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Abstract—Frequent itemset mining (FIM) is a widely-used 

data-mining technique for discovering sets of frequently-
occurring items in large databases. However, FIM is highly time-
consuming when datasets grow in size. FPGAs have shown great 
promise for accelerating computationally-intensive algorithms, 
but they are hard to use with traditional HDL-based design 
methods. The recent introduction of Xilinx SDAccel development 
environment for the C/C++/OpenCL languages allows developers 
to utilize FPGA’s potential without long development periods 
and extensive hardware knowledge. This paper presents an 
optimized implementation of an FIM algorithm on FPGA using 
SDAccel and Vivado HLS. Performance and power consumption 
are measured with various datasets. When compared to state-of-
the-art solutions, this implementation offers up to 3.2x speedup 
over a 6-core CPU, and has a better energy efficiency as 
compared with a GPU. Our preliminary results on the new 
XCKU115 FPGA are even more promising: they demonstrate a 
comparable performance with a state-of-the-art HDL FPGA 
implementation and better performance compared to the GPU. 

Keywords—Frequent itemset mining; field-programmable gate 
array (FPGA); hardware acceleration; hardware description 
language (HDL); high-level synthesis (HLS) 

I. INTRODUCTION 
Frequent itemset mining (FIM) is a computationally-

intensive data-mining technique that was originally developed 
for market basket analysis [1]. It aims to derive the rules 
underlying such phenomena as shopping behavior of customers 
in supermarkets or online shops, or relatedness of events. 
Specifically, it finds frequently-occurring subsets from a 
database of transactions. The frequency of a subset is measured 
by support ratio, which is the number of transactions 
containing the subset divided by the total number of 
transactions. Among the best-known FIM algorithms are 
Apriori [2], Eclat [3], and FP-growth [4]. Apriori iteratively 
performs three stages, namely candidate generation, support 
counting, and candidate pruning. It utilizes a breadth-first 
search to traverse the itemset candidate space. Eclat also uses a 
candidate generation strategy but uses a depth-first search to 
traverse the candidate space recursively. Eclat is more efficient 
in memory than Apriori but makes it hard to parallelize. FP-
growth is another popular FIM algorithm introduced in [4]. By 
using a data structure called a Frequent-Pattern tree that 
contains all the information from the input database, FP-growth 
requires only two scans of the database. FP-growth generally 
has better performance than Apriori and Eclat, but its high 
memory requirement prevents its use for very large datasets. 

Recently, a number  of  hardware-accelerated solutions  for 
FIM algorithms have been developed [5], [6]. In [5], a state-of-

the-art, to our knowledge, FPGA implementation was proposed 
to accelerate the Eclat algorithm on a four-FPGA board with a 
binary representation of itemsets. In [6], a GPU-accelerated 
algorithm, called Frontier Expansion (FE), was proposed. The 
FE algorithm uses both breadth-first search and depth-first 
search to provide more parallelism. The parallel paradigm is 
generalized by a producer-consumer model that makes the 
implementation applicable to a heterogeneous environment 
consisting of CPUs and GPUs. To the best of our knowledge, 
the FE algorithm [6] is the fastest parallel FIM implementation. 

Over the past few years, FPGAs have proven their potential 
in variety of applications with high performance and energy 
efficiency compared to other computing platforms. This makes 
FPGAs compelling choices for datacenters, where energy 
efficiency and power provisioning are both critical factors. For 
example, Microsoft has designed a customized FPGA board 
Catapult and deployed it in its datacenters [7], which improved 
the ranking throughput of the Bing search engine by 2x. 
However, FPGA designs are often implemented in low-level 
HDLs such as Verilog and VHDL, which can be time-
consuming, and requires a long learning curve on both 
programming and performance optimizations [8]. Recent 
advances in high-level synthesis (HLS) allow developers to 
specify computationally-intensive algorithms in conventional 
high-level languages such as C/C++ and OpenCL, [9], [10]. 
The HLS tools can automatically transform the algorithms to 
HDL implementations and compile them into FPGA hardware 
binaries. This process does not require extensive knowledge of 
FPGA hardware or memory interfaces, which reduces 
development time and cost. The Xilinx SDAccel development 
environment is built on the existing Vivado HLS capabilities 
with an optimized compiler that comprehends not only C/C++ 
but also OpenCL. Internally, it uses Vivado place-and-route 
engine. The environment currently focuses on x86 CPU-based 
systems with PCIe interfaces to FPGA-based add-in boards. 

