
Acceleration of Frequent Itemset Mining on FPGA
Using SDAccel and Vivado HLS

Vinh Dang and Kevin Skadron
Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

vqd8a@virginia.edu, skadron@virginia.edu

Abstract—Frequent itemset mining (FIM) is a widely-used

data-mining technique for discovering sets of frequently-
occurring items in large databases. However, FIM is highly time-
consuming when datasets grow in size. FPGAs have shown great
promise for accelerating computationally-intensive algorithms,
but they are hard to use with traditional HDL-based design
methods. The recent introduction of Xilinx SDAccel development
environment for the C/C++/OpenCL languages allows developers
to utilize FPGA’s potential without long development periods
and extensive hardware knowledge. This paper presents an
optimized implementation of an FIM algorithm on FPGA using
SDAccel and Vivado HLS. Performance and power consumption
are measured with various datasets. When compared to state-of-
the-art solutions, this implementation offers up to 3.2x speedup
over a 6-core CPU, and has a better energy efficiency as
compared with a GPU. Our preliminary results on the new
XCKU115 FPGA are even more promising: they demonstrate a
comparable performance with a state-of-the-art HDL FPGA
implementation and better performance compared to the GPU.

Keywords—Frequent itemset mining; field-programmable gate
array (FPGA); hardware acceleration; hardware description
language (HDL); high-level synthesis (HLS)

I. INTRODUCTION
Frequent itemset mining (FIM) is a computationally-

intensive data-mining technique that was originally developed
for market basket analysis [1]. It aims to derive the rules
underlying such phenomena as shopping behavior of customers
in supermarkets or online shops, or relatedness of events.
Specifically, it finds frequently-occurring subsets from a
database of transactions. The frequency of a subset is measured
by support ratio, which is the number of transactions
containing the subset divided by the total number of
transactions. Among the best-known FIM algorithms are
Apriori [2], Eclat [3], and FP-growth [4]. Apriori iteratively
performs three stages, namely candidate generation, support
counting, and candidate pruning. It utilizes a breadth-first
search to traverse the itemset candidate space. Eclat also uses a
candidate generation strategy but uses a depth-first search to
traverse the candidate space recursively. Eclat is more efficient
in memory than Apriori but makes it hard to parallelize. FP-
growth is another popular FIM algorithm introduced in [4]. By
using a data structure called a Frequent-Pattern tree that
contains all the information from the input database, FP-growth
requires only two scans of the database. FP-growth generally
has better performance than Apriori and Eclat, but its high
memory requirement prevents its use for very large datasets.

Recently, a number of hardware-accelerated solutions for
FIM algorithms have been developed [5], [6]. In [5], a state-of-

the-art, to our knowledge, FPGA implementation was proposed
to accelerate the Eclat algorithm on a four-FPGA board with a
binary representation of itemsets. In [6], a GPU-accelerated
algorithm, called Frontier Expansion (FE), was proposed. The
FE algorithm uses both breadth-first search and depth-first
search to provide more parallelism. The parallel paradigm is
generalized by a producer-consumer model that makes the
implementation applicable to a heterogeneous environment
consisting of CPUs and GPUs. To the best of our knowledge,
the FE algorithm [6] is the fastest parallel FIM implementation.

Over the past few years, FPGAs have proven their potential
in variety of applications with high performance and energy
efficiency compared to other computing platforms. This makes
FPGAs compelling choices for datacenters, where energy
efficiency and power provisioning are both critical factors. For
example, Microsoft has designed a customized FPGA board
Catapult and deployed it in its datacenters [7], which improved
the ranking throughput of the Bing search engine by 2x.
However, FPGA designs are often implemented in low-level
HDLs such as Verilog and VHDL, which can be time-
consuming, and requires a long learning curve on both
programming and performance optimizations [8]. Recent
advances in high-level synthesis (HLS) allow developers to
specify computationally-intensive algorithms in conventional
high-level languages such as C/C++ and OpenCL, [9], [10].
The HLS tools can automatically transform the algorithms to
HDL implementations and compile them into FPGA hardware
binaries. This process does not require extensive knowledge of
FPGA hardware or memory interfaces, which reduces
development time and cost. The Xilinx SDAccel development
environment is built on the existing Vivado HLS capabilities
with an optimized compiler that comprehends not only C/C++
but also OpenCL. Internally, it uses Vivado place-and-route
engine. The environment currently focuses on x86 CPU-based
systems with PCIe interfaces to FPGA-based add-in boards.

