The Art of Performance Tuning for CUDA and Manycore Architectures

David Tarjan (NVIDIA) Kevin Skadron (U. Virginia) Paulius Micikevicius (NVIDIA)

Outline

- Case study with an iterative solver (David)
 Successive layers of optimization
- Case study with stencil codes (Kevin)

 Trading off redundant computation against bandwidth
- General optimization strategies and tips (Paulius)

Example of Porting an Iterative Solver to CUDA

David Tarjan (with thanks to Michael Boyer)

MGVF Pseudo-code

MGVF = normalized sub-image gradient do {

Compute the difference between each element and its eight neighbors

Compute the regularized Heaviside function across each matrix

Update MGVF matrix

Compute convergence criterion

} while (not converged)

Naïve CUDA Implementation

	250x -								
TLAB	200x -								
r MA	150x -								
dup ove	100x -								
pee	50x -								
0)	0	2.0x	7.7x	0.8x					
	0x -	С	C + OpenMP	Naïve CUDA					
						CUDA			
 Kernel is called ~50.000 times per frame 									
 Amount of work nor call is small 									
	• <i>F</i>	ALLOULL	_ ΟΓ ΥΥΟΓΚ			111			

- Runtime dominated by CUDA overheads:
 - Memory allocation
 - Memory copying
 - Kernel call overhead

Kernel Overhead

- Kernel calls are not cheap!
 - Overhead of one kernel call: 9 μ s
 - Overhead of one CPU function: 3 ns
- Heaviside kernel:
 - 27% of kernel runtime due to computation
 - 73% of kernel runtime due to kernel overhead

Lesson 1: Reduce Kernel Overhead

- Increase amount of work per kernel call
 - Decrease total number of kernel calls
 - Amortize overhead of each kernel call across more computation

Larger Kernel Implementation

MGVF = normalized sub-image gradient do {

Compute the difference between each pixel and its eight neighbors

Compute the regularized Heaviside function across each matrix

Update MGVF matrix

Compute convergence criterion

} while (! converged)

Larger Kernel Implementation

Memory Allocation Overhead

Lesson 2:

Reduce Memory Management Overhead

- Reduce the number of memory allocations
 - Allocate memory once and reuse it throughout the application
 - If memory size is not known a priori, estimate and only re-allocate if estimate is too small

Reduced Allocation Implementation

Lesson 3:

Reduce Memory Transfer Overhead

- If the CPU operates on values produced by the GPU:
 - Move the operation to the GPU
 - May improve performance even if the operation itself is slower on the GPU

GPU Reduction Implementation

MGVF = normalized sub-image gradient do {

Compute the difference between each pixel and its eight neighbors

Compute the regularized Heaviside function across each matrix

Update MGVF matrix

Compute convergence criterion

} while (! converged)

Kernel Overhead Revisited

- Overhead depends on calling pattern:
 - One at a time (synchronous): 9 µs
 - Back-to-back (asynchronous): 3 µs

Lesson 1 Revisited: Reduce Kernel Overhead

- Increase amount of work per kernel call
 - Decrease total number of kernel calls
 - Amortize overhead of each kernel call across more computation
- Launch kernels back-to-back
 - Kernel calls are asynchronous: avoid explicit or implicit synchronization between kernel calls
 - Overlap kernel execution on the GPU with driver access on the CPU

GPU Reduction Implementation

Persistent Thread Block

MGVF = normalized sub-image gradient

do { Compute the difference between each pixel and its eight neighbors Compute the regularized Heaviside function across each matrix Update MGVF matrix Compute convergence criterion

} while (! converged)

Persistent Thread Block

- Problem: need a global memory fence
 - Multiple thread blocks compute the MGVF matrix
 - Thread blocks cannot communicate with each other
 - So each iteration requires a separate kernel call
- Solution: compute entire matrix in one thread block
 - Arbitrary number of iterations can be computed in a single kernel call

Persistent Thread Block: Example

MGVF Matrix

Canonical CUDA Approach

(1-to-1 mapping between threads and data elements) MGVF Matrix

Persistent Thread Block

Persistent Thread Block: Example

Canonical CUDA Approach

(1-to-1 mapping between threads and data elements)