In this work, we adopt the Frontier Expansion framework 
and implement it using SDAccel targeting an Alpha Data 
ADM-PCIE-KU3 board equipped with a Kintex UltraScale 
XCKU060 FPGA. We choose to develop our kernel in C/C++ 
language to leverage Vivado HLS for efficient architectural 
optimizations. One advantage of this framework is that it can 
easily be extended further for a heterogeneous platform of 
FPGAs, GPUs and CPUs. In this paper, performance and 
power consumption are measured with various datasets. We 
compare the performance of the FPGA implementation over a 
range of minimum support values against the implementations 
in [6] on both multi-core CPU and GPU. We also present 
preliminary results using the Kintex UltraScale XCKU115 
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FPGA, which has larger resources and higher memory 
bandwidth, and compare our implementation with the HDL 
FPGA implementation of the Eclat algorithm in [5]. 

II. IMPLEMENTATION OF FRONTIER EXPANSION ALGORITHM 
Details of the Frontier Expansion (FE) algorithm can be 

found in [6]. In this section, we provide a brief overview to 
help our discussion on its FPGA implementation. The FE 
algorithm uses a bitvector representation, where each item is 
represented by a binary sequence of transactions. Each bit in 
the sequence denotes a transaction and is set to one if the item 
is contained in the transaction. It is noted that the bitvector 
length is fixed for all items. With the bitvector representation, 
support counting can be performed using bitwise logical 
operations. The candidates are stored in a data structure called 
the “frontier stack,” managed by the CPU. Each stack element 
contains one candidate and a reference to its bitvector in the 
FPGA’s DRAM. The algorithm repeatedly expands the stack 
by generating new candidates from old candidates with the 
common prefix on the top of the stack, and deleting the 
infrequent candidates from the stack. Specifically, the new 
candidates are generated by intersecting the old candidates and 
the support counts of the new candidates are computed on the 
FPGA. In order to avoid the overhead of repeated memory 
allocations and deallocations during the expansion, the largest 
possible contiguous block of memory (dubbed memory pool) 
in the FPGA’s DRAM is allocated for the largest possible 
datasets (i.e. maximal number of bitvectors). A CPU-based 
runtime manager is used to issue and revoke the free addresses 
in the stack. 

A. Candidate Generation on CPU 
The frontier stack is organized by clustering candidates into 

equivalent classes, which contains a set of candidates with the 
same size, sharing the common prefix. The initial contents of 
the stack are 1-itemsets, which are all in the same equivalence 
class. During the candidate generation (as shown in Fig. 1), 
equivalent classes are popped from the stack and their 
candidates are self-joined to generate new equivalent classes, 
containing new candidates. The process continues until the size 
of the new candidate list is larger than a predefined 
threshold. The supports of these new candidates are then 
counted by the FPGA kernel. Those new candidates that meet 
the minimum support threshold are pushed back into the stack. 
Note that the expansion procedure is repeated, which implies 
the FPGA kernel is called repeatedly, until the stack is empty. 
The larger the threshold, the more candidates generated, 
which leads to fewer number of FPGA kernel calls, but 
requires a larger memory space. Hence, the value of 
threshold is chosen as a tradeoff between performance and 
memory usage. In this work, we set threshold equal to 8192. 

B. Support-Counting on FPGA 
After new candidates are generated on the CPU, the 

addresses of the bitvectors of the candidates (old and new) are 
given to the FPGA support-counting kernel. The FPGA kernel 
(its pseudo-code is shown in Fig. 2) computes bitvector 
intersections and population counts (i.e. support values) for 
each new bitvector (i.e. new candidate). The kernel receives an 

 

Fig. 1. Pseudo-code of the Frontier Expansion algorithm.  

threshold×3 array. The array consists of three sub-arrays, 
namely src_list1, src_list2, and dst_list, which store 
the addresses referencing to two source bitvectors and one 
destination bitvector. The kernel first reads the source bitvector 
src_bitvec1 indexed by src_list1, and stores it in BRAM. 
Then, it executes the intersection and counting operations 
while loading src_bitvec2 indexed by src_list2 at the same 
time. The intersection results is stored in BRAM and then 
written into the destination bitvector, dst_bitvec, referenced by 
dst_list. It should be noted that src_bitvec1, src_bitvec2, 
and dst_bitvec are all stored in a memory pool (i.e. “base” 
array in Fig. 2) in FPGA’s DRAM as discussed before. 