In this work, we adopt the Frontier Expansion framework
and implement it using SDAccel targeting an Alpha Data
ADM-PCIE-KU3 board equipped with a Kintex UltraScale
XCKU060 FPGA. We choose to develop our kernel in C/C++
language to leverage Vivado HLS for efficient architectural
optimizations. One advantage of this framework is that it can
easily be extended further for a heterogeneous platform of
FPGAs, GPUs and CPUs. In this paper, performance and
power consumption are measured with various datasets. We
compare the performance of the FPGA implementation over a
range of minimum support values against the implementations
in [6] on both multi-core CPU and GPU. We also present
preliminary results using the Kintex UltraScale XCKU115

978-1-5090-4825-0/17/$31.00 ©2017 IEEE

FPGA, which has larger resources and higher memory
bandwidth, and compare our implementation with the HDL
FPGA implementation of the Eclat algorithm in [5].

II. IMPLEMENTATION OF FRONTIER EXPANSION ALGORITHM
Details of the Frontier Expansion (FE) algorithm can be

found in [6]. In this section, we provide a brief overview to
help our discussion on its FPGA implementation. The FE
algorithm uses a bitvector representation, where each item is
represented by a binary sequence of transactions. Each bit in
the sequence denotes a transaction and is set to one if the item
is contained in the transaction. It is noted that the bitvector
length is fixed for all items. With the bitvector representation,
support counting can be performed using bitwise logical
operations. The candidates are stored in a data structure called
the “frontier stack,” managed by the CPU. Each stack element
contains one candidate and a reference to its bitvector in the
FPGA’s DRAM. The algorithm repeatedly expands the stack
by generating new candidates from old candidates with the
common prefix on the top of the stack, and deleting the
infrequent candidates from the stack. Specifically, the new
candidates are generated by intersecting the old candidates and
the support counts of the new candidates are computed on the
FPGA. In order to avoid the overhead of repeated memory
allocations and deallocations during the expansion, the largest
possible contiguous block of memory (dubbed memory pool)
in the FPGA’s DRAM is allocated for the largest possible
datasets (i.e. maximal number of bitvectors). A CPU-based
runtime manager is used to issue and revoke the free addresses
in the stack.

A. Candidate Generation on CPU
The frontier stack is organized by clustering candidates into

equivalent classes, which contains a set of candidates with the
same size, sharing the common prefix. The initial contents of
the stack are 1-itemsets, which are all in the same equivalence
class. During the candidate generation (as shown in Fig. 1),
equivalent classes are popped from the stack and their
candidates are self-joined to generate new equivalent classes,
containing new candidates. The process continues until the size
of the new candidate list is larger than a predefined
threshold. The supports of these new candidates are then
counted by the FPGA kernel. Those new candidates that meet
the minimum support threshold are pushed back into the stack.
Note that the expansion procedure is repeated, which implies
the FPGA kernel is called repeatedly, until the stack is empty.
The larger the threshold, the more candidates generated,
which leads to fewer number of FPGA kernel calls, but
requires a larger memory space. Hence, the value of
threshold is chosen as a tradeoff between performance and
memory usage. In this work, we set threshold equal to 8192.

B. Support-Counting on FPGA
After new candidates are generated on the CPU, the

addresses of the bitvectors of the candidates (old and new) are
given to the FPGA support-counting kernel. The FPGA kernel
(its pseudo-code is shown in Fig. 2) computes bitvector
intersections and population counts (i.e. support values) for
each new bitvector (i.e. new candidate). The kernel receives an

Fig. 1. Pseudo-code of the Frontier Expansion algorithm.

threshold×3 array. The array consists of three sub-arrays,
namely src_list1, src_list2, and dst_list, which store
the addresses referencing to two source bitvectors and one
destination bitvector. The kernel first reads the source bitvector
src_bitvec1 indexed by src_list1, and stores it in BRAM.
Then, it executes the intersection and counting operations
while loading src_bitvec2 indexed by src_list2 at the same
time. The intersection results is stored in BRAM and then
written into the destination bitvector, dst_bitvec, referenced by
dst_list. It should be noted that src_bitvec1, src_bitvec2,
and dst_bitvec are all stored in a memory pool (i.e. “base”
array in Fig. 2) in FPGA’s DRAM as discussed before.