Persistent Thread Block

Lesson 4: Avoid Global Memory Fences

- Confine dependent computations to a single thread block
 - Execute an iterative algorithm until convergence in a single kernel call
 - Only efficient if there are multiple independent computations

Persistent Thread Block Implementation

Absolute Performance

Conclusions

- CUDA overheads can be significant bottlenecks
- CUDA provides enormous performance improvements for leukocyte tracking
 - 200x over MATLAB
 - 27x over OpenMP
- Processing time reduced from >4.5 hours to <1.5 minutes
- Real-time analysis feasible in near future

When Wasting Computation is a Good Thing

Kevin Skadron Dept. of Computer Science University of Virginia

with material from Jiayuan Meng, Ph.D. student

Where is the Bottleneck?

CPU

CPU-GPU communication/coordination

GPU memory bandwidth

- Maximize efficiency of memory transactions
 - Traversal order, coalescing
- Maximize reuse
 - Avoid repeated loading of same data (e.g. due to multiple iterations, neighbor effects)
- Cache capacity/conflicts
 - Important to consider the combined footprint of all threads sharing a core
 - Goldilocks tiles

Where is the Bottleneck, cont.

• Global synch costs

- Global barriers/fences are costly
- Block-sized tasks that can operate asynchronously—braided parallelism—may be preferable to multi-block data parallelism

Processor utilization

- Maximize occupancy, avoid idle threads
 - This gives more latency hiding, but beware contention in the memory hierarchy
- Avoid SIMD branch/latency divergence
- Minimize intra-thread-block barriers (___syncthreads)
- Match algorithm to architecture work-efficient PRAM algorithms may not be optimal
- Resource conflicts can limit utilization
 - e.g., bank conflicts

Prioritizing = Modeling

- Improving reuse may require more computation – find optimum?
- Solution 1: Trial and error
- Solution 2: Profile, build a performance model
- Solution 3: Auto-tune
 - Mainly useful for tuning variables within an optimized algorithm, e.g. threads/block, words/load
 - Costs of auto-tuning can outweigh benefits

Iterative Stencil Algorithms

How accurate is it?

Performance at predicted trapezoid height no worse than 98% opt (ICS'09)
Then use auto-tuning to find the optimum

ENGINEERING

Establishing an analytical performance model

Computation vs. Communication

Normalized to trapezoid height = 1

- LoadSten: loading all input data for a trapezoid (including the ghost zone)
- Commit: Storing the computed data into the global memory
- MiscComp: Computation time spent in initialization (get thread and block index, calculate borders, etc)
- IterComp: The major computation within iterations (assuming mem. latency is 0)
- GlbSync: Global synchronization, or kernel restart overhead

When to apply ghost zones?

- Lower dimensional stencil operations
- Narrower halo widths
- Smaller computation/communication ratio
- Larger tile size
- Longer synchronization latency

Summary

- Find bottlenecks
- Be willing to modify the algorithm
- Consider auto-tuning

Related Work

- Redundant computation partition [L. Chen Z.-Q. Zhang X.-B. Feng.]
- Ghost zone + time skewing (static analysis) [S. Krishnamoorthy et al.]
- Optimal ghost zone size on message-passing grid systems [M. Ripeanu, A. lamnitchi, and I. Foster]
- Adaptive optimization on grid systems [G. Allen et al.]
- Data replication and distribution [S. Chatterjee, J.R. Gilbert, and R. Schreiber][P. Lee]
- Ghost zone on GPU [S. Che et al.]

Experiments

Architecture parameters

clock rate	1.3 GHz
coalesce width	16
warp size	32
number of SMs	30
concurrent blocks per SM	8
number of SPs per SM	8
SP pipeline depth	4
average CPI	4
memory bandwidth	141.7 GBytes/sec
maximum number of threads per block	512
maximum memory pitch	262144 bytes

•Dynamic Programming

- •ODE solver
- •PDE solver
- Cellular Automata
- (Conway's Game of Life)

Benchmark parameters

	PathFinder	HotSpot	Poisson	Cell
stencil dimensionality	1	2	2	3
stencil size	3	3×3	3×3	$3 \times 3 \times 3$
halo width	2	2×2	2×2	$2 \times 2 \times 2$
NumStencilArrays	1	2	1	1
NumElemPerOp	1	0	0	0
Profiling	100,000	$500 \times$	$500 \times$	60×60
Input $Size(N)$		500	500	$\times 60$
$InstsPerSM_{MC}$	1998	13488	12825	71603
$InstsPerSM_{IC}$	1859	16645	12474	220521

Although the prediction error ranges from 2% to 30%, the performance model captures the overall scaling trend for all benchmarks.