Several optimization techniques are applied in the FPGA 
kernel implementation, including: 

(1) loop pipelining for the loop at line 8 in Fig. 2; 

(2) data packing the base buffer for a wider bitwidth (512 
bits) of the memory interface to increase the global memory 
bandwidth; 

(3) partitioning buf_src1 and buf_dst into 16 physical 
BRAMs instead of one single BRAM for each to improve the 
pipelining in line 8. Each buffer can sustain 16 concurrent 
transactions; 

(4) partially unrolling the loop at line 8 by a factor of 16 
which allows 16 samples to be processed in parallel; 

(5) reducing the number of data transfers from DRAM to 
BRAM (line 6) by reusing bitvector in buf_src1 (BRAM) as 
much as possible; 

 

Fig. 2. Pseudo-code of support counting on FPGA. 



(6) reducing the number of data transfers from BRAM to 
DRAM (line 13) by only transferring new candidates if their 
supports are greater than the minimum support ratio. 

C. Producer-Consumer Model 
The support-counting kernel is synthesized on one compute 

unit (CU) (defined as the element in the FPGA device onto 
which the kernel is executed [10]). Each topmost branch of the 
search tree is processed sequentially. However, each branch 
can be expanded independently with its own allocated memory 
pool on DRAM. If multiple CUs are synthesized on the device, 
these expansions can be done in parallel, as long as there are 
enough resources on the FPGA device and on the DRAM. We 
use a producer-consumer model, [6], to scale the FE algorithm 
to a multi-CU architecture. After 1-itemsets are initialized in 
the frontier stack, the producer thread splits topmost branches 
(i.e. equivalent classes) and inserts them into a shared buffer. 
The consumer threads process one class at a time from that 
buffer. When the buffer is full, the producer stops until one 
class is consumed by a consumer thread. The producer thread 
finishes when all the equivalent classes are generated and 
inserted into the buffer. In our FPGA implementation, each 
consumer thread is assigned to a CU on the FPGA. This model 
can also be realized on a multi-CU multi-FPGA architecture. 

III. RESULTS 
We compare the FPGA implementation with the single-

core CPU (1CPU), the 6-core CPU (6CPU) and the GPU-
accelerated (1GPU) implementations of FE. Because the FPGA 
only accelerates the support-counting operation, we show the 
performance results of both the counting operation (FPGA 
only) and the total computation (FPGA+CPU) in this section. 
The two following systems are utilized for experiments: 

• CPU and GPU: the system is equipped with an Intel 6-Core 
i7-5820K (3.3GHz), 32GB DDR4 RAM, and an Nvidia Kepler 
K80 (12GB GDDR5 memory). The system uses CUDA 8.0. 

• FPGA: the system is populated with an Intel 4-Core i7-
4820K (3.7GHz), 32GB DDR3 RAM, and an ADM-PCIE-
KU3 board featuring Kintex UltraScale XCKU060 FPGA and 
16 GB of DDR3 memory. The system uses SDAccel 2016.2. 

For all implementations, we compare the performance over 
a range of relative minimum support values. The relative 
minimum support number is defined as the ratio of minimum 
support number to the total number of transactions. 

One commonly-used real-world dataset, Accidents, 
obtained from the Frequent Itemset Mining Dataset Repository 
[11], and one synthetic dataset, T80I20N0_3D2000K, obtained 
from the IBM Market-Basket Synthetic Data Generator are 
tested. The third dataset, T60I20N0_5D500K, is used for 
comparison with the Eclat FPGA implementation in [5]. The 
details of these datasets are shown in Table 1. 

TABLE I.  REAL-WORLD AND SYNTHETIC DATASETS 

Dataset Trans# Item# Size(MB) 

Accidents (real-world) 340183 468 34 

T80I20N0_3D2000K (synthetic) 2M 300 516 

T60I20N0_5D500K (synthetic) 500K 500 103 

A. Impact of Optimization Techniques 
It is important to study the impacts of individual 

optimization techniques (Section II.B) in our FPGA 
implementation, since the performance can be significantly 
improved with proper optimizations. In Fig. 3, we show 
speedups, as optimizations applied, with respect to the FPGA 
implementation with no optimization, dubbed Non-Opt. Note 
that since optimization (2) through (4) are related to throughput 
improvement, we group them together with optimization (1) 
into Opt1_to_4 in Fig. 3. The All-Opt in the figure denotes the 
performance when all optimizations are applied. As shown, 
through loop unrolling, we can allocate more resources to 
allow more concurrency in the FPGA kernel. Along with data 
packing and BRAM partitioning, we can achieve significant 
performance speedup (increased from 3x with Opt1  to ~30x 
with Opt1_to_4). When all optimizations are utilized, the 
performance speedups with respect to the Non-Opt reach 43.6x 
and 78.2x for Accidents and T80I20N0_3D2000K, 
respectively. Due to this significant improvement, we only 
present the results of FPGA implementations with all 
optimizations applied in the following sections.  