Several optimization techniques are applied in the FPGA
kernel implementation, including:

(1) loop pipelining for the loop at line 8 in Fig. 2;

(2) data packing the base buffer for a wider bitwidth (512
bits) of the memory interface to increase the global memory
bandwidth;

(3) partitioning buf_src1 and buf_dst into 16 physical
BRAMs instead of one single BRAM for each to improve the
pipelining in line 8. Each buffer can sustain 16 concurrent
transactions;

(4) partially unrolling the loop at line 8 by a factor of 16
which allows 16 samples to be processed in parallel;

(5) reducing the number of data transfers from DRAM to
BRAM (line 6) by reusing bitvector in buf_src1 (BRAM) as
much as possible;

Fig. 2. Pseudo-code of support counting on FPGA.

(6) reducing the number of data transfers from BRAM to
DRAM (line 13) by only transferring new candidates if their
supports are greater than the minimum support ratio.

C. Producer-Consumer Model
The support-counting kernel is synthesized on one compute

unit (CU) (defined as the element in the FPGA device onto
which the kernel is executed [10]). Each topmost branch of the
search tree is processed sequentially. However, each branch
can be expanded independently with its own allocated memory
pool on DRAM. If multiple CUs are synthesized on the device,
these expansions can be done in parallel, as long as there are
enough resources on the FPGA device and on the DRAM. We
use a producer-consumer model, [6], to scale the FE algorithm
to a multi-CU architecture. After 1-itemsets are initialized in
the frontier stack, the producer thread splits topmost branches
(i.e. equivalent classes) and inserts them into a shared buffer.
The consumer threads process one class at a time from that
buffer. When the buffer is full, the producer stops until one
class is consumed by a consumer thread. The producer thread
finishes when all the equivalent classes are generated and
inserted into the buffer. In our FPGA implementation, each
consumer thread is assigned to a CU on the FPGA. This model
can also be realized on a multi-CU multi-FPGA architecture.

III. RESULTS
We compare the FPGA implementation with the single-

core CPU (1CPU), the 6-core CPU (6CPU) and the GPU-
accelerated (1GPU) implementations of FE. Because the FPGA
only accelerates the support-counting operation, we show the
performance results of both the counting operation (FPGA
only) and the total computation (FPGA+CPU) in this section.
The two following systems are utilized for experiments:

• CPU and GPU: the system is equipped with an Intel 6-Core
i7-5820K (3.3GHz), 32GB DDR4 RAM, and an Nvidia Kepler
K80 (12GB GDDR5 memory). The system uses CUDA 8.0.

• FPGA: the system is populated with an Intel 4-Core i7-
4820K (3.7GHz), 32GB DDR3 RAM, and an ADM-PCIE-
KU3 board featuring Kintex UltraScale XCKU060 FPGA and
16 GB of DDR3 memory. The system uses SDAccel 2016.2.

For all implementations, we compare the performance over
a range of relative minimum support values. The relative
minimum support number is defined as the ratio of minimum
support number to the total number of transactions.

One commonly-used real-world dataset, Accidents,
obtained from the Frequent Itemset Mining Dataset Repository
[11], and one synthetic dataset, T80I20N0_3D2000K, obtained
from the IBM Market-Basket Synthetic Data Generator are
tested. The third dataset, T60I20N0_5D500K, is used for
comparison with the Eclat FPGA implementation in [5]. The
details of these datasets are shown in Table 1.