How to optimize performance?

- Gathering architecture parameters (once for each architecture)
- Profiling application parameters (small input suffice, once for each application)
- Calculate the optimal ghost zone size using the analytical performance model
- Adjust the code accordingly/Automatic code generation

Tuning Kernel Performance

Paulius Micikevicius NVIDIA

Keys to Performance Tuning

- Know what limits your kernel performance
 - Memory bandwidth
 - Instruction throughput
 - Latency
 - Often when not hitting the memory or instruction throughput limit
- Pick appropriate performance
 - For example, Gflops/s not meaningful for bandwidth-bound apps

Memory Throughput

• Know the achievable peak

- Theoretical peak = clock rate * bus width
- About 75-80% is achievable in a memcopy

Two ways to measure throughput

- App: bytes accessed by the app / elapsed time
- Hw: bytes moved across the bus / elapsed time
 - Use Visual Profiler
 - Keep in mind that total kernel (not just mem) time is used

• App and Hw throughputs can be different

- Due to access patterns
- Indicates how efficiently you are using the mem bus

Optimizing Memory-bound Kernels

- Large difference between app and hw throughputs
 - Look to improve coalescing (coherent access by a warp, see SC09 CUDA tutorial slides, CUDA Best Practices Guide for more details)
 - Check whether using texture or constant "memories" suits your access pattern
- Consider "compression" when storing data
 - For example, do arithmetic as fp32, but store as fp16
 - Illustration: Mike Clark's (Harvard) work on QCD (SC09 CUDA tutorial slides)
- Consider resizing data tile per threadblock

May reduce the percentage of bandwidth consumed by halo

Instruction throughput

• Possible limiting factors:

- Raw HW instruction issue rate
- Serialization within warps, due to:
 - Divergent conditionals
 - Shared memory bank conflicts

Instruction Issue Rate

• Know the kernel instruction mix

- fp32, fp64, int, mem, transcendentals
- These have different throughputs
- Could look at PTX (virtual assembly)
 - Not the final optimized code
- Machine-language disassembler coming soon

• Know the hw throughput rates for various instruction types

Programming guide / Best practices guide

• Visual Profiler reports instruction throughput

– Currently it's the ratio:

(instructions issued) / (fp32 instructions that could have been issued in the same elapsed time)

- Could go over 1.0 if dual-issue happens
- Currently not a good metric for fp64, or transcendental instructionbound codes

Serialization

- One of:
 - Smem bank conflicts, const mem bank conflicts
 - Warp divergence
 - A few others (much less frequent)
- Profiler reports serialization and divergence counts
- Impact on performance varies from kernel to kernel
- Assess impact before optimizing
 - The below will give a perf estimate, but incorrect output
 - Smem: change indexing to be either broadcasts or just thread ID
 - Divergence: change the condition to always take the same path (try both paths to see what each costs)

Latency

- Often the cause when neither memory nor instruction throughput rates are close to the peak rate
 - Insufficient threads per multiprocessor to hide latency
 - Consider grouping independent accesses by a thread
 - Too few threadblocks when using many barriers per kernel
 - In these cases should aim at 3-4 concurrent threadblocks per multiprocessor
- Fermi will have some performance counters to help detect

Threads per Multiprocessor and Latency Hiding

- Memcopy kernel, one word per thread
- Quadro FX5800 GPU (102 GB/s theoretical)

Another Perf Measurement Hack

- Separate and time kernel portions that access memory and do "math"
 - Easier for codes that don't have data-dependent accesses or arithmetic
- Comment out as much math as possible to get "memoryonly" kernel
- Comment out memory accesses to get "math-only" kernel
 - Commenting reads is straightforward
 - Can't comment out writes = compiler will throw away "dead" code
 - Put writes in an if-statement that always fails (but compiler can't figure that out)
- Comments also work well for assessing barrier (__syncthreads) impact on performance