 
Fig. 3. Performance of optimization techniques on the FPGA. 

B. Performance 
Fig. 4 shows the runtimes of the CPU implementations 

(1CPU and 6CPU), the GPU implementation and the FPGA 
implementations (using 1 CU, 2 CUs, and 4 CUs) on two 
datasets. It is observed that the runtimes of all implementations 
grow exponentially as minimum support number decreases. 
However, GPU and FPGA implementations show less runtime 
and slower growth of runtimes as minimum support number 
decreases. We also show speedup results of the FPGA and the 
GPU versus the 6-core CPU, in Fig. 5. For the sake of brevity, 
we do not show speedup results with respect to the 1-core 
CPU. However, speedup ratios can be easily calculated based 
on the runtimes in Fig. 4. The GPU implementation 
outperforms the FPGA implementations, even when multiple 
CUs are used. To explain this, we revisit some details of the 
GPU implementation in [6]. During the FE process, the CUDA 
kernel reads bitvectors from the global memory, performs 
computations, and saves the intermediate bitvectors to the 
global memory. Each bitvector intersection is computed by one 
block. Threads within a block collectively process intersections 
of the two bitvectors. In other words, each iteration in the FOR 
loop at line 5 in Fig. 2 is corresponding to a block and these 
massively parallel blocks can run concurrently performing 
load/store operations to GPU global memory. However, this is 
not the case in our FPGA implementations. In FPGA systems, 



the load/store operations from/to global memory will compete 
for the on-board global memory bandwidth. Moreover, the 
FPGA’s global memory system lacks a dedicated cache 
hierarchy like in the GPU, which causes the global memory  
transactions to be less efficient  than that of the GPU. Thus, in 
the FPGA implementations, the FOR loop at line 5 in Fig. 2 is 
sequential. The parallelization is only applied to the inner loop 
at line 8 through pipelining and unrolling. Moreover, since 
source bitvectors and resulting bitvectors are stored in the same 
global memory space, which prevents the loop at line 8 from 
being fully pipelined, it costs extra memory transfers between 
DRAM and BRAM. These make the FPGA implementations 
slower than the GPU implementation. Hence, a GPU-like 
global memory system is desirable for future FPGAs. 

Minimum support threshold is used by support counting to  
filter  infrequent  candidates from new candidate sets. This 
threshold affects not only the number of new itemsets but also 
the search depth of the algorithm. Our analysis demonstrates 
that FPGA implementations achieve better performance over 
CPU implementations for low minimum support values. It is 
apparent that lower support ratios result in more computation 
for support counting, and the FPGA kernel is parallelized 
better than CPU implementations for this purpose. As shown in 
Fig. 5, FPGA speedup ratios with respect to a 6-core CPU can 
be achieved up to 1.27 (1-CU) and 2.65 (4-CU) for Accidents 
and 1.63 (1-CU) and 3.16 (2-CU) for T80I20N0_3D2000K, at 
the relative minimum support of 0.08. 

0.080.120.160.20.240.280.3
10-1

100

101

102

103

104

Relative Minimum Support

C
om

pu
ta

tio
n 

Ti
m

e 
(s

ec
.)

"Accidents" dataset

 

 
1CPU-Counting
1CPU-Total
6CPU-Counting
6CPU-Total
1GPU-Counting
1GPU-Total

1CU-Counting
1CU-Total
2CU-Counting
2CU-Total
4CU-Counting
4CU-Total

 
(a) Accidents 

0.080.120.160.20.240.280.3
10-2

10-1

100

101

102

103

104

Relative Minimum Support

C
om

pu
ta

tio
n 

Ti
m

e 
(s

ec
.)

"T80I20N0-3D2000K" dataset

 

 
1CPU-Counting
1CPU-Total
6CPU-Counting
6CPU-Total
1GPU-Counting
1GPU-Total

1CU-Counting
1CU-Total
2CU-Counting
2CU-Total
4CU-Counting
4CU-Total

 
(b) T80I20N0_3D2000K 

Fig. 4. Performance results of CPU, GPU and FPGA implementations. 
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(b) T80I20N0_3D2000K 

Fig. 5. Speedups over 6-core CPU implementation. 