TABLE I. REAL-WORLD AND SYNTHETIC DATASETS

Dataset Trans# Item# Size(MB)

Accidents (real-world) 340183 468 34

T80I20N0_3D2000K (synthetic) 2M 300 516

T60I20N0_5D500K (synthetic) 500K 500 103

A. Impact of Optimization Techniques
It is important to study the impacts of individual

optimization techniques (Section II.B) in our FPGA
implementation, since the performance can be significantly
improved with proper optimizations. In Fig. 3, we show
speedups, as optimizations applied, with respect to the FPGA
implementation with no optimization, dubbed Non-Opt. Note
that since optimization (2) through (4) are related to throughput
improvement, we group them together with optimization (1)
into Opt1_to_4 in Fig. 3. The All-Opt in the figure denotes the
performance when all optimizations are applied. As shown,
through loop unrolling, we can allocate more resources to
allow more concurrency in the FPGA kernel. Along with data
packing and BRAM partitioning, we can achieve significant
performance speedup (increased from 3x with Opt1 to ~30x
with Opt1_to_4). When all optimizations are utilized, the
performance speedups with respect to the Non-Opt reach 43.6x
and 78.2x for Accidents and T80I20N0_3D2000K,
respectively. Due to this significant improvement, we only
present the results of FPGA implementations with all
optimizations applied in the following sections.

Fig. 3. Performance of optimization techniques on the FPGA.

B. Performance
Fig. 4 shows the runtimes of the CPU implementations

(1CPU and 6CPU), the GPU implementation and the FPGA
implementations (using 1 CU, 2 CUs, and 4 CUs) on two
datasets. It is observed that the runtimes of all implementations
grow exponentially as minimum support number decreases.
However, GPU and FPGA implementations show less runtime
and slower growth of runtimes as minimum support number
decreases. We also show speedup results of the FPGA and the
GPU versus the 6-core CPU, in Fig. 5. For the sake of brevity,
we do not show speedup results with respect to the 1-core
CPU. However, speedup ratios can be easily calculated based
on the runtimes in Fig. 4. The GPU implementation
outperforms the FPGA implementations, even when multiple
CUs are used. To explain this, we revisit some details of the
GPU implementation in [6]. During the FE process, the CUDA
kernel reads bitvectors from the global memory, performs
computations, and saves the intermediate bitvectors to the
global memory. Each bitvector intersection is computed by one
block. Threads within a block collectively process intersections
of the two bitvectors. In other words, each iteration in the FOR
loop at line 5 in Fig. 2 is corresponding to a block and these
massively parallel blocks can run concurrently performing
load/store operations to GPU global memory. However, this is
not the case in our FPGA implementations. In FPGA systems,

the load/store operations from/to global memory will compete
for the on-board global memory bandwidth. Moreover, the
FPGA’s global memory system lacks a dedicated cache
hierarchy like in the GPU, which causes the global memory
transactions to be less efficient than that of the GPU. Thus, in
the FPGA implementations, the FOR loop at line 5 in Fig. 2 is
sequential. The parallelization is only applied to the inner loop
at line 8 through pipelining and unrolling. Moreover, since
source bitvectors and resulting bitvectors are stored in the same
global memory space, which prevents the loop at line 8 from
being fully pipelined, it costs extra memory transfers between
DRAM and BRAM. These make the FPGA implementations
slower than the GPU implementation. Hence, a GPU-like
global memory system is desirable for future FPGAs.

Minimum support threshold is used by support counting to
filter infrequent candidates from new candidate sets. This
threshold affects not only the number of new itemsets but also
the search depth of the algorithm. Our analysis demonstrates
that FPGA implementations achieve better performance over
CPU implementations for low minimum support values. It is
apparent that lower support ratios result in more computation
for support counting, and the FPGA kernel is parallelized
better than CPU implementations for this purpose. As shown in
Fig. 5, FPGA speedup ratios with respect to a 6-core CPU can
be achieved up to 1.27 (1-CU) and 2.65 (4-CU) for Accidents
and 1.63 (1-CU) and 3.16 (2-CU) for T80I20N0_3D2000K, at
the relative minimum support of 0.08.

0.080.120.160.20.240.280.3
10-1

100

101

102

103

104

Relative Minimum Support

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
.)

