time our technique takes to
locate optima is decoupled from the length of time it takes to run a full–scale simulation — simulations of
the small number of design points in the sample set can all be done as a preprocessing step. The predictions
generated by a GPRS are extremely accurate even when trained on small sample sets, which means that as
design spaces grow exponentially the sample size only needs to grow slightly to keep accuracy high.

The GPRS method we have proposed has a high degree of potential for integration with other techniques.
Insights gained into variable relationships could be useful in identifying predictors to create more accurate
regression models [19]. As with ANNs [14], SimPoint’s reduction in instruction stream sizes represents an
orthogonal and complementary way to reduce total simulation time. The GP technique is highly paralleliz-
able, which means that the process of generating approximation functions will become even more efficient as
modern hardware further emphasizes parallelism. Improving the parallelization of the technique, integrating
it with other predictive methods, and applying it to problems with multiple fitness criteria are all directions
of future work. Our effort to formalize the tools used in this work into a robust framework for GPRS-based
architecture optimization is ongoing, and we intend to release a public version with the final version of this
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manuscript.
Genetically programmed response surfaces provide architects with predictive polynomial equations which

can be trivially solved to accurately estimate what a long and costly cycle-accurate simulation would other-
wise have produced. The time saved by using a GPRS allows for the few detailed simulations required for
training to be even more detailed, thus improving the overall efficiency and realism of the process. Genet-
ically programmed response surfaces produce fairly intuitive functions that clearly expose the relationship
and relative importance of various configuration parameters. As design spaces continue to grow increasingly
complicated and sizable, predictive techniques which are scalable and insightful will become fundamental to
producing effective computer architecture optimizations.
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