For multi-CU FPGA implementation, each CU should be 
assigned to a separate bank for optimum memory access. More 
than one CU sharing a memory bank can lead to performance 
degradation, especially for large dataset, because of memory 
access contention. Note that the KU3 FPGA board has two 
DDR3 banks. Taking into account this limiting factor and the 
hardware resource of the FPGA device, we can synthesize up 
to four CUs on this board, where two CUs share one DDR3 
bank. The 4-CU design gives the best performance for 
Accident dataset while it cannot deliver this for larger dataset. 
For T80I20N0_3D2000K dataset, the 2-CU design shows 
better performance than the 4-CU. Provisioning more memory 
banks in future generations of FPGA boards can solve the issue 
of performance degradation with higher number of CUs. 

C. Performance Projection 
In the multi-CU FPGA implementation, since the KU3 

FPGA board only has two memory banks, multiple CUs might 
have to share a memory bank, which causes performance 
degradation. Hence, in order to investigate the performance 
scalability with increasing the number of CUs, we project the 
FPGA results into larger FPGAs with more memory banks. We 
assume up to 12 memory banks and 12 CUs can be used. 



Based on the runtimes of each equivalent class expansion 
in the 1-CU design, the producer-consumer model is utilized to 
project runtimes onto larger number of CUs. Fig. 6 shows the 
projected speedups with respect to 1-CPU and 6-CPU 
implementations at the minimum support value of 0.1 for 
T80I20N0_3D2000K dataset. The dashed curves denote the 
projected results while the solid curves indicate the measured 
results of 1-CU, 2-CU and 4-CU designs. As shown in Fig. 6, 
we can achieve speedups up to 28.3x (w.r.t 1CPU) and 6.5x 
(w.r.t 6CPU) using 12 CUs for T80I20N0_3D2000K. 
Similarly, for Accidents, these numbers are 10.5x and 4.0x 
with respect to 1-core CPU and 6-core CPU, respectively. 
Although the multi-CU implementation shows relatively good 
projected speedups, it does not show good scalability, as can be 
seen in Fig. 6. The main reason is the imbalance of the search 
trees, which may have some extremely long branches. CUs 
responsible for these branches will dominate and execute 
longer than other CUs. Hence, it is essential to have a better 
distribution scheme that can equally assign the workload to the 
required CUs. 
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Fig. 6. Projected speedups w.r.t CPUs of the FPGA implementation. 

D. Power Analysis and Energy Efficiency 
Since SDAccel has not supported on-board power 

measurement, and the GPU and the FPGA are located on 
different systems, we decide to measure dynamic power. 
Power utilization of the entire system is recorded at one second 
intervals with a Watts up? PRO power meter. The procedure is 
as follows: (1) measuring the power usage of the idle system; 
(2) measuring the power usage of the system while it is 
performing the FE algorithm; (3) dynamic power is calculated 
as the difference between active power and idle power. The 
power results of the CPU, the GPU and the FPGA for 
Accidents and T80I20N0_3D2000K at the minimum support 
value of 0.1 are shown in Fig. 7.  

To investigate the energy efficiency, we look at energy-
delay products. Fig. 8 shows energy efficiency of the GPU and 
the FPGA against CPU for both datasets. Speedups are given in 
parentheses for convenient comparison. Actual measurements 
are represented in solid bars (6CPU, 1GPU, 1CU, 2CU, 4CU, 
respectively). FPGA implementations are faster and more 
energy efficient than 6-core CPU implementation while they 
are slower than GPU. However, when energy is considered, the 
gap between GPU and FPGA becomes narrower. For example, 

 
Fig. 7. Dynamic power consumption of CPU, GPU, and FPGA. 

the energy efficiency of the 2-CU FPGA implementation on 
T80I20N0_3D2000K dataset is comparable to that of the GPU 
(6.2x vs. 6.9x). 