"Accidents" dataset

1CPU-Counting
1CPU-Total
6CPU-Counting
6CPU-Total
1GPU-Counting
1GPU-Total

1CU-Counting
1CU-Total
2CU-Counting
2CU-Total
4CU-Counting
4CU-Total

(a) Accidents

0.080.120.160.20.240.280.3
10-2

10-1

100

101

102

103

104

Relative Minimum Support

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
.)

"T80I20N0-3D2000K" dataset

1CPU-Counting
1CPU-Total
6CPU-Counting
6CPU-Total
1GPU-Counting
1GPU-Total

1CU-Counting
1CU-Total
2CU-Counting
2CU-Total
4CU-Counting
4CU-Total

(b) T80I20N0_3D2000K

Fig. 4. Performance results of CPU, GPU and FPGA implementations.

0.080.120.160.20.240.280.3
10-1

100

101

102

Relative Minimum Support

Sp
ee

du
p

ra
tio

"Accidents" dataset - w.r.t. 6 CPUs

1GPU-Counting
1GPU-Total
1CU-Counting

1CU-Total
4CU-Counting
4CU-Total

(a) Accidents

0.080.120.160.20.240.280.3
10-1

100

101

102

Relative Minimum Support

Sp
ee

du
p

ra
tio

"T80I20N0-3D2000K" dataset - w.r.t. 6 CPUs

1GPU-Counting
1GPU-Total
1CU-Counting

1CU-Total
2CU-Counting
2CU-Total

(b) T80I20N0_3D2000K

Fig. 5. Speedups over 6-core CPU implementation.

For multi-CU FPGA implementation, each CU should be
assigned to a separate bank for optimum memory access. More
than one CU sharing a memory bank can lead to performance
degradation, especially for large dataset, because of memory
access contention. Note that the KU3 FPGA board has two
DDR3 banks. Taking into account this limiting factor and the
hardware resource of the FPGA device, we can synthesize up
to four CUs on this board, where two CUs share one DDR3
bank. The 4-CU design gives the best performance for
Accident dataset while it cannot deliver this for larger dataset.
For T80I20N0_3D2000K dataset, the 2-CU design shows
better performance than the 4-CU. Provisioning more memory
banks in future generations of FPGA boards can solve the issue
of performance degradation with higher number of CUs.

C. Performance Projection
In the multi-CU FPGA implementation, since the KU3

FPGA board only has two memory banks, multiple CUs might
have to share a memory bank, which causes performance
degradation. Hence, in order to investigate the performance
scalability with increasing the number of CUs, we project the
FPGA results into larger FPGAs with more memory banks. We
assume up to 12 memory banks and 12 CUs can be used.

Based on the runtimes of each equivalent class expansion
in the 1-CU design, the producer-consumer model is utilized to
project runtimes onto larger number of CUs. Fig. 6 shows the
projected speedups with respect to 1-CPU and 6-CPU
implementations at the minimum support value of 0.1 for
T80I20N0_3D2000K dataset. The dashed curves denote the
projected results while the solid curves indicate the measured
results of 1-CU, 2-CU and 4-CU designs. As shown in Fig. 6,
we can achieve speedups up to 28.3x (w.r.t 1CPU) and 6.5x
(w.r.t 6CPU) using 12 CUs for T80I20N0_3D2000K.
Similarly, for Accidents, these numbers are 10.5x and 4.0x
with respect to 1-core CPU and 6-core CPU, respectively.
Although the multi-CU implementation shows relatively good
projected speedups, it does not show good scalability, as can be
seen in Fig. 6. The main reason is the imbalance of the search
trees, which may have some extremely long branches. CUs
responsible for these branches will dominate and execute
longer than other CUs. Hence, it is essential to have a better
distribution scheme that can equally assign the workload to the
required CUs.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Number of CUs

Sp
ee

du
p

ra
tio

FPGA vs CPU - T80I20N0-3D2000K - supp. 0.1

Supp. Count. (vs. 1 core)
Total (vs. 1 core)
Supp. Count. (vs. 6 cores)
Total (vs. 6 cores)
Supp. Count. (vs. 1 core) (est)
Total (vs. 1 core) (est)
Supp. Count. (vs. 6 cores) (est)
Total (vs. 6 cores) (est)

Fig. 6. Projected speedups w.r.t CPUs of the FPGA implementation.

D. Power Analysis and Energy Efficiency
Since SDAccel has not supported on-board power

measurement, and the GPU and the FPGA are located on
different systems, we decide to measure dynamic power.
Power utilization of the entire system is recorded at one second
intervals with a Watts up? PRO power meter. The procedure is
as follows: (1) measuring the power usage of the idle system;
(2) measuring the power usage of the system while it is
performing the FE algorithm; (3) dynamic power is calculated
as the difference between active power and idle power. The
power results of the CPU, the GPU and the FPGA for
Accidents and T80I20N0_3D2000K at the minimum support
value of 0.1 are shown in Fig. 7.

To investigate the energy efficiency, we look at energy-
delay products. Fig. 8 shows energy efficiency of the GPU and
the FPGA against CPU for both datasets. Speedups are given in
parentheses for convenient comparison. Actual measurements
are represented in solid bars (6CPU, 1GPU, 1CU, 2CU, 4CU,
respectively). FPGA implementations are faster and more
energy efficient than 6-core CPU implementation while they
are slower than GPU. However, when energy is considered, the
gap between GPU and FPGA becomes narrower. For example,

Fig. 7. Dynamic power consumption of CPU, GPU, and FPGA.

the energy efficiency of the 2-CU FPGA implementation on
T80I20N0_3D2000K dataset is comparable to that of the GPU
(6.2x vs. 6.9x).

One of the main factors that causes inferior performance of
FPGA compared to GPU is data transfers between global
memory and BRAM. Storing intermediate bitvectors on chip
in a scratchpad can potentially improve FPGA performance.
Since the actual BRAM capacity is limited, we use a
scratchpad simulator to simulate the FPGA kernel operation
with varying scratchpad sizes. Exploiting the SDAccel
timeline trace collection feature, we measure the actual
runtimes of individual loops in the FPGA kernel (i.e. loops in
line 6, line 8, and line 13 in Fig. 2). Using these runtimes and
the scratchpad simulator, we can estimate the FPGA kernel
runtime based on the required scratchpad accesses. However,
we observe that the use of scratchpad only shows improved
performance with very large scratchpad size. Hence, we only
include the results of ideal cases in which the scratchpad size
is assumed to be very large to keep all necessary bitvectors in
Fig. 8 (bars with spm in their names). As demonstrated in Fig.
8, the simulated FPGA implementation can achieve up to 4.5x
(T80I20N0_3D2000K dataset) speedup over the 6-core CPU.
In terms of energy efficiency, FPGA can obtain 7.5x more
efficient than the 6-core CPU while the GPU achieves 6.9x.

These results show that despite the modest XCKU060
FPGA, with proper optimization, we can achieve better energy
efficiency compared to GPUs and multiple times better
compared to multi-core CPUs. With the latest FPGAs and
more optimized SDAccel environment, we expect FPGAs to
be more competitive against GPUs.

Fig. 8. Energy efficiency of GPU and FPGA, normalized to CPU results.

E. Preliminary Results with Nimbix Cloud
We also test our FPGA designs with the new Xilinx XIL-

ACCEL-RD-KU115 board, equipped with a Kintex UltraScale
XCKU115 FPGA and four DDR4 banks (16GB total). The
KU115 board enables synthesizing kernels at 300MHz clock
compared to 250MHz clock (KU3 board used in previous
experiments). The KU115 board is accessed through Nimbix
Cloud. The system that hosts the KU115 board is populated
with an Intel Xeon 8-Core E5-2640 v3 (2.6GHz), 128GB
DDR4 RAM, and SDAccel 2016.4. Since these experiments
were carried out on the cloud, where is hard to acquire power
utilization, we only present the performance results in this
section.