One of the main factors that causes inferior performance of 
FPGA compared to GPU is data transfers between global 
memory and BRAM. Storing intermediate bitvectors on chip 
in a scratchpad can potentially improve FPGA performance. 
Since the actual BRAM capacity is limited, we use a 
scratchpad simulator to simulate the FPGA kernel operation 
with varying scratchpad sizes. Exploiting the SDAccel 
timeline trace collection feature, we measure the actual 
runtimes of individual loops in the FPGA kernel (i.e. loops in 
line 6, line 8, and line 13 in Fig. 2). Using these runtimes and 
the scratchpad simulator, we can estimate the FPGA kernel 
runtime based on the required scratchpad accesses. However, 
we observe that the use of scratchpad only shows improved 
performance with very large scratchpad size. Hence, we only 
include the results of ideal cases in which the scratchpad size 
is assumed to be very large to keep all necessary bitvectors in 
Fig. 8 (bars with spm in their names). As demonstrated in Fig. 
8, the simulated FPGA implementation can achieve up to 4.5x 
(T80I20N0_3D2000K dataset) speedup over the 6-core CPU. 
In terms of energy efficiency, FPGA can obtain 7.5x more 
efficient than the 6-core CPU while the GPU achieves 6.9x. 

These results show that despite the modest XCKU060 
FPGA, with proper optimization, we can achieve better energy 
efficiency compared to GPUs and multiple times better 
compared to multi-core CPUs. With the latest FPGAs and 
more optimized SDAccel environment, we expect FPGAs to 
be more competitive against GPUs. 

 
Fig. 8. Energy efficiency of GPU and FPGA, normalized to CPU results. 



E. Preliminary Results with Nimbix Cloud 
We also test our FPGA designs with the new Xilinx XIL-

ACCEL-RD-KU115 board, equipped with a Kintex UltraScale 
XCKU115 FPGA and four DDR4 banks (16GB total). The 
KU115 board enables synthesizing kernels at 300MHz clock 
compared to 250MHz clock (KU3 board used in previous 
experiments). The KU115 board is accessed through Nimbix 
Cloud. The system that hosts the KU115 board is populated 
with an Intel Xeon 8-Core E5-2640 v3 (2.6GHz), 128GB 
DDR4 RAM, and SDAccel 2016.4. Since these experiments 
were carried out on the cloud, where is hard to acquire power 
utilization, we only present the performance results in this 
section.  

In Fig. 9, we show the runtimes performed for the 
T80I20N0_3D2000K dataset (min. sup. 0.1) on the KU115 
board along with the results of the CPU, the GPU and the 
FPGA on KU3 board. We also extend the projection to the 12-
CU design for KU115 board use the projection approach in 
Section III.C. With KU115 board, we can achieve ~2x better 
speedup compared to KU3 board. The runtime of the 12-CU 
design for T80I20N0_3D2000K dataset is comparable to the 
runtime of GPU (35.4s vs. 36.3s), so we project this would 
also be significantly more energy efficient, since FPGAs 
typically use much less power than GPUs.  

In Fig. 10, we also compare our FPGA implementation 
with the state-of-the-art FPGA implementation of the Eclat 
algorithm [5]. The design in [5] was developed using VHDL 
and tested on GiDEL PROCStar III PCIe board, containing 4 
Altera Stratix III 260 FPGAs, with each FPGA connected to 
three DRAM memory banks. Up to 12 processing elements 
can run on the entire board at 200MHz (denoted as 12PE_ref 
in Fig. 10). To have a fair comparison, the experiment is 
conducted with the smaller dataset T60I20N0_5D500K (min. 
sup. 0.02). It is observed that the 4-CU design on KU115 
board is close to 12PE_ref while the 12-CU design are ~2x 
better than 12PE_ref. With this small dataset, the 12-CU 
design on KU115 board even shows better performance than 
GPU. 

IV. CONCLUSIONS 
In this paper, we present an FPGA implementation of the 

FE algorithm using SDAccel and Vivado HLS. Performance 
and energy efficiency are compared with multi-core CPU, 
GPU and state-of-the-art FPGA implementations. An 
empirical model used to project the FPGA runtime on a larger 
FPGA with more memory banks is presented. 

With the KU3 FPGA board, although we could not beat 
the GPU performance, we could achieve better energy 
efficiency than GPU, and could beat multi-core CPU in terms 
of performance and power efficiency. Our preliminary results 
on the new KU115 FPGA board demonstrate a comparable 
performance with the state-of-the-art FPGA implementation 
and even a better performance compared to GPU. It is highly 
promising that such performance and power efficiency can be 
achieved on FPGAs with a high-level language such as 
C/C++. An investigation of the FE algorithm on a 
heterogeneous platform will be targeted in our future work. 

 
Fig. 9. Runtimes of CPU, GPU, FPGA (KU3) and FPGA (KU115) 
(T80I20N0_3D2000K, min. sup. 0.1). 

 
Fig. 10. Runtimes of CPU, GPU, FPGA (KU3) and FPGA (KU115) 
(T60I20N0_5D500K, min. sup. 0.02). 
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