In Fig. 9, we show the runtimes performed for the
T80I20N0_3D2000K dataset (min. sup. 0.1) on the KU115
board along with the results of the CPU, the GPU and the
FPGA on KU3 board. We also extend the projection to the 12-
CU design for KU115 board use the projection approach in
Section III.C. With KU115 board, we can achieve ~2x better
speedup compared to KU3 board. The runtime of the 12-CU
design for T80I20N0_3D2000K dataset is comparable to the
runtime of GPU (35.4s vs. 36.3s), so we project this would
also be significantly more energy efficient, since FPGAs
typically use much less power than GPUs.

In Fig. 10, we also compare our FPGA implementation
with the state-of-the-art FPGA implementation of the Eclat
algorithm [5]. The design in [5] was developed using VHDL
and tested on GiDEL PROCStar III PCIe board, containing 4
Altera Stratix III 260 FPGAs, with each FPGA connected to
three DRAM memory banks. Up to 12 processing elements
can run on the entire board at 200MHz (denoted as 12PE_ref
in Fig. 10). To have a fair comparison, the experiment is
conducted with the smaller dataset T60I20N0_5D500K (min.
sup. 0.02). It is observed that the 4-CU design on KU115
board is close to 12PE_ref while the 12-CU design are ~2x
better than 12PE_ref. With this small dataset, the 12-CU
design on KU115 board even shows better performance than
GPU.

IV. CONCLUSIONS
In this paper, we present an FPGA implementation of the

FE algorithm using SDAccel and Vivado HLS. Performance
and energy efficiency are compared with multi-core CPU,
GPU and state-of-the-art FPGA implementations. An
empirical model used to project the FPGA runtime on a larger
FPGA with more memory banks is presented.

With the KU3 FPGA board, although we could not beat
the GPU performance, we could achieve better energy
efficiency than GPU, and could beat multi-core CPU in terms
of performance and power efficiency. Our preliminary results
on the new KU115 FPGA board demonstrate a comparable
performance with the state-of-the-art FPGA implementation
and even a better performance compared to GPU. It is highly
promising that such performance and power efficiency can be
achieved on FPGAs with a high-level language such as
C/C++. An investigation of the FE algorithm on a
heterogeneous platform will be targeted in our future work.

Fig. 9. Runtimes of CPU, GPU, FPGA (KU3) and FPGA (KU115)
(T80I20N0_3D2000K, min. sup. 0.1).

Fig. 10. Runtimes of CPU, GPU, FPGA (KU3) and FPGA (KU115)
(T60I20N0_5D500K, min. sup. 0.02).

ACKNOWLEDGMENT
We thank Xilinx for providing us generous support on

Xilinx FPGA boards, as well as remote access to SDAccel
Development Environment in the Nimbix Cloud.

REFERENCES
[1] K. Wang, Y. Qi, J. J. Fox, et al., “Association rule mining with the

Micron Automata Processor,” in Proceedings of the 2015 IEEE
International Parallel and Distributed Processing Symposium, pp. 689-
699, May 25-29, 2015.

[2] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. of 20th Intl. Conf. on VLDB, pp. 487-499, 1994.

[3] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Trans.
on Knowl. and Data Eng., vol. 12, no. 3, pp. 372–390, 2000.

[4] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. of SIGMOD’00, 2000.

[5] Y. Zhang, F. Zhang, Z. Jin, et al., “An FPGA-based accelerator for
frequent itemset mining,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 6, no. 1, May 2013.

[6] F. Zhang, Y. Zhang, and J. D. Bakos, “Accelerating frequent itemset
mining on graphics processing units,” J. Supercomput., vol. 66, no. 1,
pp. 94–117, 2013.

[7] Y.-K. Choi, J. Cong, Z. Fang, et al., “A quantitative analysis on
microarchitectures of modern CPU-FPGA platforms,” 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX,
2016, pp. 1-6.

[8] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce
framework on OpenCL-based FPGAs,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 12, pp. 3547-3560, December 2016.

[9] Altera Corporation. Altera SDK for OpenCL. [Online]. Available:
https://www.altera.com/products/design-software/embedded-software-
developers/opencl/overview.html

[10] Xilinc, Inc. SDAccel development environment. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html.

[11] “Frequent itemset mining dataset repository,” http://fimi.ua.ac.be/data/.

